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Abstract: For plants to develop, fertile soil is necessary. Estimating soil parameters based
on time change is crucial for enhancing soil fertility. Sentinel-2’s remote sensing technology
produces images that can be used to gauge soil parameters. In this study, values for soil
parameters such as electrical conductivity, pH, organic carbon, and nitrogen are derived using
Sentinel-2 data. In order to increase the clustering accuracy, this study suggests using Canopy
centre-based fuzzy-C-means clustering and comparing it to manual labelling and other clustering
techniques such as Canopy, density-based, expectation-maximisation, farthest-first, k-means, and
fuzzy-C-means clustering, its usefulness is demonstrated. The proposed clustering achieved
the highest clustering accuracy of 78.42%. Machine learning-based classifiers were applied
to classify soil fertility, including Naive Bayes, support vector machine, decision trees, and
random forest (RF). Dataset labelled with the proposed RF clustering classifier achieves a high
classification accuracy of 99.69% with ten-fold cross-validation.
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In several domains, including cloud computing (Li
et al., 2017), disaster management (Chen et al., 2020), and
agricultural yield prediction (Divakar et al., 2022), remote
sensing is used. It is possible to provide cost-effective
and timely spatial-temporal information on the soil using
remote sensing as a key data source. For instance, land
change and vegetation detection are examples where remote
sensing has been utilised to support decision-making (Tayeb
and Fizazi (2020)). Additionally, the researchers employ
remote sensing methods with Sentinel 1-2, Landsat 8 OLI,
EnMAP, and HyspIRI to estimate soil parameters (Yang and
Guo (2019)). Sentinel-2 offers high-resolution optical soil
images that can be utilised to measure different parameters
of soil, such as electrical conductivity (EC), pH, organic
carbon (OC), and nitrogen (N).

1 Introduction

The most efficient use of resources and improved 
management of agriculture are made possible by 
understanding the variation in soil. In order to increase 
agriculture productivity, plant nutrients must be optimised 
in a sustainable manner (FAO, 2022). For site-specific 
fertilisation, soil maps do not offer sufficient qualitative 
information. Therefore, quantitative evaluation of 
significant soil parameters utilising laboratory tests, 
proximity sensors, airborne sensors, or remote sensing 
information is crucial (Gholizadeh et al., 2018). However, 
laboratory analysis produces contaminants and is also 
expensive. The high maintenance and labor requirements 
of hyperspectral aerial sensors increase the cost of soil 
analysis.

Copyright © 2024 Inderscience Enterprises Ltd.
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The process of grouping data points based on similarity
is known as clustering (Shahmoradi and Lee, 2022).
Without labelling the data, it uses the similarity or distance
between data points to group them (Kim et al., 2020).
Different clustering techniques were utilised in this research
work to label the dataset automatically. The various
clustering methods, including Canopy, density-based,
expectation-maximisation, farthest-first, k-means, and
fuzzy-C-means (FCMs), can be used to classify the
dataset’s data points and, thus, to label it. Several fields,
including the cloud computing environment (Samandi and
Mukhopadhyay, 2021) and the detection of intrusions
(Ma and Li, 2020 have employed machine learning-based
classifications. It has recently been widely employed in
agriculture for various purposes, including crop yield
prediction, pest monitoring, water management, crop
disease monitoring, and the management of fertiliser,
etc. (Priya and Ramesh, 2020). We employed machine
learning-based classifiers, including Naive Bayes (NB),
support vector machines (SVM), decision tree (DT), and
random forest (RF), to classify soil fertility and measured
their classification performance using clustered datasets.

This research work has made the following significant
contributions:

• Derived the values of soil parameters such EC, pH,
OC and N using Sentinel-2 spectral data.

• The resulting dataset is labelled using a variety of
clustering algorithms, and the performance of the
clustering approaches is compared.

• Canopy centre-based FCMs clustering is proposed to
increase clustering and classification accuracy.

• The performance of the proposed approach is
assessed through experiments.

The structure of this paper is as follows: Section 2 reviews
previous research on the measurement of soil fertility and
discusses the clustering approach utilised in various fields.
The geographic study area and research methodology are
described in Section 3. A discussion on the estimation
of soil parameters using Sentinel-2 spectral bands is
provided in Section 4. The various clustering approaches
employed in this work are discussed in Section 5, along
with comparisons. In Section 6, the proposed clustering
approach is described. Section 7 provides conclusions and
suggestions for further research.

2 Related work

Remote sensing is a promising field of research, combining
several research domains, including weather forecasts, land
cover changes, natural disaster forecasts, and satellite
images. Many artificial intelligence methods have been
employed in these fields to increase accuracy and improve
data analysis. Tayeb and Fizazi (2020) used extractor-MLP
and SVM to classify six physical soil parameters from a
Statlog Landsat remote sensing dataset, including red soil,

cotton crop, grey soil, damp grey soil, soil with vegetation
stubble, and very damp grey soil. Ye et al. (2018) found
that remotely sensed soil data, which includes parameters
like pH, soil temperature, and humidity, enhances irrigation
to boost agricultural output.

Many researchers have classified soil fertility based
on soil chemical parameters using machine learning-based
classifiers. To classify soil fertility, the authors employed
laboratory-measured soil parameters. Sirsat et al. (2017)
employed bagging, AdaBoost, extreme learning machine,
RF, and SVM to classify soil based on laboratory measures
of EC, pH, iron (Fe), manganese (Mn), potassium oxide,
phosphorus pentoxide, nitrous oxide, sulphate, and zinc
(Zn) and also soil type. Wang et al. (2018) estimated
soil OC stocks using ground measurements of OC stocks,
utilising RF and boosted regression tree classifier. Utilising
laboratory measurements of B, Cu, EC, nitrous oxide,
potassium oxide, sulfate, and Zn, as well as village-wise
fertility indices of Fe, OC, Mn, and phosphorus pentoxide,
Sirsat et al. (2018) developed a soil fertility model using
extreme learning machine, bagging, boosting, and extremely
randomised regression. Chougule et al. (2019) used
k-means clustering to label the dataset and an RF classifier
to classify the soil fertility using laboratory-measured soil
data comprising of N, P, and potassium (K). Dasgupta et al.
(2022) used ground measurements of K, Ca, magnesium
(Mg), Fe, Cu, Zn, Mn, B, K/Mg ratio, total exchangeable
bases, and sulphur availability index to predict soil fertility
via RF, support vector regression, stepwise multiple linear
regression.

Gholizadeh et al. (2018) investigated the capability
of classifying soil fertility using data collected from
remote sensing and laboratory measurements. With the
spatiotemporal data estimated using remotely sensed
spectral data, soil fertility can be classified precisely and
accurately (Gholizadeh et al., 2018). Gholizadeh et al.
(2018) compared the capabilities of Sentinel-2 for mapping
soil OC and texture with those obtained from hyperspectral
sensors and laboratory measurements and developed a
site-specific model utilising multivariate regression and
boosted regression tree. The study showed that, when
compared to non-remote sensing, the remote sensing
approach obtained the highest accuracy. Khanal et al.
(2018) claims that site-specific remotely sensed soil image
maps obtained using Lidar satellite could be used to
accurately predict soil parameters such as pH, organic
matter, K, magnesium, cation exchange capacity, and crop
yield using machine learning-based classifiers such as
gradient boosting, RF, cubist, neural networks, and SVM.
Yang and Guo (2019) predicted various soil parameters
in coastal wetlands with dense vegetation cover utilising
synthetic aperture radar data. Using Landsat-8 OLI and
Sentinel-2 visible bands, as well as linear regression and
multiple linear regression approaches, Gorji et al. (2020)
compared the estimation of soil salinity. The difference
between the accuracy obtained for multiple linear regression
using Landsat and Sentinel-2 was negligible. Hengl et al.
(2021) demonstrated the use of ensemble machine learning
to estimate pH and OC using Landsat and Sentinel
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bands. Aksoy et al. (2022) implemented classification
and regression trees, RF, and support vector regression
to measure the correlation between data derived from
Landsat-8 OLI, Sentinel-2, and ground measurements of
EC.

A review of prior clustering studies in a variety of
fields has been conducted. It was found that the cluster
centre influences clustering accuracy. Zhang et al. (2018)
developed the k-means method based on the density
Canopy technique utilising UCI datasets. By choosing
the cluster centres using density-based clustering, the
researchers noted that clustering accuracy and stability were
enhanced. To reduce the rate of false alarms during security
events, Wang et al. (2019) developed an improved density
peak clustering using a time gap as a threshold. Du et al.
(2022) developed a threshold for an automatic density peaks
clustering technique to identify the peak density and used
the interquartile range and standard deviation to define
a number of local densities. Using the UCI dataset, the
authors found that the novel method outperformed k-means
and FCM in terms of clustering accuracy. Wu et al. (2021)
employed FCM to cluster the operation of mineral flotation
in gold mines. Zhu et al. (2022) proposed that choosing
clusters based on internal validity indices and inter-cluster
variance could enhance k-means clustering. As starting
cluster numbers, the authors used integers from the range
[2,

√
n] (where n is the total number of data points).

A few soil parameters were estimated by the researchers
using remote sensing data, and the soil dataset generated
was manually labelled. Sentinel-2 is used in this research
work to estimate four soil parameters, and the dataset
is labelled using a clustering method. This study also
suggests Canopy centre-based FCMs clustering, which
chooses cluster centres depending on the technique used in
the outperforming state-of-the-art clustering approach.

3 Study area and methodology

The study region employed in this work is located at
Konaje, Mangalore town in Dakshina Kannada (District),
Karnataka (State), India, between 12.80593353 latitude and
74.906469 longitude, as shown in Figure 1. Dakshina
Kannada has alluvial, laterite, red laterite, sandy loam, and
red loamy soil as its main soil types. The region experiences
roughly 3,000 mm of yearly rainfall and has a hot, humid
environment. Climatic conditions are favourable for the
development of acidic soils. The geology of Mangalore
is mainly hard laterite in hilly and sandy areas along the
Arabian coast, with a humid tropical climate.

Figure 2 presents the methodology used in this work
to classify soil fertility. Data from Sentinel-2 (2020) were
collected for the chosen study area between 14th November
2015, and 23rd October 2021. With the help of Google
Earth Engine code, spectral bands were extracted using the
Python programming language. Seven spectral bands, B3,
B4, B5, B8, B9, B11, and B12, were employed to get the
soil parameters out of the 13 retrieved spectral bands. A
combination of spectral bands was used to compute soil

parameters, including EC, pH, OC, and N. In the spectral
band information, bits 10 and 11 stands in for clouds and
cirrus clouds, respectively. By implementing a bitwise mask
on bits 10 and 11 of the spectral band information, QA60
was utilised to mask clouds. The WEKA tool (WEKA,
2021) was used to perform data preprocessing in order to
remove redundant data. The Sentinel-2 dataset is used to
group data points using a variety of clustering techniques,
including Canopy, density-based, expectation-maximisation,
farthest-first, k-means, and FCM clustering. For each
clustering algorithm, the number of clusters was fixed to 3.
Instances in the dataset were assigned a LOW, MEDIUM,
or HIGH label based on the way the data points were
clustered. This study evaluated and compared the clustering
algorithms’ accuracy to manual labelling. Additionally, we
used machine learning-based classifiers to classify soil
fertility into three categories: LOW, MEDIUM, and HIGH
soil fertility. FCM clustering performs poorly because
the initial centroids are produced randomly. Therefore,
based on the strategy utilised in outperforming clustering
algorithms, cluster centroids were produced in this research
work. The Canopy centre-based FCMs clustering technique
is proposed in this research work to increase clustering and
classification accuracy. Figure 3 depicts the steps of the
proposed approach. The fuzzy parameter (m) was employed
to enhance the fuzzification process. By varying ‘m’ from
1.1 to 1.9 with a 0.1 increment, the optimal values for
‘m’ were discovered. The Canopy approach was used to
obtain the initial centroids, which were then employed in
the membership function. The membership function and
cluster centroids were updated iteratively until every data
point had been allocated to a cluster. The clusters are also
labelled as LOW, MEDIUM, or HIGH.

4 Estimation of soil parameters using Sentinel-2

The European Space Agency’s recent release of
multispectral Sentinel-2 satellite data offers an innovative
method for collecting images with high spatial resolution,
290 km swath width, and high repetition rate. Sentinel-2,
a multispectral satellite, offers 13 spectral bands: B1 –
aerosol, B2 – blue, B3 – green, B4 – red, B5 – red edge
1, B6 – red edge 2, B7 – red edge 3, B8 – near infra-red,
B8A – red edge 4, B9 – water vapour, B10 – cirrus, B11
– short wave infra-red 1, B12 – short wave infra-red 2,
with spectral resolution ranging from 20 to 180 nm and
spatial resolution ranging from 10 to 60 m, may be used
to estimate different parameters. Additionally, it provides
three cloud masks QA10, QA20, and QA60, with pixel
sizes of 10 metres, 20 metres, and 60 metres, respectively
(Vaudour et al., 2019). As illustrated in Figure 4, spectral
bands B3, B4, B5, B8, B9, B11, and B12 are utilised
to estimate soil parameters along with cloud mask band
QA60. The spectral band combination used to calculate soil
parameters from Sentinel-2 images is shown in Figure 5.
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Figure 1 Study area: village located at the latitude of 12.80593353 and longitude of 74.906469 in Dakshina
Kannada (District), Karnataka (State), India (see online version for colours)

(b) Karnataka (State) (c) Dakshina Kannada (District)

Mangalore

(d) Study Area: Konaje

Konaje

(a )  In d ia

In this study, EC, pH, OC, and N are calculated using
spectral bands from Sentinel-2.

Soil EC indicates the amount of salinity in soil
(NRCS-USDA, 2020) and provides information on nutrient
availability and loss, soil texture, and water availability
(Al-Gaadi et al., 2021). Fertile soils are those with an EC
value of 1.6 mS/cm or less, whereas low fertility soils have
an EC value of greater than 2.5 mS/cm. Equation (1) was
used to get the EC values for the spectral bands B3, B4,
B8, and B12.

EC = 2.5 ∗ B12

B8
− 1.6 ∗ B4

B8
+ 1.6 ∗ B3

B8
(1)

Soil pH assesses the amount of hydrogen ions present in
soil solutions (Tharavathy, 2016). A pH of 7 in the soil
indicates a neutral soil and is considered to be very fertile.
Acidic soil is caused by water or moisture in the soil, which

lowers pH below 6.5. Low pH soil is considered to be less
fertile. The spectral bands used for pH calculation were B4,
B9 and B12 (Hengl et al., 2021) as in equation (2).

pH = 7 ∗ B4

B12
− 6.5 ∗ B9

B12
(2)

Soil OC indicates the amount of OC present in the soil.
Soils with OC values above 0.75% are considered very
fertile. To calculate OC, the spectral bands B4, B5, B11,
and B12 (Hengl et al., 2021) were used as shown in
equation (3).

OC = 0.75 ∗ (B12−B4)

B4
+ 0.75 ∗ B5

B11

+ 0.75 ∗ B12

B11
− 0.05 (3)
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Figure 2 Clustering and soil fertility classification using Sentinel-2 data (see online version for colours)

Figure 3 Proposed Canopy centre-based FCMs clustering

Soil N is proportional to the red to green index, B4/B3
(Xu et al., 2018). The higher the N value, the higher
the vegetation (Mashaba-Munghemezulu et al., 2021). As
a result, we must subtract the normalised differential
vegetation index and the normalised red-edge index.
Normalised difference vegetation index can be calculated
as (B8 – B4)/(B8 + B4) and normalised red-edge index
by using (B8 – B5)/(B8 + B5). High fertility is defined as
having a nitrogen content of 560 kg/ha or more, while low
fertility is defined as having a nitrogen content of less than
280 kg/ha. Thus, as given in equation (4), N is determined
using the spectral bands B3, B4, B5, and B8.

N = 560 ∗ B4

B3
− 280

100
∗ (B8−B4)

(B8 +B4)

+
280

100
∗ (B8−B5)

(B8 +B5)
(4)

The results were compared to soil-health data (Soil-Health
Data, 2021), which includes laboratory-measured soil
parameter values for the study area and three other
regions of Dakshina Kannada (District), including

Marpadi, Mangalore with longitude: 75.720343, latitude:
14.360019, Beluvai, Mangalore with longitude: 74.900180,
latitude: 15.100230, and Attur, Mangalore with longitude:
74.820230, latitude: 15.100230 as shown in Table 1.
Equation (5) is used to compute the observed variation.

Observed variations = |Derived values

using Sentinel − 2 data− Soil health data| (5)

Soil nutrients are more soluble in acidic soils than in neutral
or slightly alkaline soils. Therefore, pH values influence
nutrient availability and are considered indicators of other
soil parameters (Tharavathy, 2016). To label the dataset
manually, we use the soil parameter level of B, Fe, K,
phosphorous (P), Mn, sulphur (S), Cu and Zn as LOW or
MEDIUM or HIGH by using the value of soil pH as given
in Table 2. The soil parameter level of EC, pH, OC, and N
was estimated using the measured values of soil parameters
as shown in Table 3.

Using manual labelling, 293 instances in the dataset are
labelled as LOW, 25 as MEDIUM, and 11 as HIGH soil
fertility. Table 4 shows the classification results. The RF
classifier and DT classifier with a ten-fold cross-validation
test achieved the highest accuracy of 98.48%, precision,
recall, and F-measure of 0.985.

5 Clustering methods in soil fertility estimation

The Sentinel-2 dataset’s data points for the study region
were grouped in this work using a variety of clustering
approaches. The dataset was labelled using clustering
techniques with a predetermined number of clusters (i.e.,
3). The classification accuracy of the clustered dataset
was assessed using four different machine learning-based
classifiers.
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Figure 4 Sentinel-2 spectral bands of a selected area of study, (a) B3 (b) B4 (c) B5 (d) B8 (e) B9 (f) B11 (g) B12 (h) QA60

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5 Combination of Sentinel-2 spectral bands used, (a) B4, B8 (b) B12, B8 (c) B3, B8 (d) B4, B12 (e) B9, B12 (f) B5, B11
(g) B12, B11 (h) B4, B3 (i) B8, B5 (see online version for colours)

(a) (b) (c)

(d) (e) (f)
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Figure 5 Combination of Sentinel-2 spectral bands used, (a) B4, B8 (b) B12, B8 (c) B3, B8 (d) B4, B12 (e) B9, B12 (f) B5, B11
(g) B12, B11 (h) B4, B3 (i) B8, B5 (continued) (see online version for colours)

(g) (h) (i)

Table 1 Comparision of derived values using Sentinel-2 with soil-health data for the study area Konaje, Marpadi, Beluvai and Attur of
Mangalore Region, Karnataka (State), India

Area used Derived values using Sentinel-2 data Soil health data Observed variations (difference)
EC pH OC EC pH OC EC pH OC

Konaje 0.533 6.34 2.406 0.385 6.33 2.2 0.148 0.01 0.206
0.975 6.44 1.522 0.962 6.4 1.16 0.013 0.04 0.362
1.327 6.59 0.82 1.023 6.51 0.86 0.304 0.08 0.04
0.282 6.57 1.128 0.264 6.71 1.41 0.018 0.14 0.282
1.979 5.36 0.956 1.91 5.87 1.071 0.069 0.51 0.115
1.633 5.64 1.082 1.659 5.76 1.552 0.026 0.12 0.47
1.171 6.43 0.987 1.116 6.41 0.68 0.055 0.02 0.307
0.282 6.57 1.128 0.275 6.22 1.54 0.007 0.35 0.412

Marpadi 1.357 5.63 1.209 1.258 5.69 1.852 0.099 0.06 0.643
1.297 6.18 0.947 1.82 6.13 1.606 0.523 0.05 0.659
1.161 5.74 1.039 1.329 5.77 1.21 0.168 0.03 0.171
1.153 5.85 0.822 1.347 5.85 1.397 0.194 0 0.575
1.129 5.99 0.905 1.331 5.9 1.312 0.202 0.09 0.407
0.935 8.66 1.595 1.639 8.51 1.921 0.704 0.15 0.326

Beluvai 1.615 6.53 1.146 1.118 6.79 1.9 0.497 0.26 0.754
1.615 2.17 1.175 2.202 2.51 1.37 0.587 0.34 0.195
1.615 7.89 1.066 1.263 7.63 1.98 0.352 0.26 0.914
1.615 5.72 2.679 1.024 5.81 2.469 0.591 0.09 0.21
1.615 6.22 1.816 1.027 6 1.7 0.588 0.22 0.116
1.615 5.99 1.825 1.367 5.93 1.496 0.248 0.06 0.329

Attur 1.846 5.58 1.03 1.24 5.47 1.924 0.606 0.11 0.894
2.089 4.36 1.133 2.12 4.84 2.239 0.031 0.48 1.106
1.035 5.22 1.598 1.997 5.12 2.241 0.962 0.1 0.643
0.944 2.64 2.483 1.817 2.47 2.29 0.873 0.17 0.193

Table 2 Estimation soil parameter levels based on pH value

Soil LOW MEDIUM HIGH
parameter

B pH < 5.1 or 7.5 < pH <= 8 or 5.1 <= pH <= 7.5
8 < pH < 8.5 8.5 < pH <= 8.75 or pH >= 8.5

Fe pH > 8 7.5 < pH <= 8.0 pH <= 7.5
K pH < 5.5 5.5 <= pH < 5.9 pH >= 5.9
Mn pH < 5 5 <= pH < 5.4 or 5.4 <= pH <= 7.5

7.5 < pH <= 8
P pH < 5.5 or 5.5 <= pH < 5.9 or 5.9 <= pH <= 7.5

8.5 < pH < 9.0 7.5 < pH <= 8.5 or pH >= 9
S pH < 5.5 5.5 <= pH < 5.9 pH >= 5.9
Cu, Zn pH < 4.5 or 4.5 <= pH < 5 or 5 <= pH <= 7.5

pH > 8 7.5 < pH <= 8

Table 3 Estimation soil parameter levels of EC, pH, OC, and N

Soil parameter LOW MEDIUM HIGH

EC >2.5 >1.6, <=2.5 <=1.6
pH >8.5, <6.5 - <=8.5, >=6.5
OC <0.5 >=0.5, <0.75 >=0.75
N <280 >=280, <560 >=560

By calculating the approximate distances between data
point pairs and a distance threshold (T1, T2) with T1 >
T2, Canopy clustering was implemented. The algorithm
starts with a set of data points, eliminates each one at
a time, and then repeats the process over the remaining
points to produce a Canopy that includes the removed
points. If the farthest points are closer to the starting point
than T1, they are included in the cluster. Additionally,
the point was eliminated from the set if the distance was
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less than T2. The algorithm iterates until the initial set is
empty, building a set of canopies, each with one or more
points. By using T1 = 1.25 and T2 = 0.75, we obtained
the highest clustering accuracy. The Canopy clustering
resulted in 279 instances labelled LOW, 36 MEDIUM,
and 14 HIGH. It was observed that 250 instances were
clustered accurately, resulting in an accuracy of 75.99%.
The classification results obtained after Canopy clustering
are shown in Table 5. The RF classifier with a 75% split of
the dataset as training data and a 25% split of the dataset as
test data achieved the highest accuracy of 98.78%, precision
of 0.989, recall of 0.988, and F-measure of 0.987.

Table 4 Classification using manually labelled dataset

Method used Classifier name Accuracy Precision Recall F-measure

10-fold NB 93.92% 0.940 0.939 0.939
cross- SVM 89.06% 0.877 0.891 0.866
validation DT 98.48% 0.985 0.985 0.985

RF 98.48% 0.985 0.985 0.985
75% split NB 93.42% 0.983 0934 0.953
training data: SVM 90.24% 0.912 0.902 0.877
25% split DT 97.56% 0.984 0.976 0.976
test data RF 97.56% 0.984 0.976 0.976

Table 5 Data classification after Canopy clustering

Method used Classifier name Accuracy Precision Recall F-measure

10-fold NB 95.44% 0.960 0.954 0.956
cross- SVM 90.27% 0.913 0.903 0.882
validation DT 95.14% 0.955 0.951 0.953

RF 97.87% 0.980 0.979 0.979
75% split NB 95.12% 0.953 0951 0.952
training data: SVM 91.46% 0.922 0.915 0.899
25% split DT 96.34% 0.963 0.963 0.963
test data RF 98.78% 0.989 0.988 0.987

Table 6 Data classification after density-based clustering

Method used Classifier name Accuracy Precision Recall F-measure

10-fold NB 96.35% 0.964 0.964 0.964
cross- SVM 86.63% 0.881 0.866 0.860
validation DT 97.87% 0.979 0.979 0.979

RF 96.96% 0.970 0.970 0.970
75% split NB 96.34% 0.964 0.963 0.964
training data: SVM 85.37% 0.857 0.854 0.850
25% split DT 96.34% 0.964 0.963 0.963
test data RF 96.34% 0.964 0.963 0.963

Density-based clustering uses the local density of each data
point to calculate an outlier score. If the local density of a
particular data point is low compared to its neighbours, the
data point is likely an outlier (Naghavi-Nozad et al., 2021).
The data point with the highest local density is chosen as
the cluster centre (Gu et al., 2020). Density-based clustering
identified 135 instances as LOW, 148 as MEDIUM, and
46 as HIGH. It was found that 164 instances were
clustered accurately, with an accuracy of 50%. The results
of classification obtained after density-based clustering
are shown in Table 6. RF classifier with a ten-fold

cross-validation test achieved the highest accuracy of
96.96% and precision, recall, and F-measure of 0.970.

Table 7 Data classification after expectation-maximisation
clustering

Method used Classifier name Accuracy Precision Recall F-measure

10-fold NB 95.44% 0.960 0.954 0.956
cross- SVM 82.98% 0.842 0.830 0.823
validation DT 96.96% 0.970 0.970 0.970

RF 97.57% 0.976 0.976 0.976
75% split NB 96.34% 0.965 0.963 0.964
training data: SVM 74.39% 0.784 0.744 0.738
25% split DT 95.12% 0.956 0.951 0.951
test data RF 96.34% 0.966 0.963 0.963

Table 8 Data classification after farthest-first clustering

Method used Classifier name Accuracy Precision Recall F-measure

10-fold NB 89.67% 0.924 0.897 0.901
cross- SVM 84.50% 0.809 0.845 0.826
validation DT 96.96% 0.970 0.970 0.970

RF 97.87% 0.979 0.979 0.979
75% split NB 91.46% 0.954 0.915 0.926
training data: SVM 74.39% 0.750 0.744 0.718
25% split DT 91.46% 0.925 0.915 0.912
test data RF 96.34% 0.964 0.963 0.963

Table 9 Data classification after k-means clustering

Method used Classifier name Accuracy Precision Recall F-measure

10-fold NB 95.74% 0.958 0.957 0.958
cross- SVM 84.80% 0.866 0.848 0.839
validation DT 95.14% 0.951 0.951 0.951

RF 96.05% 0.960 0.960 0.960
75% split NB 95.12% 0.952 0.951 0.951
training data: SVM 82.93% 0.839 0.829 0.825
25% split DT 95.12% 0.952 0.951 0.951
test data RF 95.12% 0.952 0.951 0.951

Table 10 Data classification after FCM clustering

Method used Classifier name Accuracy Precision Recall F-measure

10-fold NB 81.76% 0.947 0.818 0.813
cross- SVM 86.93% 0.875 0.869 0.852
validation DT 98.18% 0.982 0.982 0.982

RF 97.57% 0.976 0.976 0.975
75% split NB 80.49% 0.834 0.805 0.800
training data: SVM 84.15% 0.869 0.841 0.808
25% split DT 98.78% 0.988 0.988 0.988
test data RF 97.56% 0.976 0.976 0.976

Expectation-maximisation clustering uses the probability
that each data point is present in either cluster. This
approach resulted in 126 instances being classified as
LOW, 161 as MEDIUM, and 42 as HIGH. This method
of clustering correctly clustered 155 instances, with an
accuracy of 47%. Table 7 displays the classification
results that were achieved using expectation-maximisation
clustering. The RF classifier attained the best accuracy of
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97.57% and precision, recall, and F-measure of 0.976 using
a ten-fold cross-validation test.

Table 11 Data classification after proposed Canopy centre-based
FCMs clustering

Method used Classifier name Accuracy Precision Recall F-measure

10-fold NB 97.26% 0.973 0.973 0.973
cross- SVM 95.14% 0.956 0.951 0.951
validation DT 99.39% 0.994 0.994 0.994

RF 99.69% 0.997 0.997 0.997
75% split NB 96.34% 0.965 0.963 0.964
training data: SVM 92.68% 0.937 0.927 0.927
25% split DT 98.78% 0.988 0.988 0.988
test data RF 98.78% 0.988 0.988 0.988

Farthest-first clustering selects a random data point as the
initial cluster centre. During the cluster assignment phase,
the data point farthest from the first centre is chosen as the
new centre. This process is repeated until the ‘k’ number
of centroids has been chosen. Each remaining data point
is assigned to the cluster characterised by the centroid
nearest to the data point, and the algorithm terminates.
Farthest-first requires a single pass to cluster a set of data
points (Devi et al., 2020). This clustering method resulted
in 216 instances of LOW, 96 of MEDIUM, and 17 of
HIGH soil fertility. This method of clustering clustered
182 instances accurately, with an accuracy of 55.32%.
The results of classification obtained after farthest-first
clustering are shown in Table 8. The RF classifier with
a ten-fold cross-validation test of the dataset obtained
the highest accuracy of 97.87%, precision, recall, and
F-measure of 0.979.

The k-means clustering algorithm selects k random
data points from the cluster centroids, where k is equal
to the number of clusters, and uses a distance metric
(usually Euclidean) to assign all the points with the
closest distances to the centroid. The algorithm iteratively
computes the centroids of newly formed clusters and
assigns the remaining data points to the cluster with
the closest centroid until clusters are stable (Wang and
Kumar, 2019). It is difficult to achieve ideal clusters
since the k-means clustering is sensitive to outliers (Guo
et al., 2021). Using k-means clustering, 137 instances were
classified as having low soil fertility, 146 as having medium
soil fertility, and 46 as having high soil fertility. This
method of clustering has a 50.46% and correctly grouped
166 instances. Table 9 displays the classification results
that were reached using k-means clustering. RF classifier
with a ten-fold cross-validation test performed better with
an accuracy of 96.05% and with precision, recall, and
F-measure of 0.960.

FCMs clustering is an unsupervised machine learning
algorithm that assigns data points to clusters, with points
belonging to the same cluster being as similar as possible,
and each data point may belong to more than one cluster
(Chen et al., 2022). The FCM clustering can improve
the classification speed (Chen et al., 2022), whereas it is
sensitive to initial cluster centroids (Xue et al., 2016). The

clustering is achieved based on the minimisation of the
objective function given in equation (6).

N∑
i=1

k∑
j=1

µm
ij |xi − cj |2 (6)

where N is the number of objects and k is the number of
clusters, µij is the degree of membership of instance xi in
the jth cluster, m is the fuzzy parameter which indicates
the degree of fuzzy overlap, xi indicates ith instance, and
cj represents the centre of the jth cluster. Initially, µij is
set randomly, then the cj and updated µij are calculated by
using equations (7) and (8), respectively.

cj =

∑N
i=1 µ

j
ijxi∑N

i=1 µ
j
ij

(7)

µm
ij =

1∑N
k=1

(
|xi−cj |
|xi−ck|

) 1
m−1

(8)

This clustering technique resulted in the classification of
155 instances as LOW, 90 as MEDIUM, and 84 as HIGH.
The highest accuracy attained by this clustering, with the
correct clustering of 145 cases, was 44%. In Table 10, the
classification results of FCM clustering are depicted. The
DT classifier achieved the greatest accuracy of 98.78%,
precision, recall, and F-measure of 0.988 using a 75% split
as training data and a 25% split of the dataset as test data.

6 Proposed Canopy centre-based FCMs clustering
method

The state-of-the-art FCM clustering uses random cluster
centres, which will limit the accuracy of clustering. Hence,
the proposed approach selects the cluster centres using the
best-performing clustering approach. From the experimental
results, it was observed that Canopy clustering achieved
better accuracy. Hence, to improve the clustering accuracy,
we proposed a Canopy centre-based FCMs clustering
method as depicted in Algorithm 1.

Canopy centres were computed as initial centroids for
the FCMs clustering algorithm with the fixed number of
clusters and fixed threshold values T1 = 1.25 and T2 = 0.75.
Soil fertility can be LOW, MEDIUM, or HIGH. Hence the
number of clusters was fixed to 3 (k = 3). We selected a
value of fuzzy parameter m, such that 1.1 < m < 2, and
the algorithm obtained better accuracy for m = 1.7. The
membership matrix, M (i.e., membership function), was
initialised using random values and updated by calculating
the Euclidean distance between a pair of data points and
cluster centres using equation (9).

Mij =
1∑N

k=1

(
⟨xi−cj⟩2

⟨xi−ck⟩2

) 1
m−1

(9)

where Mij indicates degree to which an observation xi

belongs to cluster cj . The value Mij inversely proportional
to the distance from x to cluster centre.
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Algorithm 1 Canopy centre-based FCMs clustering

Initialise X with the given dataset and assign the number of
clusters, k
Assign fuzzy parameter, m with 1 < m < 2
Initialise membership matrix M with random values [0, 1]
1: procedure CൺඇඈඉඒFඎඓඓඒCMൾൺඇඌCඅඎඌඍൾඋංඇ(X, k, m, M )
2: cur iter ← 0

3: cluster labels← {}
4: cluster centres← ർൺඅർඎඅൺඍൾCൺඇඈඉඒCൾඇඍඋൾ(X)

5: while cur iter < MAX ITER do
6: M ← ඎඉൽൺඍൾMൾආൻൾඋඌඁංඉMൺඍඋංඑ(M, cluster centres)

7: clustercentres← ർൺඅർඎඅൺඍൾCൺඇඈඉඒCൾඇඍඋൾ(M)

8: for i = 1 to N do
9: idx← Indexof minimum M [i]

10: cluster labels = cluster labels ∪ idx

11: cur iter ← cur iter + 1

12: return cluster labels

13: procedure ർൺඅർඎඅൺඍൾCൺඇඈඉඒCൾඇඍඋൾ(X)
14: Initialise threshold T1, T2 such that T1 > T2
15: canopies = {}
16: dist[i, j]← Eඎർඅංൽൾൺඇൽංඌඍൺඇർൾ(xi, xj), ∀(xi, xj) ∈ X

17: Canopy points = (xi, xj)

18: while Canopy points ̸= {} do
19: point← pop(Canopy points)

20: i← Length(canopies)

21: if dist[point] < T1 then
22: canopies[i]← point

23: if dist[point] < T2 then
24: X = X − point

25: return canopies

26: procedure ඎඉൽൺඍൾMൾආൻൾඋඌඁංඉMൺඍඋංඑ(M , cluster centres)
27: p← 2

m−1
28: for i = 1 to N do
29: for j = 1 to k do
30: distances = X[i]− cluster centres[j]

31: for j in k do
32: for q = 1 to k do
33: sum = sum+

distances[j]p

distances[q]p

34: M [i]← 1
sum

35: return M

The algorithm used a maximum of 100 iterations to obtain
optimal clustering. Using FCM clustering, the fuzziness of
the datapoint belonging to more than one cluster is avoided
by selecting a maximum value from the membership
function. But, soil fertility depends on the level of each
soil parameter. The low fertility level of any soil chemical
parameters makes the soil less fertile. Thus, instead of
selecting maximum membership value, the algorithm selects
minimum membership value. On overlap, the datapoint falls
to a cluster with a minimum cluster number.

The proposed clustering technique produced 254
instances of LOW, 60 instances of MEDIUM, and 15
instances of HIGH fertile soil. With an accuracy of
78.42%, this approach correctly clustered 258 instances.
The comparison of the accuracy of all clustering techniques
used in the study is depicted in Figure 6.

The proposed method achieved the highest clustering
accuracy as compared to other clustering methods. The
results of applying classification are presented in Table 11.
The RF classifier with ten-fold cross-validation of the

dataset obtained the highest accuracy of 99.69%, precision,
recall, and F-measure of 0.977.

Figure 6 Comparison of accuracy of clustering techniques

Figure 7 Comparision of clustering techniques based on NB
classification

Figure 8 Comparision of clustering techniques based on SVM
classification

Figures 7, 8, 9 and 10 indicate the accuracy of different
clustering techniques using NB, SVM, DT, and RF,
respectively.
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Figure 9 Comparision of clustering techniques based on DT
classification

Figure 10 Comparision of clustering techniques based on RF
classification

7 Conclusions

Estimating the site-specific soil fertility is essential to
determine the most cost-effective fertiliser application.
The accurate prediction of fertilisers aids in lowering
environmental pollution caused by excessive fertilisation. It
is not economical to predict soil fertility using laboratory
measurements. Furthermore, laboratory measurements leave
behind chemical residues and take extra time. This study
effort employed remotely sensed Sentinel-2 spectral bands
to predict soil parameters such as EC, pH, OC and N
in order to overcome these limitations. The data points
were clustered using a variety of cutting-edge clustering
techniques. It was found that Canopy clustering achieved
a clustering accuracy of 75.99%, and by utilising an RF
classifier with ten-fold cross-validation, Canopy clustering
obtained a classification accuracy of 98.78%. It was
observed that using the proposed Canopy centre-based
FCMs clustering achieved the highest clustering accuracy
of 78.42%, and by utilising an RF classifier with a ten-fold
cross-validation proposed approach obtained a classification

accuracy of 99.69%. Decisions on soil fertility are more
precise using the proposed clustering technique. Farmers
are, therefore, able to know the level of fertility of their
soil at any given time and apply fertiliser in line with
the crop being grown on their farm. This enables the
farmers to increase their agricultural yields and profits.
Increased agricultural production boosts export or business,
thus helping the agriculture industry. Future research might
use real-time soil data collected during crop development
to increase accuracy. Sentinel-2 gathers the data every five
days, and frequent revisits are necessary to increase the
accuracy. Proximate soil sensors allow for the dynamic
collection of soil data to determine the variation in soil
fertility based on crop development and environmental
factors.
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