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Abstract: Driving style provides information about driving behaviour and the 
driving environment, which reflects the driver’s operation while driving. High 
altitudes can significantly influence the human body, thereby affecting driving 
ability. Consequently, accurately recognising driving styles at different 
altitudes has significant implications for driving safety, road design and fuel 
economy. This paper proposes a method that incorporates data processing, 
feature selection, a Bi-LSTM autoencoder and spectral clustering to address  
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this issue. Based on the analysis of real-driving data experiments, three driving 
styles were identified as calm, moderate and aggressive. These styles 
accounted for 46%, 19% and 36% in plateau driving and 33%, 29% and 38% in 
plain driving. The results demonstrate how the proposed method can 
effectively recognise driving styles at different altitudes with fewer features. 
Additionally, driving styles remained relatively consistent for the same driver 
driving at varying altitudes, despite changes in vehicle performance. 

Keywords: driving style recognition; whale optimisation algorithm; feature 
selection; Bi-LSTM; autoencoder; spectral clustering. 
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1 Introduction 

Driving style is a complex concept influenced by several factors, leading to various 
definitions. Typically, driving style consists of driving abilities and driving behaviour. 
More specifically, driving abilities pertain to the capacity of drivers to manage their  
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vehicles, which is linked to their psychological health, knowledge, skills and experience. 
Driving abilities are related to the driving experience the driver has (Jachimczyk et al., 
2018; Milleville-Pennel and Marquez, 2020). There are interrelationships between 
driving behaviour and factors such as road environment, real-time traffic situation, etc. 
(Bellini et al., 2020; Wang et al., 2018). Road safety, fuel efficiency and passenger 
comfort can be adversely affected by driving behaviour. Determining driving behaviour 
enables an increase in safety awareness, energy conservation and passenger comfort. As a 
result, research on driving style has gained significant attention in recent years. 

With increasing altitude, air turns thin, resulting in a certain extent of psychological 
impact on the driver. Additionally, lessened vision, dynamism shifts and reaction times 
are liable to affect human behaviour and health (Zhang et al., 2022). Low-oxygen levels 
at high altitudes can affect the visual sensitivity and saccade amplitude of drivers. 
Measuring heart rate variability via LF/HF was employed to assess changes in the 
driver’s heart rate while driving in a plateau and it was found that the tension of the 
sympathetic nerve was affected by high altitudes and prolonged driving (Li and Eli, 
2015). As a matter of fact, driving at high altitudes decreased the drivers’ stress reaction 
ability, leading to increased errors in judgement and a weaker stress response to driving 
decisions. Furthermore, examining the fluctuating rate of heartbeat intervals indicated 
local drivers had greater fatigue resistance than non-local drivers amidst rising altitudes 
(Chen and Eli, 2016; Liu et al., 2016a). Therefore, the study of the driver’s behaviour and 
performance of the vehicle is necessary in light of the influence on the human body 
during driving in plateau. 

Diesel engines exhibit several phenomena such as a reduction in power and an 
increase in fuel consumption in plateau, which greatly limit their performance.  
At altitudes exceeding 4000 m, the power output of diesel engines declines by 14%  
while fuel consumption increases by approximately 10%, compared to lower altitudes 
(Guo et al., 2011; Liu et al., 2016b). Owing the reduction in air pressure and oxygen 
content, combustion was retarded and incomplete. At high altitudes, the ignition delay is 
prolonged, causing the rate of pressure to increase even exceeding the maximum allowed 
limit. The engine’s lifespan may have been shortened as a result. Moreover, the reduction 
of excess air ratio and gas density in the cylinder, poor spray information, and 
insufficient preparation of the mixture resulted in increased emissions and power loss in 
the engine (Liu and Liu, 2022). Numerous studies have found that driving in high-
altitude regions has a negative impact on the human body, specifically on control abilities 
and vehicle performance, which is distinct from driving in plain. Recognising and 
distinguishing between these different driving styles is crucial in evaluating road design 
and performance. There was a wide use of real-time data analysis in the recognition of 
driving styles. The unsupervised machine learning method, K-Means clustering, is 
commonly used by researchers exploring driving style recognition. Driving manoeuvres 
were grouped using K-means clustering, and risk indexes were calculated to determine 
the propensity towards aggressive driving behaviour after classifying road types into  
highways and urban areas (Ma et al., 2021; Martinelli et al., 2018). Further, K-Means 
was employed to classify driving conditions into hilly roads, start/stop and turning cycles 
and flat roads in order to evaluate the effect of driving conditions on driving behaviour 
(Si et al., 2018). As part of a study aimed at determining aggressive driving profiles, a 
two-stage clustering approach based on K-Means was used to first distinguish between  
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aggressive and non-aggressive drivers, and then to identify distraction and risk taking in 
both stages (Mantouka et al., 2019). An algorithm based on hierarchical clustering and 
Principal Component Analysis (PCA) was used to classify driving styles into five 
categories using a GPS-based vehicle tracking system called Gipix (Constantinescu et al., 
2010). By combining algorithms and data analysis, driving style was recognised 
efficiently. A supervised method that includes learning and prediction from labelled data 
enables vehicle owners to distinguish potential impostors by using attributes stored in the 
car’s embedded sensor (Martinelli et al., 2020). A semi-supervised machine learning 
method called Semi-Supervised Support Vector Machine (S3VM) has been developed to 
identify aggressive and normal driving styles based on a few labelled data points (Wang 
et al., 2017). The use of neural networks, however, is widespread in a variety of tasks, 
such as classification, image recognition, voice recognition and behaviour prediction. For 
driving style recognition, an Artificial Neural Network (ANN) model was developed to 
identify longitudinal and lateral driving manoeuvres using data collected from inertial 
sensors. Based on a score calculated by this model, the driving style was classified into 
one of five categories (Brombacher et al., 2017). The advancement of machine learning 
has simplified the process of distinguishing between diverse driving styles. However, 
large amounts of data affect the calculation and accuracy of a model, feature selection 
can be used to address this issue. 

Feature selection is the process of selecting uniform, non-redundant and essential 
features related to machine learning models that helps to reduce data set complexity 
while conserving information hidden within it. PCA was a typical method that used for 
feature selection (Si et al., 2018; Wang et al., 2022; Xie et al., 2018) With this method, 
features were extracted from 383 dimensions of the electronic vehicle big data based on 
the percentage of intervals, three different joint distribution characteristics in which the 
cumulative contribution rate of the first 35 principal components was over 85% and 
sufficient for representing the driving style (Xia and Kang, 2021). 

Driver behaviour and vehicle status exhibit significant differences at varying 
altitudes, making it necessary to distinguish their respective driving styles. Since machine 
learning can be inefficient and expensive when used with large quantities of data, it may 
not be practical in some situations. Natural driving data consists of continuous time series 
information, meaning that a driver’s behaviour at a particular moment is linked to their 
behaviour before and after that moment. As a result, it is necessary to consider the states 
preceding and following each instance when identifying driving style. 

This paper proposes a driving style spectral clustering recognition method using 
autoencoder with Bi-LSTM. In the initial stage, the original labels are determined from 
the cleaned data set using the K-Means clustering algorithm. Subsequently, the whale 
optimisation algorithm combined with Sigmoid function is employed to reduce the size 
of the data set while selecting essential features. To learn the structure of spectral 
embedding, the auto-encoder with Bi-LSTM is used and the final driving style label is 
determined using spectral clustering. Finally, the feasibility of the proposed methodology  
is demonstrated through experimental analysis of semi-trailer driving at different 
altitudes. Figure 1 depicts the framework of the proposed method. 
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Figure 1 Framework of driving style recognition method 

 

2 Method 

2.1 Label initialisation and feature selection 

The K-Means method, an unsupervised machine learning technique, is extensively 
utilised in data mining and cluster analysis. It aims to group data points with similar 
features, dividing the data set into non-overlapping clusters, where each data point 
belongs to only one group. This algorithm seeks to maximise inter-cluster differentiation 
while minimising intra-cluster differences. The method assigns data points to clusters 
based on the shortest Euclidean distance between their centroids and the data points. In 
this study, K-Means was employed to establish the initial labels that served as input for 
feature selection. 

This study evaluates the effectiveness of K-Means clustering by using the Calinski-
Harabasz Index (CHI) (Chamidah and Wasito, 2015; Mewada et al., 2020). The core 
calculation of CHI, as illustrated in equation (1), involves the assessment of both the 
inter-cluster and intra-cluster variances to determine the score. The larger the CHI value, 
the better the clustering effect. 

   
 

 
 1

k

k

tr B m k
s k

tr W k


 


 (1) 

where kB  is the between-cluster covariance matrix and kW  is the within-cluster 

covariance matrix, tr  is the trace of a matrix, m  is the total number of observations and 
k is the total number of clusters. 

One of the meta-heuristic algorithms, the Whale Optimisation Algorithm (Mirjalili 
and Lewis, 2016) is inspired by the hunting strategy of whales. The algorithm could be 
divided into three phases which are discussed in the following. 

Encircling prey is the first phase of the algorithm. Initially, the algorithm selects the 
first prey through a random search process. The WOA algorithm presumes that the first 
prey is the best candidate or the one closest to it, referred to as the target prey.  
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Subsequently, the swarming behaviour adjusts the positions of the prey towards the 
candidate solution, which can be expressed as follows: 

   * t t  D C X X  (2) 

   *1t t   X X A D  (3) 

where t  is the current iteration, X  is the position vector, *X  is the position vector 
coincide to the best solution found, A  and C  are coefficient vectors which are defined 
as following: 

2  A a r a  (4) 

2 C r  (5) 

where a  is linearly decreased from 2 to 0 over the course of iterations (in both 
exploration and exploitation phases) and r  is a random vector in [0,1]. 

The second phase is exploitation phase called Bubble-net attacking. A shrinking 
encircling mechanism is applied at the beginning of this phase. This behaviour is 
achieved by reducing the value of A  in the equation (4). Subsequently, the whale’s 
distance to its prey is calculated using the spiral updating position method. The spiral 
equation mimics the helix-shaped movement of the whale and is expressed as follows: 

     *1 cos 2blt e l t    X D X  (6) 

where l  is a random number in the range [−1, 1] and b  is a constant. 50% of the 
probability was assumed to choose between either shrinking encircling mechanism or the 
spiral model. The mathematical model is following: 

 
*

*

( ) 0.5
( 1)

cos 2 ( ) 0.5bl

X t A D p
X t

D e l X t p

   
      

 (7) 

where p is a random number in [0, 1]. 
As the final phase of the algorithm, the exploration phase utilises values represent by 

A  that do not fall within the range of [–1, 1]. This forces the search agent to move a 
considerable distance from its current position. Mathematically expressed as follows: 

rand rand  D C X X  (8) 

 1 rand randt    X X A D  (9) 

where randX  is a random position vector (a random whale) chosen from the current 

population. randD  denotes the distance from a randomly selected individual whale to its 

prey. 
As for the feature selection, the continuous WOA has to be transforming to their 

corresponding binary space (Hussien et al., 2019; Mafarja et al., 2020). The conversions 
proposed in the study is the sigmoidal transfer function which forces the search agent 
moving in the binary space. The transfer equation used to get the continuous form and 
define it as given in equation (10). 
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  1
1 t

t X
S X

e 


 (10) 

where tX  represents the step vector of search space at t . Then, the equation for current 

search agent position updating is given in equation (11). 

   
 

1
1

1

1 if 
1

0 if 
d t
t

t

rand S X
X t

rand S X





 
    

 (11) 

where the rand  indicates a random number in (0, 1). 
The objective of feature selection is to identify the minimum number of features that 

should be selected while achieving the highest possible classification accuracy. The two 
objectives are combined and converted into a single objective problem as shown in 
equation (12). The minimum fitness score is determined by adding the minimum error 
rate in classification to the minimum number of features that are selected. 

l
r

l

S
Fitness E

F
     (12) 

1    (13) 

where rE  is the classification error rate, lS  and lF  are the length of the selected feature 

subset and the number of all features, respectively.   and   are the classification 

accuracy and the importance degree of the length of the feature subset, respectively. In 
this paper, a value of 0.99   is used to satisfy the fitness function 

During the iterative process, the fitness value of each solution is continually 
calculated. The subset that has the lowest fitness value is the optimal solution. The 
classification accuracy can be calculated based on the optimal solution using the 
following formula: 

1 rAccurancy E   (14) 

To avoid highly linear-correlated features that may lead to overfitting in subsequent 
calculations, this paper uses the Pearson correlation coefficient to measure the linear 
correlation between pairs of features. By identifying and removing highly correlated 
features within the data set, the model’s generalisation ability and performance are 
improved, thereby allowing it to concentrate on the most informative features. The 
Pearson correlation coefficient is calculated using equation (15). 

   

   
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2 2

1 1
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,X Y

X Y
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i i
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n n

i i
i i

cov X Y
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X X Y Y
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 



 

 

 
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 
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 (15) 
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where,  ,cov X Y  is the covariance of X  and Y , X  and Y  are the standard 

deviation, X  and Y  are the mean value of iX  and iY , respectively. The range of ,X Y  

falls within the interval [–1, 1]. The strength of the linear relationship between features is 
positively correlated with a value of ,X Y  closer to 1 or –1, and negatively correlated 

with a value of ,X Y  closer to 0. 

2.2 Autoencoder with Bi-LSTM and spectral clustering 

A Recurrent Neural Network (RNN) is a specialised type of neural network that excels in 
processing sequence data. In RNN, the previous information is retained and used to 
inform the current output, through a series of organically connected units between hidden 
layers. However, the long-distance dependence on prior information, determined by the 
computational characteristics of RNN, results in its learning ability declining over time, 
which makes it difficult to achieve the expected training targets. To counteract this, Long 
Short-Term Memory (LSTM) utilises memory modules such as input gates, output gates 
and forget gates within the hidden layers, allowing for the storage and transmission of 
information over extended periods of time. As a result, the model can store and transfer 
information over extended periods, which will be further explained in the subsequent 
paragraph. 

In the LSTM unit, the forget gate chooses which information to discard, while the 
input gate decides which new information to store. The output gate determines which 
information to retain and get passed to the next layer. The calculation of gates can be 
described as follows: 

  1,t f t t ff W h x b     (16) 

  1,t i t t ii W h x b     (17) 

  1,t o t t oO W h x b     (18) 

The following equations describe the information that stored in the gates and update the 
state of cells. 

  1tanh ,C t t ct W h x bC     (19) 

1  tt t t tC f CC i      (20) 

Finally, the output gate produces the result of the multiplication between the output 
candidate and the current cell state. 

   t t th o tanh C   (21) 

The Bidirectional Short-Term Memory (Bi-LSTM) stores information in both forward 
and backward directions based on the LSTM model, at each sequence step. The  
Bi-LSTM maintains two hidden states, one from past to future, and another from future 
to past, enabling preservation of complete past and future sequence information at any 
point in time. 
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The autoencoder model consists primarily of encoders and decoders, complemented 
by the nonlinear feature extraction capability of deep neural networks, whose purpose is 
to transform input into intermediate variables, convert those variables into output and 
then compare input and output to minimise the differences between them. This approach 
is particularly suited for Bi-LSTM. 

Spectral clustering algorithms are derived from the spectral graph partition theory 
(Von Luxburg, 2007). The key idea of the algorithm is that it uses the eigenvalues of 
special matrices built from the graph or the data set. An essential component of spectral 
clustering is the use of optimal partition of graphs in order to solve the clustering 
problem, solving the singularity problem associated with high-dimensional feature 
vectors because the size of the data set is the only determinant, and the dimension of the 
data set does not play a role. In different algorithms, the splitting criterion function and 
spectral mapping method may differ, but the basic framework remains the same. 

3 Experiment and discussion 

To validate practicability of the proposed algorithm, a semi-trailer was chosen for 
analysis purposes. Based on the GPS data, the vehicle was mostly driven in plains while 
only a few days were spent driving in plateau. Data was collected by On-Board 
Diagnostic (OBD), and no communication was made with the driver about the study. To 
distinguish the driving styles at different altitudes, two separate routes, one for plains and 
another for plateau regions, are employed as depicted in Figure 2. Both routes were 
selected based on highways-dominated roads. 

Figure 2 Route of experiment at different altitudes 

  

(a) Plateau (b) Plain

3.1 Raw data preparation 

To conduct this study, the fields correlated with driving style in Table 1 were selected for 
analysis. The raw data were partially lost due to the instabilities of the sensors, and a box 
plot method was employed to mitigate the impact of data exceptions (Frigge et al., 1989; 
Hubert and Vandervieren, 2008). The study excluded the continuous and long-term 
parking periods, where stopping exceeds 180 seconds, from our analysis to ensure 
minimal negative impact on the accuracy and effectiveness of the driving style 
recognition. The raw data were captured at a 1 Hz sampling rate, depicting driving 
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actions that change within seconds. The data set for plateau and plain regions comprised 
26,747 and 49,358 valid driving data, respectively. 

Table 1 Fields chose for driving style recognition. 

Fields Definition Range 

Altitudes (m) Altitude of the vehicle [0, 5000] 

Boost Pressure (hPa) Average boost air pressure at the booster 
air outlet 

[0, 5000] 

Throttle Position (%) Throttle opening degree [0, 100] 

State of brake Brake switch status 0: deactivate  
3: activate 

Ambient Pressure (hPa) Atmospheric temperature at the site of 
engine operation. 

[0, 1000] 

Ambient Temperature (C) Atmospheric pressure value at the site of 
engine operation. 

[–45, 55] 

Engine Speed (rpm) Number of revolutions per minute at 
which the engine crankshaft turns. 

[0, 3500] 

Fan Speed (rpm) Speed of fan around the tank [50, 5000] 

Fuel consumption (L) Amount of fuel consumed per unit time. \ 

Mileage (m) Distance travelled per unit time. \ 

Injected fuel quantity  
(mg/hub) 

The amount of fuel injected for each 
operating process of a single cylinder  
of the engine. 

[0, 250] 

Gear Position Position of gear lever [0, 12] 

Vehicle speed (km/h) Speed of the vehicle [0, 120] 

Slope (rad) The change in slope of the vehicle 
travelled per unit time. [0, 

2
  ] 

As mentioned above, K-Means method was applied in this study to initialise the label of 
the raw data, and three clusters were assigned to the algorithm, indicating the driving 
styles of calm, moderate and aggressive (Mohammadnazar et al., 2021; Deng et al., 
2022). The labelled data was imported into the whale optimisation algorithm combined 
with a sigmoid function for the purpose of feature selection using 16 search agents and 
70 iterations. The accuracy for feature selection in the plateau data was 97.34%, while for 
the plain data, it was 98.19%. To ascertain the correlation between the selected features, 
we used the Pearson correlation coefficient method. The results indicated that engine 
speed and vehicle speed had a correlation coefficient of 0.55 and 0.64, respectively, for 
plateau and plain regions. Furthermore, the throttle position and fuel consumption had a 
correlation coefficient of 0.88 in plateau and 0.96 in plain. Therefore, engine speed and 
throttle position were eliminated from the model operation to improve its efficiency. 
After eliminating, Ambient Temperature (AT), Fan Speed (FS), Fuel Consumption (FC) 
and Vehicle Speed (VS) were selected as features both in plateau and plain data analysis. 
Figure 3 shows the correlation matrix of selected features after eliminating with heatmap 
at different altitudes, which can be used to analyse the impact on the driving styles. 
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Figure 3 Correlation matrix of selected features with heatmap at different altitudes (see online 
version for colours) 

  

(a) Plateau (b) Plain

Two Bi-LSTM layers with 32 units were implemented in the autoencoder architecture, 
acting as both encoders and decoders in order to mitigate the issue of overfitting caused 
by excessive layering. The model was trained using Tensorflow with 80 epochs and a 
batch size of 32 with the selected features. Spectral clustering was then applied. 
Subsequently, three eigenvalue spaces were selected to describe the data, each 
corresponding to a specific driving style. This is a final step, the embedded vectors were 
clustered using K-means and the results of the clustering were mapped back to the 
original data set. 

To verify the validity of the driving style recognition results using Bi-LSTM for  
the parameter calculation of spectral clustering. Self-Organising Map (SOM) 
(Lakshminarayanan, 2020), widely used unsupervised neural network, was used to 
evaluate the CHI clustering effect with the proposed model. To avoid the generation of 
empty clusters and to ensure the usability of SOM model clustering results for driving 
style clustering, this study utilised five SOM topologies, specifically 1×3, 1×2, 1×4, 1×5 
and 2×2. The comparison results of SOM and Bi-LSTM spectral clustering shows in 
Table 2. 

Table 2 Validation of clustering method 

Model 
CHI 

Plateau Plain 

SOM 

1×2 3151.923 9490.043 

1×3 3381.910 9015.197 

1×4 3816.304 9853.867 

1×5 3267.544 13318.178 

2×2 3812.867 9853.867 

Bi-LSTM- spectral clustering 109449.682 15772.193 

The experimental results show that the effectiveness of SOM clustering is significantly 
lower than the Bi-LSTM clustering. The primary reason for this is that SOMs often 
generate anomalies in the map, where two similar groupings appear in different areas of 
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the map. However, modifying the topology of SOM reduces the interpretability of 
clustering results. In contrast, spectral clustering can find well-separated clusters even 
when the data is not well-structured. Besides, the Bi-LSTM can use past and future 
information of driving data, which is useful for driving style classification in continuous 
driving behaviour. Therefore, this paper used the Bi-LSTM method to determine the 
spectral embedding and apply spectral clustering in driving behaviour analysis. 

As previously mentioned, the proposed algorithm divides driving style into three 
sections, specifically DS1, DS2 and DS3. Table 3 illustrates the mean values of the 
selected features for each driving style, while Figure 4 represents the distribution of each 
category at different altitudes. To analyse driving styles, multiple fields were compared 
and evaluated. 

Table 3 Numerical definition of each cluster in plateau (plain) 

Cluster Definition 
Ambient 

temperature (C)
Fan  

speed (rpm) 
Fuel 

consumption (L)
Vehicle speed 

(km/h) 

DS1 Aggressive 23.07(28.3) 1238.74(465.6) 119.17(101.48) 75.91(72.23) 

DS2 Calm 23.3(29.21) 1098.39(426.09) 58.2(89.69) 72.56(71.3) 

DS3 Moderate 22.86(25.44) 1171.89(476.49) 70.63(98.87) 58.53(71.57) 

Figure 4 Results of driving style recognition at different altitudes (see online version for colours) 

 

(a) Labels of driving in plateau (b) Labels of driving in plain 

3.2 Analysis of driving style in the whole route 

The distribution of gear positions in Figure 5 indicates that the driving route was on the 
highway, as the gear position was mainly 12. Regardless of the vehicle’s location, there 
were no significant variations in driving styles when low gear positions were being used. 
The distribution of Throttle Position (TP) in Figure 6 shows that [0, 10) of throttle 
position was dominant due to gear shifting and vehicle cruising associated with highway 
driving. Specifically, the distribution of TP is more symmetrical when compared to 
driving in plateau, which indicates that the experienced driver driving in familiar 
surroundings had a greater ability to control the throttle. Driving on plateau had an 
adverse impact on the driver’s body function due to high altitudes, causing a decrease in 
the control ability of the throttle. As a result, the driving style tends to be less aggressive 
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when driving at high altitudes. Additionally, the TP was mainly below 60% while driving 
in plateau, implying that drivers tend to be more cautious when driving in high altitudes. 

Figure 5 Distribution of gear position at different altitudes (see online version for colours) 

 

Figure 6 Distribution of throttle position at different altitudes (see online version for colours) 

 

Figure 7 shows the distribution of gear position when holding brake at different altitudes. 
The main difference between driving on plains and plateau when holding the brake was 
that driving styles in plateau tended to be calm or moderate, with the majority of gear 
position being either 0 or 12. When driving in plain, aggressive gear shifting behaviour 
mostly occurred at higher gear positions, indicating that the vehicle remained relatively 
unsteady when holding the brake during the trip. This instability was due to the 
complicated highway conditions encountered, such as changing lanes and changing 
slopes. 

Figure 8 shows the distribution of engine speed with label of driving style in different 
altitudes. The results indicate that calm and moderate driving styles were dominant 
regardless of the altitude. Aggressive driving styles accounted for 35.72% and 37.3% of 
the driving time in the plateau and plain, respectively, which were related to adjustments 
to throttle position and gear position. Only a small quantity of engine speed was found to 
be within the range of [1800, 2000), indicating that the diesel engine produced different 
performance in plateau driving situations. 
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Figure 7 Distribution of gear position with brake holding at different altitudes (see online 
version for colours) 

 

Figure 8 Distribution of engine speed at different altitudes (see online version for colours) 

 

Figure 9 shows the distribution of vehicle speed with labels indicating driving styles at 
different altitudes. In total, with the speed limit of 100 km/h for semi-trailer, 82.68% of 
vehicles driving in plain maintained speeds above 60 km/h, while only 75.37% of 
vehicles did so in the plateau. These results indicate that drivers were more conservative 
when driving in high altitudes, particularly when they are not familiar with the driving 
environment. It is believed that small numbers of overspeed indicate a reduction in the 
control ability of the driver in plateau or the driver may be relaxed when a well-
conditioned highway is applied with fewer vehicles (Hu and Yang, 2010). However, the 
aggressive driving style mainly appeared at high speed regardless of the location, 
suggesting that high-speed driving increases the driver’s intensity, especially in plateau. 
Additionally, the complexity of road conditions leads to changes in throttle position, gear 
shifting, and vehicle speed, which can affect the recognition of driving styles. 

Figures 10(a) and 10(b) show the correlation between vehicle speed and brake state at 
different altitudes. No matter what altitudes the vehicle was at, the distribution of vehicle 
speed with brake releasing is similar with the distribution of vehicle speed in the whole 
trip which demonstrated the state of holding brake was the minority in the trip. When the 
brake was held, the distribution of vehicle speed was more dispersed and drivers tended 
to be more conservative when driving in plateau compared to plain. Specifically, the 
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aggressive driving style rarely appeared in plateau driving, while holding the brake 
resulted in a 39.23% incidence rate of aggressive driving style in plain driving. Notably, 
holding the brake typically occurred at high-vehicle speeds when driving on the plains, 
indicating that these vehicles were handling complicated road conditions such as 
overtaking. 

Figure 9 Distribution of vehicle speed at different altitudes (see online version for colours) 

 

Figure 10 Distribution of vehicle speed with brake state in plateau (above), and distribution of 
vehicle speed with brake state in plain (below) (see online version for colours) 
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3.3 Analysis of driving style in continuous samples 

To validate the recognition and definition of driving styles, 3000 continuous sample 
points were selectively examined to demonstrate the relationship between the data and 
the driving style. Figure 11(a) shows the relations among gear state, vehicle speed and 
driving style. When there is a drastic change in vehicle speed along with high gear 
position, driving style is often transformed into the aggressive one. On the contrary, with 
smooth changing of vehicle speed, gear shifting changes with gentle slope and is 
categorised as calm or moderate, regardless of the location. Three typical fragments were 
chosen in order to illustrate the differences in driving styles. D-A, D-M, D-C and P-R 
represent periods that are dominated by driving style of aggressiveness, driving style of 
moderate, driving style of clam and parking and restarting, respectively. 

Figure 11 (a) Change on relations in gear state, vehicle speed and driving style when driving in 
plateau (b) Changes of altitudes on continuous sampling points when driving in plateau 
(c) Changes of state of brake on continuous sampling points when driving in plateau  
(d) Changes of throttle position on continuous sampling points when driving in plateau 
(e) Changes of engine speed on continuous sampling points when driving in plateau  
(f) Changes of ambient temperature on continuous sampling points when driving in 
plateau (g) Changes of fan speed on continuous sampling points when driving in 
plateau (see online version for colours) 
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Figure 11 (a) Change on relations in gear state, vehicle speed and driving style when driving in 
plateau (b) Changes of altitudes on continuous sampling points when driving in plateau 
(c) Changes of state of brake on continuous sampling points when driving in plateau  
(d) Changes of throttle position on continuous sampling points when driving in plateau 
(e) Changes of engine speed on continuous sampling points when driving in plateau  
(f) Changes of ambient temperature on continuous sampling points when driving in 
plateau (g) Changes of fan speed on continuous sampling points when driving in 
plateau (continued) (see online version for colours) 

 

(c) 

 

(d) 

 

(e) 



   

 

   

   
 

   

   

 

   

    Driving style recognition of highway-driving semi-trailer 51    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 11 (a) Change on relations in gear state, vehicle speed and driving style when driving in 
plateau (b) Changes of altitudes on continuous sampling points when driving in plateau 
(c) Changes of state of brake on continuous sampling points when driving in plateau  
(d) Changes of throttle position on continuous sampling points when driving in plateau 
(e) Changes of engine speed on continuous sampling points when driving in plateau  
(f) Changes of ambient temperature on continuous sampling points when driving in 
plateau (g) Changes of fan speed on continuous sampling points when driving in 
plateau (continued) (see online version for colours) 

 

(f) 

 

(g) 

For driving in plateau, the vehicle speed changes considerably, ranging from a minimum 
of 39.41 km/h to a maximum of 96.26 km/h disregarding P-R periods. In D-A, the 
driving style frequently becomes aggressive when the vehicle speed undergoes rapid 
changes in high-gear positions. However, during D-C and D-M, the driving style  
mostly remains stable despite changes in vehicle speed through proper gear shifting. 
Figures 11(b) to 11(g) illustrate the changes in altitude, brake status, throttle position, 
engine speed, ambient temperature and fan speed while driving in plateau. For D-C, it 
can be inferred that the vehicle was moving downhill based on Figure 11(b). In such 
circumstances, to prevent overdriving, the driver regulated the speed of the vehicle by  
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controlling the braking pedal, while maintaining a relatively steady engine speed, as 
illustrated in Figures 11(c), 11(d) and 11(e). Furthermore, the ambient temperature 
remained relatively constant, causing the fan speed to fluctuate less frequently, as 
demonstrated by Figures 11(f) and 11(g). For D-M, the vehicle was getting upslope 
according to Figure 11(b). To complete this progress, the driver executed a smooth gear 
shifting and lowered the vehicle speed to 41.47 km/h. The engine speed varied with gear-
shifting, and it is worth noting that the exceptionally high-speed of 1697 rpm resulted in 
a moderate driving style. Moreover, the peak ambient temperature and fluctuations in fan 
speed contributed to the recognition of driving styles. For D-A, the vehicle experienced 
minimal changes in slope, as demonstrated in Figure 11(a). To sustain vehicle movement, 
the driver kept the gear position at 12 while decreasing speed from 94.26 km/h to 79.37 
km/h. During this period, the throttle position was changing rapidly without gear shifting, 
resulting in severe engine jitter towards the end of this period. This suggests that the 
driver aimed to maintain a specific speed, as shown in Figures 11(d) and 11(a). For P-R, 
the majority of the driving style was calm and moderate, while the end of the restarting 
stage exhibited an aggressive driving style. The sudden increase in ambient temperature 
occurred as a result of reduced air flowability and the proximity of the temperature 
sensor to the tank, which caused a significant increase in the fan’s speed. Additionally, 
gear shifting is required for substantial fluctuations in engine speed when adjusting 
vehicle speed. This operation did not have an adverse impact on the vehicle’s 
performance at low speed, resulting in a comparatively moderate driving style. Taking 
into account the vehicle’s previous and current speeds, the high-acceleration rate at the 
end of the period was identified as aggressive driving style. 

Changes in altitudes, state of brake, throttle position, engine speed, ambient 
temperature and fan speed when driving in plain were shown in Figures 12(a) to 12(f), 
respectively. Among drivers driving in plain, the calm and moderate driving style was 
prevalent, indicating a tendency to drive in a stable state in a familiar driving 
environment. For D-C, the vehicle was getting downslope according to Figure 12(b). 
Despite complex highway conditions, the driver competently manoeuvred the semi-
trailer during D-C. The vehicle maintained a consistent speed throughout, reaching a 
speed of 97.76 km/h at maximum and 72.57 km/h at minimum speeds, with the gear 
remaining fixed at position 12. Although frequent changes in throttle position with less 
control of brake pedal, the gear position remained steady and the engine speed fluctuated 
between 1000 rpm and 1500 rpm, as shown in Figures 12(c), 12(d) and 12(e). This 
suggests that the driver was able to retain control of the vehicle even getting downslope. 
The driver tended to be calm and adjusted the performance of the vehicle in time to adapt 
the change of road condition. Moreover, when the ambient temperature did not fluctuate 
much, the calm driving style displayed no abrupt changes. However, there was a sudden 
peak in the fan speed, as depicted in Figures 12(f) and 12(g), indicating the effectiveness 
of the proposed method. For D-M, the gentle rate of slope change that allowed the driver 
to adjust the throttle position continuously, thereby maintaining a consistent vehicle 
speed while matching the 12th gear position and without encountering sudden changes in 
engine speed. However, the most significant difference between D-M and D-C was the  
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three peaks in fan speed. Compared with D-C, the altitudes decreased quickly during  
D-A. It’s worth noting that driving style was divided into aggressive with a relatively 
rapid decrease in speed without gear shifting during D-A. The engine speed also changed 
rapidly from 630 to 1339 rpm without gear shifting, and the vehicle speed suddenly 
decreased. This indicates that the road conditions had changed. 

Figure 12 (a) Changes of altitudes on continuous sampling points when driving in plain (b) 
Changes of altitudes on continuous sampling points when driving in plain (c) Changes 
of state of brake on continuous sampling points when driving in plain (d) Changes of 
throttle position on continuous sampling points when driving in plain (e) Changes of 
engine speed on continuous sampling points when driving in plain (f) Changes of 
ambient temperature on continuous sampling points when driving in plain  
(g) Changes of fan speed on continuous sampling points when driving in plateau  
(see online version for colours) 
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Figure 12 (a) Changes of altitudes on continuous sampling points when driving in plain (b) 
Changes of altitudes on continuous sampling points when driving in plain (c) Changes 
of state of brake on continuous sampling points when driving in plain (d) Changes of 
throttle position on continuous sampling points when driving in plain (e) Changes of 
engine speed on continuous sampling points when driving in plain (f) Changes of 
ambient temperature on continuous sampling points when driving in plain  
(g) Changes of fan speed on continuous sampling points when driving in plateau 
(continued) (see online version for colours) 
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Figure 12 (a) Changes of altitudes on continuous sampling points when driving in plain (b) 
Changes of altitudes on continuous sampling points when driving in plain (c) Changes 
of state of brake on continuous sampling points when driving in plain (d) Changes of 
throttle position on continuous sampling points when driving in plain (e) Changes of 
engine speed on continuous sampling points when driving in plain (f) Changes of 
ambient temperature on continuous sampling points when driving in plain  
(g) Changes of fan speed on continuous sampling points when driving in plateau 
(continued) (see online version for colours) 

 

(f) 

 

(g) 

To be specific, Table4 shows the difference between P-R periods at various altitudes. The 
mean ambient temperature of driving in plateau was 22.60°C, a 63.85% reduction 
compared to that in plain, while the mean fan speed was 984.61 rpm, only 1.13% lower 
than in plain, which could be attributed to the calm driving style. In plateau, the mean 
throttle position remained low and the engine speed and vehicle speed remained high, 
whereas the gear position change rate was lower, resulting in a moderate driving style, 
rather than a calm one. For safety reasons, the mean and change rate of the throttle 
position in the plateau were 14.71 and 2.87, respectively, which is significantly lower 
than in plain. Overall, during P-R period, the driving style was assigned to calm with 
proper control ability over vehicle speed, engine speed and gear shifting which 
correspond with the recognition results in Table 3. 

 



   

 

   

   
 

   

   

 

   

   56 K. Liang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 4 Difference in P-R at different altitudes 
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4 Conclusion 

The paper presents a method that uses data processing, feature selection and spectral 
clustering with a neural network to recognise different driving styles at various altitudes, 
namely plateau and plain. The proposed method employs K-Means to initialise the label 
of the real-world data, and an improved WOA to identify the most relevant feature of the 
data. The experimental effectiveness of the WOA with Sigmoid function was 97.34% in 
plateau data, and 98.19% in plain data. An autoencoder with Bi-LSTM is applied to train 
the model to obtain eigenvalues and eigenvectors that are essential for the spectral 
embedding. Then, spectral clustering is used to classify driving styles. Based on the real-
time data experiment, the driving progress was recognised into three driving styles, 
which accounted for 46%, 19% and 36% in plateau driving and 33%, 29%, 38% in plain 
driving. By analysis of the clustering result, the driving styles were recognised as calm, 
moderate and aggressive respectively except for the parking and restart stage. To validate 
the reliability of the recognition, the difference in driving styles was demonstrated based 
on the results of recognition and performance in each collected field. The proposed 
method can reflect changes in the vehicle while drivers perform different actions, 
allowing for the inference of driving behaviour, particularly in cases of significant 
differences in vehicle performance between driving in a plateau and in plain. The method 
could be further improved by exploring more accurate methods of initialising original 
data labels and experimenting with diverse highway conditions such as city and 
countryside areas, as well as various vehicle types such as trucks and coaches in plateau 
and plain. 
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