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Abstract: The existing RGB-D saliency object detection (SOD) methods mostly explore the
complementary information between depth features and RGB features. However, these methods
ignore the bi-directional complementarity between RGB and depth features. From this view,
we propose a joint attention learning network (JALNet) to learn the cross-modal mutual
complementary effect between the RGB images and depth maps. Specifically, two joint attention
learning networks are designed, namely, a cross-modal joint attention fusion module (JAFM)
and a joint attention enhance module (JAEM), respectively. The JAFM learns cross-modal
complementary information from the RGB and depth features, which can strengthen the
interaction of information and complementarity of useful information. At the same time, we
utilise the JAEM to enlarge receptive field information to highlight salient objects. We conducted
comprehensive experiments on four public datasets, which proved that the performance of our
proposed JALNet outperforms 16 state-of-the-art (SOTA) RGB-D SOD methods.
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1 Introduction

Salient object detection (SOD) simulates human visual
attention mechanisms to locate the most significant and
notable objects or regions in a scene. As one of the most
basic and important pixel-level density prediction tasks
in computer vision, it has been widely used in many
down-stream tasks, e.g., image retrieval (Gao et al., 2012),
visual tracking (Hong et al., 2015), medical image segment
(Fan et al., 2020c), and person re-identification (Martinel
et al., 2015). Most SOD methods (Hou et al., 2017; Qin
et al., 2019b; Liu et al., 2021; Xia et al., 2020) detect the
salient objects based on a single RGB image. However,
it is hard for these methods to completely highlight the
salient objects and preserve their rich edge details in
challenging and complex scenarios, e.g., similar appearance
and texture between the foreground and the background
[as shown in Figure 1(a)], transparent objects [as shown
in Figure 1(c)] and cluttered background [as shown in
Figure 1(b)]. Recently, depth information has received the
attention of many researchers due to the accessibility of
depth information by some devices, e.g., Kinect, iPhone
XR, Huawei Mate30, which can provide many beneficial
and complementary cues to the RGB images, such as spatial
structure and boundary information. Hence, more and more
researchers introduce depth information into the field of
SOD as additional complementary information for the RGB
images to improve the performance of SOD, named RGB-D
SOD.

Early RGB-D SOD methods mainly utilise the prior
knowledge to predict the salient objects by extracting
handcrafted features, such as contrast (Cheng et al.,
2014), center-surround difference (Zhu and Li, 2018),
and boundary background (Feng et al., 2016). However,
the handcrafted features are time-consuming and can’t
represent complex real-world scenarios, which extremely
hinder the development of RGB-D SOD. To further boost
the performance of RGB-D SOD, convolutional neural
network (CNN) is deployed to extract the features from the
RGB images and depth maps. Many RGB-D SOD methods
(Chen et al., 2020a; Fan et al., 2020a) achieved promising
detection results by utilising the feature expression ability
of CNN. Existing RGB-D SOD methods usually focus
on the fusion and complementarity of the cross-modal
features to get better results than adopting a single
modality. However, these methods ignore the bi-direction
complementarity of RGB and depth features, which can
cross-modal information can be used to enhance the features

of a single model. However, these methods ignore the
bi-direction complementarity of RGB and depth features,
which use cross-modal information to enhance the features
of a single model.

To deal with the aforementioned problem, we design
a joint attention learning network (JALNet), which are
is embedded into the JAFM for accomplishing the
cross-modal bi-directional complementarity and the joint
attention enhance module (JAEM) for capturing the
high-level semantic information by the dilated convolution,
respectively. The intention of JAFM is to design a
bi-directional feature selection and transformation structure
to explore effective mutual complementary mechanisms
of cross-modal features through the joint cooperation of
channel-aware attention and global context-aware attention.
The motive of such collaboration is that single-channel
attention cannot capture inter-feature dependencies, and a
single global context-aware attention fails to effectively
represent the associations between channels, so we adopt
the combination of the two to remedy the deficiency of a
single attention. Furthermore, to enlarge the receptive field,
we employ the JAEM to obtain promising features with
superior receptive fields by dilated convolution, where the
JALNet is employed to filter out the redundant information.

In summary, we have conducted extensive experiments
to validate that the proposed JALNet outperforms ten SOTA
RGB-D SOD methods over four widely public benchmark
datasets. Overall, the main contributions of our work
include:

• We propose a JALNet for RGB-D SOD to explore the
bi-directional complementarity between RGB and
depth modalities. Comprehensive experiments on four
public datasets demonstrated that our proposed
JALNet outperforms 16 state-of-the-art RGB-D
saliency object detection methods.

• We propose a cross-modal joint attention fusion
module (JAFM), which consists of channel-aware
attention and global context-aware attention, to
perfect the cross-modal complementary effect through
a joint attention learning mechanism (JALM).

• We design a joint attention enhance fusion module
(JAEM) to enlarge the receptive field of the features,
which can help the RGB-D SOD models to obtain
high-level saliency semantic information for locating
the saliency objects and can filter the redundant
information by a JALM.
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Figure 1 Some visual demonstrations of challenging scenarios, (a) is foreground similar with background (b) is complex background
(c) is transparent objects (d) is low-contrast scene (e) is small-object scene (see online version for colours)

Figure 2 Pipeline of the proposed JALNet. which contains some key stages: cross-modal feature (RGB and depth) encoder,
cross-modal JAFM and JAEM (see online version for colours)

Note: The right part shows some annotations of our method.

2 Related work

In this section, we briefly review the current work
of RGB saliency object detection and RGB-D saliency
object detection, including traditional SOD and deep
learning-based SOD.

2.1 RGB SOD

Itti et al. (1998) first proposed the most classical saliency
model, which led to a research boom across multiple
disciplines, including cognitive psychology, neuroscience,
and computer vision. Since then, saliency has received

increasing attention from researchers related to computer
vision. After Liu et al. (2010) first defined saliency object
detection as a binary segmentation problem, SOD has
become a computer vision task.

In recent years, with the rapid development of deep
learning techniques and their powerful feature extraction
capabilities, many researchers have used the CNN to extract
features in colour images. Hou et al. (2017) introduced
a short-connection to the field of saliency detection,
then up-sampled and compressed salient features to
output saliency maps by deep supervision. However, deep
supervision was time-consuming and prone to overfitting.
In Qin et al. (2019a), a residual encoder-decoder structure
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is designed to optimise the edges of salient objects. Liu
et al. (2021) designed a lightweight SOD model by using
a stereo attention network, which consists of a spatial
attention and a channel attention. However, the model is too
lightweight to have poor generalisation ability. However,
they have struggled to deal with challenging scenarios, such
as low-contrast environments, similar between foreground
and background, and complex backgrounds. To address this
issue, researchers introduced depth maps to the SOD due
to significant geometric structure embedded into the depth
maps.

2.2 RGB-D SOD

Compared with the RGB SOD, the RGB-D SOD has
richer information and complementary effects between RGB
image and depth map. Similar to RGB SOD methods,
RGB-D SOD also can be divided into traditional (no-deep
learning) methods and deep learning-based methods. Since
RGB-D SOD models need to fuse multi-modal features
of RGB and depth images, many saliency detection
methods focus on cross-modal fusion schemes. Chen
et al. (2019) proposed a cross-scale cross-modal fusion
network to integrate RGB features and depth features, and
introduced cross-modal interactions into multiple layers.
Chen et al. (2020a) designed a gated multi-modality
attention (GMA) module to obtain the relevance of global
contextual information. However, the gate mechanism
will not be able to provide a properly guide when
low-quality depth images are encountered. Pang et al.
(2020) designed a dynamic dilate pyramid module (DDPM),
which fuses multi-modal features using density connection
to obtain richer information. However, the cross-modal
feature dynamic fusion would loss lose its function when
encountering the negative impact of low-quality depth
maps, resulting in the lack of robustness for low-quality
depth map scenes. Fu et al. (2020) proposed a joint learning
and density collaboration RGB-D SOD model (JL-DCF)
using a CNN backbone network with shared weights to
extract RGB features and depth features, and a density
writing fusion strategy to efficiently learn features of
different modalities. Most of the above-mentioned guide the
cross-modal feature fusion through the interactive approach,
these methods cannot exclude the influence of redundant
information and negative features in the fusion process
during the interactive fusion.

To salving this problem, this paper proposes a JALNet
to guide the cross-modal feature fusion process, using
global context-aware attention and channel-aware attention
mechanisms to form a JALNet.

3 Methodology

3.1 Overall

The overall framework of the proposed JALNet for RGB-D
SOD is shown in Figure 2, which consists of three
components, namely two-stream encoders, a cross-modal

JAFM, and a JAEM for the decoder. To extract the
cross-modal features from RGB images and depth maps,
we employ the VGG16 backbone (Han et al., 2018)
as the decoder, where the final pool layer and fully
connected layers are removed. Besides, we design a feature
aggregation module (F operation in Figure 2) to integrate
cross-modal fused features from different levels.

On the whole, the network follows an encoder-decoder
architecture. The RGB features {Ri}5i=1 and depth
features {Di}5i=1 can be obtained by two-stream
encoders, respectively. To integrate {Ri}5i=1 and {Di}5i=1,
we propose a JAFM to explore the bi-directional
complementarity of cross-modal features by the interaction,
selection, and fusion strategies. Then, multi-modality fused
features {Fi}5i=1 can be generated by JAFM. Besides,
we introduce a JAEM to improve the global semantic
information for the cross-modal fused features by dilated
convolution. After, enhanced features {Ei}5i=1 can be
obtained. Then, we adopt a progressive aggregation manner
to integrate multi-scale features {Si}5i=1. Finally, we use
sigmoid activate function to inform the predicted saliency
map P. Concretely, the encode of saliency can be defined
as:

Ei = EM(FM(Ri, Di)), (1){
S5 = UP (Conv1(E5)),
Sj = UP (Conv1(Sifmoid(Sj+1)⊙ Ej ⊕ Sj+1)),

(2)

where j ∈ {1, 2, 3, 4}; FM and EM mean JAFM and
JAEM, respectively; UP indicates up-sample operation;
Conv1 is 1 × 1 convolution operation.

3.2 Joint attention fusion module

To fuse cross-model features and establish a direct data
flow between two-stream encoders and decoders, the
JAFM is designed. The specific structure of JAFM is
shown Figure 3, which consists of three key stages,
namely cross-modal interaction (interaction), channel-based
selection (selection), and multi-modality fusion (fusion).
The purpose of JAFM is to achieve the perfect cross-modal
bi-directional complementary effect, which can adequately
take full account of the complementary information of
depth features to RGB features and the complementary
information of RGB features to depth features. The
motivation of bi-directional complementary effect is driven
by two situations:

1 depth features can enhance RGB features when
dealing with complex scenes

2 RGB features can complement the low-quality depth
features.

Based on the aforementioned consideration, we design the
JAFM to generate the fused features from depth maps and
RGB images.
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Figure 3 The structure of JAFM, which explores the bi-directional complementary effect by the interaction, selection, and fusion
strategies (see online version for colours)

Note: JAFM contains three stages: cross-modal interaction, channel-based selection, and multi-modality fusion.

Figure 4 The structure of JAEM, which consists of JALM and dilated convolution layers (see online version for colours)

Note: The purpose of dilated convolution is to enhance global semantic information of features while the
JALM is proposed to improve the discriminative ability of cross-modal features.

3.2.1 Cross-modal interaction (interaction)

RGB features and depth features are denoted as {Ri}5i=1,
{Di}5i=1 ∈ RC×H×W , where i denotes the level of
the encoder. C, H, and W indicate the number of
channels, the length, and the width of the feature matrix,
respectively. Considering the complementarity between the
two modalities, we adopt a bi-directional guidance method
to achieve cross-modal interaction, where RGB and depth
can complete the transmission of information. The process
can be described as:

Rint
i = Ri ⊙ Sigmoid(Di)⊕Ri, (3)

Dint
i = Di ⊙ Sigmoid(Ri)⊕Di, (4)

where Ri and Di denote the RGB features and the depth
features at the ith level in the encoder, and i ∈ {1, 2, 3,
4, 5}; ⊙ and ⊕ denote the element-aware multiplication
and element-aware addition, respectively; Rint

i and Dint
i

are RGB and depth features after interaction, respectively.
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Table 1 Quantitative comparison result on six benchmark datasets, including LFSD, RGBD135, DUT, NLPR, NJU2K, and STERE
(see online version for colours)

Dataset Metrics
DMRA CPFP TANet A2dele CMWNet DANet HDFNet cmMS DFNet D3Net BiANet DQSD DRLF HAINet ASIF ICNet MoblieSal DCFM CFID

Ours2019 2019 2019 2020 2020 2020 2020 2020 2020 2020 2021 2021 2021 2021 2021 2021 2022 2022 2022
CVPR CVPR TIP CVPR ECCV ECCV ECCV ECCV TIP TNNLS TIP TIP TIP TIP T-Cyb TIP TPAMI TIP NCA

DUT adpEm ↑ 0.930 0.868 – 0.930 0.922 0.929 0.937 0.945 0.853 0.849 0.894 0.889 0.871 0.939 0.883 0.901 0.940 0.951 – 0.958
adpFm ↑ 0.883 0.793 – 0.893 0.865 0.884 0.892 0.906 0.749 0.755 0.810 0.818 0.803 0.906 0.823 0.830 0.912 0.906 – 0.931
WF ↑ 0.857 0.742 – 0.870 0.831 0.846 0.865 0.886 0.698 0.668 0.760 0.775 0.740 0.883 0.779 0.784 0.869 0.889 – 0.914

MAE ↓ 0.048 0.076 – 0.042 0.056 0.047 0.040 0.037 0.104 0.096 0.075 0.072 0.080 0.038 0.072 0.072 0.044 0.035 – 0.028
NLPR adpEm ↑ 0.941 0.924 0.916 0.945 0.940 0.944 0.948 0.947 0.933 0.945 0.939 0.935 0.936 0.952 0.946 0.944 0.953 0.940 0.951 0.957

adpFm ↑ 0.854 0.823 0.795 0.878 0.859 0.865 0.877 0.870 0.838 0.861 0.849 0.842 0.844 0.891 0.871 0.869 0.877 0.854 0.885 0.906
WF ↑ 0.845 0.813 0.779 0.867 0.856 0.849 0.869 0.865 0.827 0.848 0.833 0.843 0.830 0.880 0.856 0.864 0.874 0.856 0.876 0.893

MAE ↓ 0.031 0.036 0.041 0.028 0.029 0.031 0.027 0.027 0.034 0.029 0.032 0.029 0.032 0.025 0.030 0.028 0.025 0.029 0.026 0.022
NJU2K adpEm ↑ 0.920 0.900 0.909 0.916 0.922 0.926 0.933 0.932 0.913 0.915 0.907 0.913 0.903 0.931 0.923 0.912 0.939 0.925 0.929 0.944

adpFm ↑ 0.872 0.837 0.844 0.874 0.880 0.876 0.894 0.886 0.858 0.865 0.848 0.861 0.849 0.896 0.875 0.867 0.894 0.881 0.892 0.909
WF ↑ 0.853 0.828 0.804 0.851 0.856 0.852 0.881 0.867 0.831 0.854 0.811 0.852 0.831 0.879 0.854 0.843 0.874 0.867 0.882 0.894

MAE ↓ 0.051 0.053 0.060 0.051 0.045 0.046 0.037 0.044 0.052 0.046 0.056 0.050 0.055 0.038 0.047 0.052 0.041 0.043 0.038 0.034
STERE adpEm ↑ 0.933 0.907 0.916 0.935 0.930 0.926 0.937 0.937 0.915 0.923 0.925 0.912 0.916 0.937 0.927 0.925 – 0.930 0.933 0.942

adpFm ↑ 0.867 0.830 0.835 0.884 0.869 0.858 0.879 0.879 0.840 0.859 0.869 0.839 0.845 0.890 0.866 0.864 – 0.866 0.879 0.899
WF ↑ 0.850 0.817 0.786 0.867 0.847 0.829 0.863 0.858 0.810 0.837 0.833 0.824 0.821 0.871 0.837 0.843 – 0.849 0.861 0.841

MAE ↓ 0.047 0.051 0.060 0.043 0.043 0.047 0.039 0.043 0.054 0.046 0.050 0.051 0.050 0.038 0.049 0.045 – 0.043 0.043 0.037
RGBD135 adpEm ↑ 0.944 0.927 0.919 0.922 0.967 0.960 0.973 – 0.923 0.951 0.925 0.970 0.954 0.967 – 0.959 0.973 0.967 0.943 0.965

adpFm ↑ 0.857 0.829 0.794 0.865 0.900 0.891 0.918 – 0.818 0.870 0.830 0.894 0.868 0.913 – 0.893 0.910 0.896 0.898 0.928
WF ↑ 0.849 0.787 0.738 0.845 0.887 0.848 0.902 – 0.779 0.828 0.774 0.887 0.829 0.897 – 0.867 0.895 0.881 0.875 0.905

MAE ↓ 0.029 0.038 0.046 0.028 0.022 0.028 0.020 – 0.040 0.031 0.038 0.021 0.030 0.019 – 0.027 0.021 0.023 0.023 0.018
LFSD adpEm ↑ 0.899 0.809 0.851 0.880 0.907 0.877 0.882 0.894 0.839 0.863 0.822 0.884 0.872 – 0.861 0.900 0.894 0.905 0.901 0.905

adpFm ↑ 0.849 0.741 0.794 0.835 0.870 0.826 0.830 0.869 0.767 0.804 0.751 0.842 0.821 – 0.827 0.861 0.840 0.861 0.857 0.875
WF ↑ 0.814 0.671 0.071 0.810 0.833 0.789 0.792 0.825 0.070 0.759 0.670 0.796 0.772 – 0.780 0.821 0.800 0.825 0.825 0.841

MAE ↓ 0.075 0.133 0.111 0.073 0.066 0.082 0.085 0.073 0.118 0.095 0.127 0.085 0.089 – 0.090 0.071 0.079 0.068 0.070 0.061

Notes: ↑ and ↓ stand for larger and smaller is better, respectively. The top three results are highlighted in red, violet, and green, respectively.

3.2.2 Channel-based selection (selection)

To capture associations between different channel features
of Rint

i and Dint
i , we adopt the global average pooling

(GAP), global max pooling (GMP), and multilayer
perceptron (MLP) to generate weighted factors representing
the channel correlation of Rint

i and Dint
i . Compared to

GAP, GMP can provide unique information about channels
that are ignored by GAP. We can compute the enhanced
features by GAP and GMP as follows:

CAavg
i = MLP (GAP (Conv1(R

int
i ))), (5)

CAmax
i = MLP (GMP (Conv1(R

int
i ))), (6)

Rsel
i = Rint

i ⊙ Sigmoid(cat(CAavg
i , CAmax

i )), (7)

where GAP and GMP denotes GAP and GAP operation,
MLP denotes MLP. Conv1 means the 1 × 1 convolution
operation. Rsel

i is the RGB feature after channel-based
selection. Similar to RGB features, channel-based selective
depth feature Dsel

i through GAP, MGP, and MLP
technologies.

3.2.3 Multi-modality fusion (fusion)

The RGB features Rsel
i and depth features Dsel

i are
embedded to multi-modality fusion stage to generate a
semantic-aware affine mapping function through spatial
attention mechanism, which can capture the degree
of variation within features, that is, it can highlight
the salient region and suppress the background region.
Specially, a cooperation strategy of element-aware addition,
element-aware multiplication, and concatenation is adopted

to extract significant cues of RGB and depth modalities.
Then, a max pooling and an average pooling with along
channel be leveraged to capture salient region, which
operation can be formulated as:

F raw
i = ACM(Rsel

i , Dsel
i ), (8)

SAi = Sigmoid(Conv7(M(F raw
i )⊙A(F raw

i ))), (9)

where Conv7 denotes the 7 × 7 convolution operation; M
and A are max pooling and an average pooling with along
channel; As shown in Figure 3, ACM indicates joint use of
element-aware addition, element-aware multiplication, and
concatenation. SAi means the attention mask, which can
tell which region need attention. Next, we leverage the
attention mask SAi to enhance the RGB feature Rsel

i and
depth feature Dsel

i . Then, using the ACM operation to fuse
RGB and depth features, which can be formulated as:

Fi = ACM(Rsel
i ⊙ SAi, D

sel
i ⊙ SAi). (10)

3.3 Joint attention enhance module

In order to utilise the cross-modal fused features Fi more
rationally and efficiently, we design JAEM with a JALM to
enhance the discriminative power and enrich the high-level
semantic information of the features. As shown in Figure 4,
the JAEM consists of two parts:

1 the dilated convolution layers are employed to
enhance the receptive field

2 a JALM is used to improve the discriminative power
of cross-modal features.
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Firstly, the cross-modal fused features Fi are embedded into
the JAEM to generate four features F k

i with the dilated rate
k, where K ∈ {1, 2, 4, 8}. The calculation process is shown
as follows:

F k
i = DConvk(Fi), i ∈ {1, 2, 3, 4, 5} (11)

where DConvk represents the dilated convolution operation
with dilates rates k, k ∈ {1, 2, 4, 8}. Then, F k

i

are embedded into the JALM to further enhance the
discriminative ability of cross-modal features and eliminate
redundant information of cross-modal features, which can
be formulated as:

CW k
i = Sigmoid(GAP (MLP (F k

i ))), (12)

SW k
i = Sigmoid(Conv7Conv1(F

k
i ))), (13)

where CW k
i and SW k

i denote the weight matrices in
channel and spatial dimension. Then, CW k

i and SW k
i are

further combined to generate a joint attention matrix, which
is calculated as follows:

DF k
i = F k

i ⊙ (CW k
i ⊙ SW k

i ), (14)

where DF k
i denotes the refined features with dilated rate k.

Finally, we can integrate the enhanced features DF k
i , where

k ∈ {1, 2, 4, 8}. The computational procedure is shown as
fellow:

Fi = cat(DF 1
i , DF 2

i , DF 4
i , DF 8

i ). i ∈ {1, 2, 3, 4, 5} (15)

3.4 Loss function

Similar to works, we adopt the widely used cross-entropy
loss (BCE) to supervise our BMCNet. The BCE is
computed as:

Lbce =
1

H ×W

H∑
h

W∑
w

[g log p

+ (1− g) log (1− p)], (16)

where P = {p|0 < p < 1} ∈ R1×H×W and G = {g|0, 1} ∈
R1×H×W represent the predicted value and the
corresponding ground truth, respectively. H and W
represent the height and width of the input image,
respectively. Lbce calculates the error between the ground
truth G and the predicted P for each position.

4 Experiments

4.1 Datasets and evaluation metrics

To verify the effectiveness of the proposed JALNet, we
conduct a comprehensive comparison on five RGB-D
benchmark datasets, including LFSD (Li et al., 2014),
RGBD135 (Achanta et al., 2009), DUT (Margolin et al.,
2014), NLPR (Perazzi et al., 2012), NJU2K (Simonyan
and Zisserman, 2014), and STERE (Fan et al., 2020b).
LFSD and RGBD135 is a small-scale dataset captured by

Kinect camera, which includes 100 and 135 pairs of outdoor
and indoor images, respectively. DUT consists of 1200
paired images containing some challenging scenarios, e.g.,
complex background, transparent object, and low-contrast
scenes, which is divided into 800 training samples and
400 testing samples. NLPR contains 1,000 RGB images
and corresponding depth maps. Moreover, there are a mass
of multi-object scenarios in this dataset. NJU2K contains
1,985 pairs of RGB images and depth maps, where the
depth maps are estimated from the stereo images. STERE
is fifirst proposed dataset containing 1,000 pairs totally
with low-quality depth maps. Follow Hou et al. (2017),
we randomly select the 650 samples from NLPR, 1,400
samples from NJU2K, and 800 samples from DUT as the
training set, and the remaining samples are classifified as
testing set.

To quantitatively analyse the performance of the
proposed JALNet, adapt e-measure (adpEm) (Fan et al.,
2018), adapt F-measure (adpFm) score (Achanta et al.,
2009), weight Fmeasure (WF) score (Margolin et al., 2014),
mean absolute error (MAE) (Perazzi et al., 2012), and
precision-recall (PR) curve are adopted.

4.2 Implementation details

We use VGG16 (Simonyan and Zisserman, 2014) as
the backbone of RGB and Depth encoder. In these
two encoders, only the convolutional layer and the final
classification layer are retained while the remaining pooling
layer and fully connected layer are removed. Our backbone
is initialised with ImageNet (Krizhevsky et al., 2012)
pre-trained parameter weights. The proposed JALNet is
implemented based on PyTorch with a NVIDIA GTX
2080Ti GPU and Adam with momentum optimiser is used
to train our model. We set the weight decay 0.1 as
batch size as 8, the initial learning rate as 5e−5, and the
momentum as 0.9. We train our model for 80 epochs until
convergence.

4.3 Comparison with state-of-the-art methods

To evaluate the performance of the proposed JALNet, we
compare our network with other 16 SOTA RGB-D SOD
methods, including CPFP (Zhao et al., 2019), HAINet (Li
et al., 2021a), ICNet (Li et al., 2021b), DMRA (Piao
et al., 2019), TANet (Chen and Li, 2019), A2dele (Piao
et al., 2020), CMWNet Li et al. (2020a), DANet (Zhao
et al., 2020), HDFNet (Pang et al., 2020), cmMS (Li et al.,
2020b), DFNet (Chen et al., 2020b), D3Net (Fan et al.,
2020b), BiANet (Zhang et al., 2021), DQSD (Chen et al.,
2021), DRLF (Wang et al., 2020), ASIFNet (Li et al.,
2021c), MobileSal (Wu et al., 2021), DCFM (Wang et al.,
2022), and CFID (Chen et al., 2022). Saliency maps of
these methods are generated by the original code under
default parameters, or provided by the authors.
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Figure 5 Precision-recall curves of our JALNet and other SOD methods on RGBD135, DUT, NLPR, NJU2K, STERE, and LFSD
datasets (see online version for colours)
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Figure 6 Visual comparison of different RGB-D SOD methods, including, (a) RGB (b) depth (c) GT (d) ours (e) CPFP (f) A2dele
(g) CMWN (h) cmMS (i) PGAR (j) D3Net (k) DFNet (l) BiANet (m) ASIF (see online version for colours)
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Table 2 Results of ablation study: the contribution of each component of the proposed JALNet (see online version for colours)

Number Variants LFSD NLPR DUT STERE

adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓

No. 1 w/o JAFM 0.895 0.861 0.810 0.076 0.950 0.872 0.871 0.026 0.951 0.912 0.890 0.034 0.938 0.886 0.855 0.044
No. 2 w/o JAEM 0.897 0.867 0.829 0.069 0.952 0.892 0.879 0.024 0.954 0.923 0.905 0.031 0.939 0.891 0.866 0.040
No. 3 w/o JAFM 0.891 0.857 0.807 0.078 0.945 0.869 0.861 0.028 0.943 0.903 0.879 0.039 0.934 0.880 0.849 0.046

+ JAEM
No. 4 Ours 0.905 0.875 0.841 0.062 0.957 0.906 0.893 0.022 0.958 0.931 0.914 0.028 0.942 0.899 0.879 0.037

Notes: The metrics we use are adpEm, adpFm, WF , and MAE. The best results are highlighted in red.

Table 3 Results of ablation study: the effectiveness of inner strategies in JAFM (see online version for colours)

Number Variants LFSD NLPR DUT STERE

adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓

No. 1 JAFM-interaction 0.899 0.852 0.811 0.072 0.942 0.859 0.858 0.028 0.950 0.906 0.887 0.034 0.935 0.879 0.851 0.045
No. 2 JAFM-selection 0.905 0.868 0.832 0.064 0.950 0.873 0.871 0.026 0.951 0.911 0.892 0.034 0.939 0.888 0.871 0.039
No. 3 JAFM-fusion 0.911 0.863 0.822 0.069 0.947 0.868 0.865 0.027 0.954 0.915 0.898 0.032 0.940 0.885 0.859 0.042
No. 4 Ours 0.905 0.875 0.841 0.062 0.957 0.906 0.893 0.022 0.958 0.931 0.914 0.028 0.942 0.899 0.879 0.037

Notes: The metrics we use are adpEm, adpFm, WF , and MAE. The best results are highlighted in red.

Table 4 Results of ablation study: the effectiveness of inner strategies in JAEM (see online version for colours)

Number Variants LFSD NLPR DUT STERE

adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓ adpEm ↑ adpFm ↑ WF ↑ MAE ↓

No. 1 JAEM-DConv 0.903 0.859 0.826 0.067 0.950 0.872 0.870 0.027 0.953 0.913 0.893 0.034 0.935 0.881 0.853 0.044
No. 2 JAEM-JALM 0.900 0.854 0.807 0.073 0.945 0.858 0.855 0.029 0.942 0.900 0.879 0.037 0.928 0.869 0.838 0.049
No. 3 Ours 0.905 0.875 0.841 0.062 0.957 0.906 0.893 0.022 0.958 0.931 0.914 0.028 0.942 0.899 0.879 0.037

Notes: The metrics we use are adpEm, adpFm, WF , and MAE. The best results are highlighted in red.

Figure 7 Some failure cases of our JALNet (see online version for colours)

4.3.1 Quantitative evaluation

In Table 1, we list the quantitative comparison results of
our method and ten RGB-D SOD methods on four public
RGB-D SOD datasets including NLPR, RGBD35, SIP and
STERE in terms of adpEm, adpFm, WF and MAE metrics.
As can see from Table 1, the proposed JALNet performs
the best on NLPR, SIP and DES and SSD datasets. On

the large-scale SIP dataset, our method can get percentage
gain of 2.8%, 2.9%, 4% and 26% in terms of adpEm,
adpFm, WF and MAE compare with the suboptimal method
D3Net (Li et al., 2021b), which fully illustrates the superior
performance of our proposed model on the SIP dataset. On
the NLPR dataset, the proposed JALNet reaches optimality
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in adpEm, WF and MAE metrics, and the adpFm metric is
only 0.001 away from the optimal model.

To further evaluate the performance, the PR curves on
six datasets are also reported in Figure 5. It can be note
that the proposed JALNet obtains both higher accuracy
and recall scores against other comparison state-of-the-art
methods on all datasets in Figure 5. This indicated the
effectiveness of our JALNet.

4.3.2 Visual comparison

Figure 6 shows qualitative comparison results of the
proposed JALNet and different RGB-D SOD methods
on various challenging scenarios, including complex
background, foreground similar with background, low
contrast, transparent objects, and small objects. We compare
JALNet with the following methods: CPFP, A2dele,
CMWNet, cmMS, PGAR, D3Net, DFNet, BiANet, and
ASIF. As shown in Figure 6, the visual results manifest
that the proposed JALNet can handle virous challenging
scenarios and produce robust prediction of saliency. Taking
foreground similar to background scenes as an example. As
shown in 2nd row of Figure 6, this scene usually releases
some misleading information, which may make some model
(e.g., A2dele and D3Net) cannot find any salient objects.
However, our method can effectively deal with the case and
predict complete salient objects.

4.4 Ablation studies

In this section, we intend to investigate the contribution of
each component of the proposed JALNet. To this end, we
conduct several ablation studies on LFSD, NLPR, DUT, and
STERE datasets, including the effectiveness of JAFM and
the importance of JAEM.

4.4.1 The contribution of each component

In our proposed JALNet, the JAFM plays a very important
role, which is designed to fuse RGB and depth features.
To verify important of the JAFM, we remove the JAFM
from JALNet, denoted as w/o JAFM. Similar to JAFM,
we remove the JAEM from our method, denoted as w/o
JAEM. Besides, we remove JAFM and FAEM, denoted as
w/o JAFM + JAEM.

From Table 2, it can be seen that the performance is
improved after adding JAFM, which gets the percentage
gain of 22.6%, 15.4%, 17.6% and 15.9% in term of MAE
score on LFSD, NLPR, DUT, and STERE, respectively.
Similar to w/o JAFM, the performance of our method by
introducing the JAEM can get 11.3%, 8.3%, 9.7% and
7.5% in terms of MAE score on LFSD, NLPR, DUT, and
STERE, respectively. These results adequately prove the
effectiveness of JAFM and JAEM. Further, we verify the
availability of cooperation of JAFM and JAEM. Comparing
with w/o JAFM + JAEM, the proposed JALNet can get
significant improvement.

4.4.2 The effectiveness of the JAFM

We introduce the JAFM into our proposed JALNet. To
further explore the working mechanism of our proposed
JAFM, we further vary the JAFM into three variants:

a we remove the cross-modal interaction, denoted as
JAFM-interaction

b removing the channel-based selection, denoted as
JAFM-selection

c removing the multi-modality fusion, denoted as
JAFM-fusion.

These three sets of comparison experiments on the NLPR,
DES datasets are shown in Table 3.

Table 3 presents the compared results of the three
variants. From the results, interaction, selection and fusion
stages of JAFM are benefited for the proposed JALNet,
which manifest that the inner strategies of JAFM are
effective. For example, the fusion stage of JAFM can bring
a noteworthy improvement, such as WF: 0.841 → 0.822 on
LFSD, 0.893 → 0.865 on NLPR, 0.914 → 0.898 on DUT,
0.879 → 0.859 on STERE.

4.4.3 The effectiveness of the JAEM

To demonstrate the contribution of the JAEM, which
consists of dilated convolution and JALM, we remove the
dilated convolution, denoted as JAEM-DConv. Similar to
dilated convolution, removing JALM from FAEM, denoted
as FAEM-JALM.

As shown in Table 4, comparing with JAEM-DConv,
it can be seen that the dilated convolution generates
the percentage gain of 7.5%, 18.5%, 17.6% and 15.9%
in terms of MAE on LFSD, NLPR, DUT, and STERE
datasets, respectively, which can verify the effectiveness
of dilated convolution. Besides, the improvements between
JAEM-JALM and the proposed JALNet can confirm that
the used JALM is fit to integrate multi-scale features.

4.5 Limitation and analysis

Our proposed JALNet performs very efficiently in most
of the SOD tasks, but it encounters some failure cases.
As shown in Figure 7, it shows some representative cases.
This is because the quality of depth maps for different
scenes varies with the scene and depth acquisition device.
When we encounter the SOD task with low quality depth
maps (such as the first and third rows in Figure 7), it
will have great interference and negative impact on the
feature fusion process across modalities, which will affect
the final generated saliency map. In addition, JALNet will
also produce lower quality saliency maps when the salient
objects are highly similar to the background in shape and
colour (e.g., second row in Figure 7).
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5 Conclusions

In this paper, we have developed a novel JALNet for
RGB-D SOD to better achieve the cross-modal mutual
complementation between the RGB features and the
depth features. To this end, a JAFM is designed to
integrate cross-modal features by FAM, which effectively
uses the mutual complementation of different modality.
Besides, to further enhance the semantic information and
expression ability of the features, we designed a JAEM
to improve the performance of the proposed JALNet.
SOD simulates human visual perception system to find
the most attractive object in a given scene, and has been
widely used in various computer vision tasks, such as
image retrieval, visual tracking, medical image segment,
and person re-identification. Besides, SOD is one of the
most important parts of vision understanding, and it is very
important to help machines perceive and understand the
captured images for content analysis, such region-of-interest
(ROI) extraction in remote sensing image and primary
object detection in video.
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