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Abstract: The tyre-road friction coefficient (TRFC) is not only related to 
pavement conditions, but also affected by factors such as tyre material, tyre 
pressure and ambient temperature; in addition, there are problems such as 
sensor measurement noise, signal transmission hysteresis, parameter 
uncertainty or time denaturation in the actual vehicle system. These problems 
make the real-time robust estimation of the friction coefficient and its stability 
analysis more complicated, Therefore, the identification of TRFC has always 
been a key topic and difficult issue in research. This paper provides a 
comprehensive technical review of the currently widely used TRFC estimation 
method. First, various filters and observers and their improved versions to solve 
different problems are introduced. Then the model-based estimation algorithm 
is comprehensively expounded. The paper summarises the research results of 
sensor-based and neural network-based methods, analyses the new method 
brought about by the structural characteristics of distributed drive electric 
vehicles to estimate the friction coefficient, and looks forward to the future 
development direction. 

Keywords: vehicle state; tyre-road friction; Kalman filter; particle filter; 
Luenberger observer; nonlinear observer; tyre model; distributed drive; 
intelligent tyres; neural network. 

Reference to this paper should be made as follows: Huang, Z. and Fan, X. 
(2024) ‘A review on estimation of vehicle tyre-road friction’, Int. J. Heavy 
Vehicle Systems, Vol. 31, No. 1, pp.49–86. 

 



   

 

   

   
 

   

   

 

   

   50 Z. Huang and X. Fan    
 

    
 

   

   
 

   

   

 

   

       
 
 

Biographical notes: Zipeng Huang is currently pursuing the Master degree in 
Mechanical Engineering at Henan Polytechnic University. His research 
interests include vehicle state estimation and on-board test technology. 

Xiaobin Fan received his PhD in Mechanical Design and Theory from the 
University of Science and Technology Beijing in 2007. His research interests 
include vehicle system dynamics and control. 

 

1 Introduction 

Autonomous driving technology is a rapidly developing technology, and its research and 
development includes computer vision, learning, perception, planning and other fields. 
Thanks to its outstanding advantages such as convenience, safety, improved traffic 
conditions and consumer-oriented starting point, many technology companies and car 
manufacturers are experimenting with autonomous driving cars (Hussain and Zeadally, 
2019). However, no matter what level of automation the vehicle’s autonomous driving 
has reached, autonomous driving systems require the interaction of tyre road information, 
being able to process this information in a timely and accurate manner has a great impact 
on vehicle dynamics (Lin et al., 2014), such as vehicle speed, vehicle sideslip angle,  
tyre-road friction coefficient (TRFC), etc. 

The TRFC is determined by road surface and tyre, The dynamic performance of an 
automobile is restricted not only by the driving force, but also by the adhesion conditions 
of road surface and ground, the friction rate of the driving wheel cannot be greater than 
TRFC, otherwise the driving wheel will slip. According to road adhesion conditions and 
accurate vehicle speed information, it can assist the vehicle’s active safety system, such 
as electronic stability program (ESP), traction control system (TCS), etc., to adjust the 
control strategy to enhance driving stability (Zhao et al., 2009). Distributed drive electric 
vehicles are driven by electric motors integrated into the wheel rims or hubs. Compared 
to conventional vehicles, distributed drive electric vehicles have the following 
characteristics (Chen et al., 2013):  

1 the torque of the motor can be directly observed, and the observation accuracy is 
high, which makes it easy to accurately estimate the speed 

2 accurate estimation of four-wheel longitudinal force in real-time, which helps to 
improve the accuracy of the estimation of the peak friction coefficient of the road 
and the range of applicable working condition.  

In harsh external environments such as slippery roads, high-speed driving, or rapid turns, 
or under special or even dangerous driving conditions, it is extremely important to correct 
the trajectory of the vehicle and prevent the wheels from being locked in dangerous 
situations; meanwhile, with the development of autonomous vehicles, in order to ensure 
the safety of vehicles, combining with the required functions to create vehicles that drive 
themselves without driver intervention, the Driver Assistance System was born, 
commonly referred to as advanced driver assistance system (ADAS) (Acosta et al., 
2017). One of the ways to develop these ADAS in the future is to obtain basic  
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information that affects the driving of the vehicle, TRFC is one of the most important 
parameters (Martinez and De Wit, 2007). The TRFC mainly depends on three factors:  

1 tyre (model, size, pressure, wear, etc.) 

2 ground (type of cover, road condition, etc.)  

3 there is a third factor (snow, water, dust, etc.) at the interface between the tyre and 
the road. 

TRFC is an important input parameter for studying vehicle dynamics control (Fu et al., 
2018), real-time and accurate acquisition of TRFC helps the development of active safety 
control systems for vehicle. In special weather conditions, road surface conditions and 
potentially dangerous operations such as lane changes and overtaking, etc., it can assist 
drivers to reduce the occurrence of road traffic accidents and improve the stability of car 
driving. Many scholars have studied the identification of roads through different 
methods, according to the principle analysis of TRFC estimation algorithm, as shown in 
Figure 1, the method of obtaining the friction coefficient of vehicle’s current driving 
pavement can be divided into two categories (Wang et al., 2014; Ding et al., 2016):  

1 Cause-Based method. This method mainly analyses the relationship between TRFC 
and other related parameters, and establishes a predictive model based on the 
relationship between the influencing factors and TRFC, estimates TRFC based on 
the influencing factor values such as vehicle parameters, tyre parameters, pavement 
lubrication parameters and pavement parameters. Therefore, the premise of obtaining 
an accurate TRFC is that a large number of external factors need to be determined 
(Bachmann, 1998). Among them, the pavement lubrication parameters and pavement 
type parameters that have a key impact on TRFC require special sensors to obtain. 
The cause-based pavement identification method has the following three problems:  

 1 needing to use additional sensors (Wang et al., 2004; Yin et al., 2007) 

 2 requiring a lot of complex data processing processes 

 3 the measurement of the sensor is inaccurate under certain special operating 
 conditions. 

2 Effect-based method. This method obtains measurable parameters that can represent 
the driving state of the car by measuring the results caused by different TRFC during 
the driving of the vehicle, TRFC that cannot be directly measured is obtained by 
estimation algorithms such as Kalman filtering algorithm, least squares algorithm, 
recursion algorithm, etc. (Hou, 2020). 

Based on the research progress of TRFC estimation in recent years, this paper introduces 
the technical overview of the techniques and fusion methods commonly used in 
parameter estimation and briefly explains them separately, analyses the estimation 
method of TRFC and the research on TRFC estimation of distributed drive vehicles is 
summarised. Organising and evaluating the existing various friction coefficient 
estimation methods, pointing out the advantages and disadvantages of various estimation 
methods, and prospecting for its development. 
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Figure 1 Estimation method of TRFC 

 

2 Filter technology 

2.1 Kalman filter 

2.1.1 Kalman filter 

As an optimal state estimation algorithm, Kalman filter (KF) uses observations combined 
with the system’s model to estimate the state of the system, and Kalman gain is used to 
correct the state prediction value; its filtering algorithm based on Bayesian principle 
collects observation data on the input and output of the system, and then optimally 
estimates the state of the system (Li et al., 2018). KF is an estimation algorithm for a 
recursive process, that is, as long as the estimated value of the state at the previous time 
and the observed value of the state at the current time are known, the estimated value of 
the current state can be calculated. The description of the state of the system can be 
represented by the following output equation and state equation: 

1k k k kx Ax Bu w+ = + +   (1) 

k k k ky Cx Du z= + +   (2) 

where A, B, C, D represent the system parameter matrix, respectively; x is the system 
status; k is the time series; u is the system input; z, w are the measurement noise and 
process noise, respectively; y is the system output observation. 

KF as a widely used filter design in current linear systems, its own defects directly 
limit its application scope and the accuracy of the estimation results. The classical KF 
theory is only applicable to linear systems, and most of the control objects in the 
engineering field cannot be expressed in linear form. Moreover, the KF needs to assume 
that the system noise and the measurement noise are Gaussian white noise. If the noise is 
coloured noise, it will weaken the algorithm’s ability to suppress the noise. In addition, it 
is necessary to obtain the initial value of the measured noise covariance matrix through a 
large number of tests and online debugging. 

Many new results have been developed in the literature based on the KF principle. 
Since KF theory was proposed, it has been continuously developed and improved, and its 
expression form has been changing. From the initial estimation of the state of a linear 
system, it has evolved to be able to predict the state of a nonlinear system, from the 
simplest KF algorithm to, for example, the extended Kalman filter (EKF), the unscented 
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Kalman filter (UKF) and the cubature Kalman filter (CKF). The application of KF 
algorithm in cases such as nonlinear system problems and various types of system noise 
characteristics is enhanced to varying degrees to improve the approximate accuracy of the 
results and avoid more complex operations. 

2.1.2 Extended Kalman filter 

The EKF provides a method for tracking the state of a nonlinear system from noise 
measurements and noise inputs. EKF is a generalised algorithm of KF theory for 
nonlinear systems. EKF implements recursive filtering by taking the nonlinear system 
model for a first-order approximation of the Taylor expansion near the best estimate point 
of its state, linearising the nonlinear function, and finally using the classical KF 
formulation. The Taylor series is used to expand the nonlinear function, discard the 
higher order derivative components, and simply linearise the nonlinear model so that the 
linearised model can be estimated more accurately using the KF algorithm. The formula 
of the EKF is as follows:  

1
ˆ

k k k k kX F X B u+ = +   (3) 

1
T

k k k kP F P F Q+ = +   (4) 

Update 

+ 1
1 1 1( )T T

k k kK P H HP H R −
+ + +=   (5) 

1 1 1 1 1
ˆ ( )k k k k kX X K Z HX+ + + + += + −   (6) 

1 1 1( )k k kP I K H P+ + += −   (7) 

where ˆ ,X X  are the estimated and predicted values, respectly; F, H are the state 
transition matrix and observation matrix, respectly; P, B are the covariance matrix and 
control matrix; u is the control vector; K is the Kalman gain; I is the unit matrix; R, Q are 
the error. 

The principle of EKF algorithm is shown in Figure 2, which mainly consists of two 
processes, the measurement update and the prediction update, that is, first perform state 
prediction and error covariance prediction according to the initialisation conditions, then 
perform gain calculation, then update the state and error covariance, loop the process, 
gradually converge the filtering process, and finally get the unbiased estimate of the state. 

Gopinath and Das (2018) improved the performance of the EKF observer by adaptive 
tuning to provide better noise suppression for fast dynamic response in TRFC estimation 
under steady-state operation. Li et al. (2014) based on EKF theory, a three-degree-of-
freedom vehicle model using the Dugoff tyre model was developed to achieve the 
estimation of vehicle state variables through sensor information. Li (2015) created a tyre 
model with combined longitudinal and lateral tyre forces and used the EKF algorithm to 
estimate TRFC. Kaur and Sahambi (2016) proposed a Fractional Order Gain KF 
(FOGKF) by adding a feedback loop to the method and using the fractional-order 
derivative of the previous gain as feedback in order to avoid the results of EKF 
divergence due to large errors. Improved Kalman filter improves root mean square error 
by 17% compared to the performance of the standard KF, fractional order KF and UKF. 
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Zong et al. (2011, 2013) used the Dual EKF (DEKF) technique to design an estimator for 
joint estimation of vehicle state and TRFC based on the three-degree-of-freedom vehicle 
model and the magic formula tyre model, and verified its accuracy. Estimation of tyre 
force and TRFC µ on asphalt pavement based on on-board sensor estimation and eight-
degree-of-freedom vehicle model by applying Extended Kalman Bucy Filter (EKBF) and 
Bayesian hypothesis selection method, however, when the slip rate and slip angle of this 
method are very small, the estimation system cannot update the estimated value of TRFC 
in time (2010). 

Figure 2 EKF algorithm schematic 

 

EKF is widely used because of its simple steps. However, the EKF algorithm itself has 
the following drawbacks (Chen, 2012):  

1 The EKF algorithm requires a local linearisation of the nonlinear system, which 
introduces large errors when the higher-order characteristics of the nonlinear object 
cannot be ignored. 

2 The linearisation process of the nonlinear system involves the calculation of the 
Jacobi matrix, and the iterative calculation process needs to complete the 
replacement of the Jacobi matrix. For relatively complex nonlinear systems, the 
calculation of the Jacobi matrix is difficult. Especially for building real-time state 
estimation of complex systems, EKF is difficult to meet the real-time requirements. 

For large-scale systems or complex equations, solving Jacobi matrices is very 
complicated. In addition, neglecting the higher-order terms of the Taylor expansion leads 
to an increase in truncation error, which degrades or even diverges the estimation 
performance of systems with strong nonlinearity. The EKF algorithm achieves nonlinear 
state estimation by approximating a nonlinear function, while other KF-based algorithms, 
such as UKF and CKF, approximate the posterior probability distribution of random 
variables. 
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2.1.3 Unscented Kalman filter 

The UKF is a nonlinear filtering method based on the EKF that does not require a 
linearised model of the system and does not require solving the system differential (Zhao 
and Lin, 2010). The UKF algorithm process includes filter initialisation setting, Sigma 
point set calculation, time update equation and measurement update equation (Wang and 
Zhao, 2018), introduces unscented transformation (UT) to describe the filtering problem. 
The mean and variance can be approximately obtained through certain regular weights 
and sampling. Compared with the EKF algorithm, UKF avoids the complex calculation 
of the Jacobi matrix of highly nonlinear system functions, and at the same time 
significantly improves the estimation accuracy and convergence velocity without 
increasing the amount of calculation. 

Zhao et al. (2016) used UKF to build a vehicle state and TRFC estimator, so that the 
estimation of the two was combined, and parameters such as vehicle speed and yaw 
angular velocity were used as input variables for friction coefficient estimation, 
improving the accuracy of the original input variables, thereby improving the final 
estimation accuracy of the algorithm. Zhang et al. (2022) proposed a state estimation 
method based on Enhanced Adaptive UKF (EAUKF), and compared the method with 
other KF algorithms, thus confirming that the proposed method has better state quantity 
estimation effect. However, as the number of iterations increases and the total execution 
time grows, it is still necessary to design the appropriate optimal decay speed parameter 
to avoid inaccurate state estimation in systems with rapidly changing noise. For 
articulated heavy vehicles, Morrison and Cebon (2016) verified that a Linear Adaptive 
UKF (LAUKF) using a 5-degree-of-freedom single-track vehicle model and linear 
adaptive tyres outperforms the linear KF at constant velocity or during emergency 
braking, especially under low-friction conditions, after computer simulations and vehicle 
test data comparison experiments. Zhang and Li (2016) proposed an Adaptive UKF 
(AUKF) algorithm by combining the UKF with the suboptimal Sage-Husa noise 
estimator, this algorithm can adapt to different road conditions and maintain high 
accuracy with strong robustness in the presence of vehicle parameter perturbation and 
model errors. 

Wang et al. (2022) introduced fuzzy control theory and decaying memory filtering 
idea into UKF, introduced the concept of fuzzy forgetting factor, and dynamically 
adjusted the size of forgetting factor by fuzzy control, so that the estimation algorithm 
can have better convergence and tracking ability in different situations. A Fuzzy 
Forgetting Factor UKF (FFUKF) was designed to improve the tracking performance of 
the algorithm, which solves the problem that the traditional UKF cannot quickly track 
time-varying nonlinear systems. Fading Memory UKF (FMUKF) based on exponentially 
weighted fading memory, based on the traditional UKF, uses fading memory filtering to 
solve the problem of excessive filtering error or even scattering caused by inaccurate 
models, enhancing the stability of UKF, improve the estimation accuracy of the 
algorithm, and have a certain adaptiveness (Fu et al., 2018). Zhang et al. (2015) 
combined the ant colony algorithm with the UKF to reduce the estimation error and better 
track the virtual experimental values by relying on the optimisation-seeking effect of the 
ant colony algorithm, which improves the estimation accuracy and robustness of the UKF 
algorithm. Wielitzka et al. (2018) proposed a method for online estimation of bounded 
maximum friction coefficients based on serial sensors using a joint sensitivity-based 
UKF, introducing local sensitivity analysis to achieve robust estimation of parameter 
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estimates without drift when excitation was insufficient. Pichlik and Zdenek (2018) 
proposed a new approach to locomotive wheel slip control in which the UKF was used as 
an estimator to estimate the relative adhesion force as an input to the PI controller in 
order to limit the applied traction force and to limit the wheel slip speed. This method 
does not require additional input signal filtering and does not require actual train speed 
information. 

2.1.4 Cubature Kalman filter 

CKF is a nonlinear Gaussian filtering method (Arasaratnam and Haykin, 2009; 
Arasaratnam et al., 2010), in contrast to the EKF and UKF, the CKF based on the third-
order spherical radial volume criterion uses a set of volume points to approximate the 
state mean and covariance of the system (Sharma et al., 2017; Li et al., 2019), its 
accuracy of the probability distribution after approximating the nonlinear transformation 
is better than that of UKF, which is more adaptable, faster in calculation, more accurate 
and insensitive to the measurement error and system size, etc. (Liu et al., 2020; Chen, 
2014). 

Based on the Dual CKF theory, Li et al. (2015) designed a vehicle driving state 
estimator and a TRFC estimator, and interconnected the two information to form a 
closed-loop feedback correction to update the observed signal and achieve accurate 
estimation of TRFC. Zhang et al. (2022) developed a tyre model with higher accuracy 
than the brush model. After that, an improved square root CKF (Improved SCKF, 
ISCKF) algorithm based on the maximum correntropy criterion (MCC) was proposed. 
The estimation scheme combining the vehicle dynamics model, the tyre model and the 
ISCKF algorithm can both suppress the interference of anomalous measurement noise 
and adapt to changes in road friction conditions. 

2.2 Particle filter 

Regardless of EKF or UKF, the basic assumption is that the process noise and 
measurement noise of the system belong to Gaussian distribution, however, due to the 
complex driving conditions and vehicle environment, it is difficult to realise in practical 
applications. The application of particle filter (PF) technology has cleverly solved this 
problem (Gordon et al., 1993; Hu and Jing, 2005). Whether the system and noise are 
linear or nonlinear, Gaussian or non-Gaussian there are no excessive restrictions, can 
effectively solve the nonlinear non-Gaussian problem. By finding a set of propagating 
random samples (particles) in the state space to approximate the probability density 
function, the state minimum variance estimate is obtained by replacing the integration 
operation with the sample mean, the probability density function of the particles 
gradually approximates the probability density function of the state as the number of 
particles increases, achieving optimal Bayesian estimation. The unscented PF (UPF) 
algorithm combines the advantages of UKF and PF algorithms to improve the efficiency 
of processing nonlinear problems. Based on this algorithm to develop a nonlinear vehicle 
state estimator, compared with PF, UPF reduces the computing time with the same 
accuracy and has better tracking performance for real vehicle experimental data (Lin et 
al., 2014). Li et al. (2020) used the extended Kalman particle filter (EKPF) algorithm to 
estimate road slope with faster convergence and better tracking accuracy while meeting 
the real-time requirements. However, on downhill roads where engine braking was 
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predominant, the estimator will not be activated due to the inability to obtain accurate 
braking power. 

2.3 Fusion filter 

In order to maintain the accuracy of vehicle state parameter estimation in a complex 
estimation environment under various driving conditions, the interacting multiple model 
(IMM) method is proposed and applied to the estimation of vehicle dynamic states  
(Jin and Yin, 2015; Jung and Choi, 2018; Zhang and Li, 2017; Wang et al., 2022), the 
IMM algorithm is adaptive and can effectively adjust the probability of each sub-model 
in real-time and keep the fusion output always tracking the sub-model output with small 
error according to the model transfer matrix. Tsunashima et al. (2006) proposed the 
IMMEKF vehicle state estimation method to construct a system model by 10 subsystem 
models considering tyre nonlinearity and different road friction conditions, and in which 
probability transformation can be performed to support high accuracy estimation of state 
and TRFC. 

Genetic algorithm (GA) is a stochastic, parallel and adaptive search algorithm that 
simulates the evolution of organisms in nature, the UKF corresponds to the process noise 
covariance matrix Q and the measurement noise covariance matrix R, which are the 
parameters to be optimised by GA. Both Q and R are used as optimisation parameters and 
the optimal parameters are obtained by adaptive processing. Zhou et al. (2019) proposed 
a new adaptive filtering algorithm by combining UKF and GA, established a  
7-degree-of-freedom nonlinear vehicle dynamics model, combined with the ‘magic 
formula’ tyre model, and demonstrated through simulation and experiment that the 
estimation results of GA/UKF algorithm have higher accuracy and interference 
resistance. 

However, the PF algorithm suffers from the particle degradation problem (Van der 
Merwe et al., 2000), to address this issue (Shen et al., 2014; Liu et al., 2017) proposing 
iterative extended Kalman filtering auxiliary particle filtering (IEKFAPF) to improve 
particle sampling and estimation accuracy improvement, the IEKF was applied to update 
the observed information to obtain the importance density function close to the real state, 
and the APF was resampled by the generated importance density function combined with 
the observed information, and the estimation performance of this algorithm was proved to 
be better than that of the UKF algorithm by real vehicle experiments. 

Huang and Lin (2013) proposed to combine S-Correction Adaptive Kalman Filter  
(S-Correction AKF) and fuzzy Kalman filter (FKF) for car state estimation, where the 
FKF was based on fuzzy logic inference, based on the ratio of the actual variance  
of the measurement information obtained in real-time to the theoretical variance, the 
measurement noise matrix was adjusted online in real-time by the designed fuzzy system. 
S-Correction AKF algorithm was based on the derivation of mathematical theory to 
directly weight the estimation error covariance matrix, the joint algorithm has better 
robustness and estimation accuracy, and its estimation results can track the virtual test 
values well. 

Ghandour et al. (2011) combined EKF, UKF and nonlinear least squares to estimate 
future transient tyre-road forces and maximum friction coefficients relying on a four-
wheel vehicle model, and used the expected forces and maximum friction coefficients to 
predict two risk indicators: lateral load transfer (LTR) and lateral slip indicator (LSI). 
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The comparison and analysis of the various filters mentioned above is shown in  
Table 1. 

Table 1 Features, advantages and disadvantages of each filter 

Filter Features Advantages Disadvantages 

EKF Transforming a nonlinear 
system model into a linear 
system model, linearising the 
nonlinear function 

Reduced estimation bias 
of KF in nonlinear 
systems 

Discarding higher-order 
derivative components in 
the model linearisation 
process with low accuracy 
and divergent results 

DEKF Contains two EKF that 
communicate with each other 
and correct each other’s 
estimation results 

Reduce the effects of 
measurement and 
system noise and keep 
accuracy within 
reasonable limits 

Severe errors can occur 
under low friction road 
surfaces 

IMM-EKF Integrated in-wheel motor-
driven vehicle in-vehicle 
sensors enable multiple 
vehicle road system models 
to adapt to variable driving 
conditions 

High accuracy, low 
computational effort, 
hybrid dynamic system 
with switching mode 

Algorithm effectiveness 
still needs to be verified 
under various complex 
road conditions 

UKF Finding a Gaussian 
distribution that 
approximates the true 
distribution for a nonlinear 
system model 

Higher accuracy 
compared to EKF, 
avoiding the complex 
operation of Jacobi 
matrix 

Large calculation volume, 
algorithm stability is not 
high, error accumulation 
leads to system dispersion 

AUKF Simultaneous estimation of 
process noise of a system 
using a suboptimal Sage-
Husa noise estimator 

Higher accuracy 
compared to UKF, with 
strong robustness, can 
adapt to different road 
surfaces 

The vehicle driving 
conditions under complex 
working conditions and 
complex road conditions 
are not considered, and the 
experimental sample is 
small 

EAUKF Designing modulation factor 
b in the exponential decay 
function to overcome 
estimation inaccuracies due 
to rapid changes in the 
dependent variable 

Compared with UKF 
has some improvement 
effect 

When the state variable 
changes rapidly, the noise 
cannot be estimated 
accurately and the total 
execution time is long 

FFUKF Introduction of fuzzy 
forgetting factor, dynamic 
adjustment of forgetting 
factor size by fuzzy control 

Stronger traceability 
and better convergence 
and convergence 
velocity compared to 
UKF 

The algorithm is more 
complex, and the value of 
the constant forgetting 
factor f needs to be 
discussed categorically 

FM-UKF Introduce attenuation 
memory filtering and design 
exponential attenuation 
factor to ensure the estimator 
works in the best condition 

Good estimation 
accuracy and stability 
relative to UKF, 
improved response 
speed, and some 
adaptiveness 

Algorithm stability under 
different road conditions is 
not verified 
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Table 1 Features, advantages and disadvantages of each filter (continued) 

Filter Features Advantages Disadvantages 

CKF Based on the third-order 
spherical radial volume 
criterion, a set of volume 
points is used to approximate 
the state mean and 
covariance of the system 

More adaptable, faster 
and more accurate 
calculation compared to 
UKF 

High sensor requirements 
and complex algorithm 
structure with high 
computational effort 

ISCKF Adaptive adjustment of 
measurement noise 
covariance based on MCC 

Effective estimation 
accuracy on low- and 
high-friction pavements 
with good stability, 
adaptiveness and 
robustness 

The stability and accuracy 
of the algorithm still need 
to be verified in real-world 
experiments under 
different operating 
conditions 

PF Non-Gaussian distribution 
using a large number of 
particles 

Better accuracy and 
simpler sampling 
compared to EKF 

Requires a large number of 
sample points, which can 
fail during the run and 
limit the approximation 
effect 

UPF The deterministic sampling 
strategy is used to obtain an 
importance function that 
outperforms the ordinary PF 
algorithm by UT 
transformation 

Improved particle 
degradation 
phenomenon, improved 
filtering accuracy, and 
better tracking 
performance 

Cannot meet the 
requirements of high 
precision and high 
dynamic target tracking 

GA/UKF Optimisation of process 
noise covariance matrix and 
measurement noise 
covariance matrix using 
genetic algorithm 

High estimation 
accuracy, algorithm 
resistant to interference, 
easy to measure using 
parameters 

The test conditions are not 
universal, and the 
reliability of the algorithm 
needs to be proven under 
more conditions 

IEKF-APF Apply IEKFAPF to generate 
importance density functions 
that are closer to the true 
state and resample them in 
combination with the 
observed quantities 

Solve the particle 
degeneracy problem 
with higher 
performance relative to 
UKF estimation 

The algorithm is complex, 
and the estimates are 
biased when the tyre enters 
a highly nonlinear state 

3 Observer technology 

3.1 Luenberger observer 

When the vehicle dynamical system can be defined as a deterministic system, the 
problem of estimating the parameters of the vehicle tyre-road interaction can be 
formulated as an observer design problem. Luenberger Observer (LO) is a method based 
on modern control theory to achieve the purpose of state estimation through the pole 
configuration of the system. Unlike KF, LO improves the performance of the estimation 
algorithm in terms of real-time, accuracy and robustness to parameters by setting 
different design goals and configuring different observer feedback matrices (Rabhi, 
2005). Parameters such as longitudinal and lateral acceleration, steering angle, wheel 
angular velocity and sideslip rate are measured in the literature, and an EKF and a 
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method based on the LO are used in the nonlinear vehicle model to estimate tyre force 
and road slope (Dakhlallah et al., 2008; Sebsadji et al., 2008). The advantage of LO is 
that it can construct states that cannot be directly measured, perform state feedback, and 
obtain better performance; however, at the same time, compared with sliding mode 
observer (SMO), robust observer, etc., the anti-disturbance performance is poor. When 
the system is at a low frequency, the anti-disturbance of the observer will be suppressed, 
and the response speed is slow. There is still a lot of room for improvement on the basis 
of traditional observers. 

3.2 Sliding mode observer 

Sliding mode observer (SMO) based on variable structure control theory is a nonlinear 
observer, unlike the normal observer structure, the SMO is designed to observe the error 
between the measured value and the estimated measured value directly as a sliding mode 
plane. SMO is often used to estimate vehicle tyre-road interaction information, and they 
can reconstruct the state of the system by forcing it into a slip surface. Meanwhile, SMO 
technique also inherits the advantages of parameter uncertainty, model error and 
disturbance robustness of variable structure control, but is more sensitive to measurement 
noise (Guo et al., 2018). Zhang et al. (2014) used a SMO to estimate vehicle speed from 
parameters such as vehicle acceleration, wheel speed and braking torque, and calculated 
the TRFC and optimal vehicle slip rate by combining the estimated parameters of the 
Burckhardt tyre model to obtain a vehicle adaptive sliding mode control algorithm based 
on the estimated vehicle speed, TRFC and optimal slip rate. This vehicle speed observer 
and TRFC estimator will get nonideal estimates when the rolling resistance coefficient 
was close to zero, and further research was still needed for more accurate observation and 
estimation algorithms. Rath et al. (2015) designed a Higher Order Sliding Mode (HOSM) 
observer based on an improved supertwisting algorithm (STA) and a nonlinear Lipschitz 
observer. To overcome the chattering problem of SMO when it does not use filtering to 
estimate, it was confirmed that without the use of a low-pass filter, the random road 
profile, longitudinal friction and engine friction were used as unknown inputs, and the 
dynamic adhesion of the tyre can be accurately estimated from the sliding mode. 

3.3 Robust observer 

Consider a reasonable design of robust observer feedback gain in the presence of 
parameter variations so that the estimation results are influenced as little as possible by 
model parameter variations. To ensure the local stability of the system, the structure of 
the observer gain matrix is determined first, and the optimal gain is obtained by 
numerical calculation afterwards to achieve robust stability against uncertainty. Ahn et al. 
(2012, 2013) developed an observer that simultaneously estimates TRFC and lateral 
sideslip angle, and used the Lyapunov function for quantitative analysis, provided 
performance limits and available ranges for observers in the vehicle state space. Robust 
and stable estimation can be achieved when the tyre slip angle was stabilised between 
20%~60% of the maximum tyre force. By combining a numerical differentiator based on 
a robust observer and a low-cost sensor method using the main embedded sensor on the 
vehicle, the sensor configuration can be minimised and it was easy to install and calibrate 
(Imine et al., 2015). 
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3.4 Recursive least squares 

The least squares estimation (LSE) method is a standard method to obtain an approximate 
solution based on minimising the estimation error described by the objective function. 
recursive least square (RLS) is a recursive form of the least squares method suitable for 
online estimation of parameters. To overcome the problem of data saturation after a long 
period of computing, a forgetting factor is introduced to reduce the influence of previous 
data. In addition, UD decomposition or square root filtering is generally used to enhance 
the numerical computational power of the algorithm. In actual vehicle operation, high 
frequency vibration occurs in the vehicle system, and since LSE is not unbiased and does 
not provide consistent estimates under coloured noise, the effect of noise should be fully 
considered in practical applications. 

Electric vehicles with eight-wheel motors are highly non-linear, and their driving 
roads and operating conditions are more complex and specific, Zhang et al. (2022) 
proposed an eight-wheel electric vehicle drive coordination control strategy based on 
road recognition, in which the road recognition module uses the UKF algorithm to 
estimate the tyre-road force and the RLS to identify the TRFC, the Sliding Mode Control 
with a Conditional Integrator (SMC&CI) controller was also implemented to ensure that 
the vehicle maintains good dynamic performance and stability when the driving 
conditions change. To solve the problem that the TRFC estimation algorithm cannot be 
applied to both high slip rate and low slip rate conditions, based on the simplified magic 
formula tyre model, Song et al. (2013) used the RLS method to make a preliminary 
estimation of the longitudinal TRFC, and used the EKF algorithm to filter out the noise 
and adaptively adjust the tyre model parameters, which has a certain accuracy and 
robustness for the estimation of the longitudinal TRFC. Rajamani et al. (2011) developed 
three observers to estimate slip rate and tyre longitudinal force:  

1 using engine torque, brake torque and GPS measurements 

2 using torque measurement and accelerometers 

3 using GPS measurements and accelerometers.  

After estimating the slip rate and longitudinal force of the tyre, the RLS parameter 
identification formula is used to calculate TRFC. The linearised recursive least squares 
(LRLS) method and the integrated lateral and longitudinal tyre model without predefined 
parameters were used by Choi et al. (2013) to avoid underestimating the actual TRFC and 
to make full use of the longitudinal and lateral excitations for fast estimation of TRFC 
using relevant measurements of real-time vehicle lateral and longitudinal dynamics. Kim 
et al. (2014) developed a TRFC model using tyre acceleration as an indicator; applied the 
vehicle model to the 6-degree-of-freedom body acceleration calculation to obtain the 
longitudinal, lateral and normal acceleration of each tyre; processed the obtained 
acceleration using RLS to estimate TRFC. Nam et al. (2012) used a RLS algorithm based 
on a linear vehicle model and sensor measurements and a KF combining sensor 
measurements with roll dynamics (one using lateral tyre force measurements and the 
other using lateral acceleration measurements) for vehicle slip estimation and roll angle 
estimation, respectively, with experimental results showing good estimation performance 
and robustness without the use of expensive sensors, but still with some estimation errors 
for strenuous driving on low-friction roads. Lee et al. (2004) designed a brake gain 
estimator, developed a real-time traction estimator based on a RLS method with bounded 
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gain forgetting, and applied it to the estimation of the maximum TRFC, and obtained 
better estimation results compared with the real value obtained from the brake torque 
sensor. 

3.5 Other nonlinear observer 

Nonlinear observer (NLO) is used to directly deal with nonlinear problems in vehicle 
dynamic state estimation, and many scholars have derived this type of observer using 
different stability theories such as Lyapunov stability theory, and applied it to the 
estimation of vehicle state parameters (De Wit et al., 2003; Grip et al., 2006; Xia et al., 
2016). Using nonlinear observers-unknown input observers (UIO), Imsland et al. (2007) 
concludes that the error dynamics structure of nonlinear UIOs is the same as that of 
NLOs without unknown inputs, providing inspiration for the design of observers for 
lateral velocity estimation of vehicles on inclined roads. Design of nonlinear observer for 
nonlinear double-track vehicle model to estimate vehicle motion dynamics and tyre 
longitudinal and lateral forces, the observer design method is easy to implement, can be 
calculated in real-time and obtained satisfactory real-time performance in real vehicle 
tests, but it is sensitive to the change of parameters (Acarman, 2008). Cheng et al. (2011) 
used UKF to design a nonlinear observer that can simultaneously estimate slip angle, 
adhesion force and TRFC without the need for additional sensors for online estimation 
when the ESP was installed in the vehicle. Gao et al. (2010) used a single-track vehicle 
model with nonlinear tyre characteristics, and then reconstructs the model to derive a 
high gain observer (HGO) based on input-output linearisation to estimate the maximum 
TRFC using a simple logic based on vehicle lateral dynamics with nonlinear 
characteristics of tyres. This method does not take into account the effect of sensor noise 
and the lateral force of the embankment angle on the vehicle, the effect on TRFC, etc. 
Wang and Wang (2013) proposed the estimation of tyre cornering stiffness and TRFC 
based on the longitudinal force difference between the left and right wheels of wheeled 
motor-driven electric vehicles by algebraic techniques using NLO single-track and brush 
tyre models. 

A comparison and analysis of the various filters mentioned above is shown in  
Table 2. 

4 Model-based estimation 

The filter and observer techniques require more on-board sensors and more complex 
algorithms, and although they can eliminate sensor errors to some extent, they are more 
sensitive to unknown disturbances and sensor drift encountered in the working conditions 
of the experimental object, and cannot achieve accurate estimation by relying solely on 
kinetic models due to the presence of integral cumulative errors. Vehicle model-based 
estimation methods include those based on vehicle kinematic models and those based on 
vehicle dynamics models, which do not require expensive special sensors compared to 
experiment-based methods and guarantee the accuracy and repeatability of results in most 
cases. Model-based studies can be divided into three main groups: wheel and vehicle 
dynamics model-based approaches, tyre model-based approaches and Slip-slope 
approaches (Khaleghian et al., 2017). 
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Table 2 Features of each observer and its advantages and disadvantages 

Observer Features Advantages Disadvantages 

Luenberger 
observer 

Set different design 
goals and configure 
different observer 
feedback matrices 

Make estimation algorithms 
with different performance 
such as real-time and 
accuracy 

Poor anti-disturbance 
performance and slow 
response time 

Robust observer Designing optimal 
feedback gain to 
improve the anti-
interference of 
estimation algorithm 

System model with good 
robustness for practical 
applications 

Weak noise 
suppression of sensors 

SMO The error between the 
measured value and 
the estimated 
measured value is 
observed directly as a 
slip plane 

Simple structure and high 
robustness 

More sensitive to 
measurement noise 

NLO State variables are set 
using a state space 
model with TRFC as 
unknown system 
parameters, and both 
states and parameters 
are estimated 

Compared to the EKF, 
which has a simpler 
structure and better real-
time performance, the joint 
UKF can capture the change 
of TRFC and give a more 
accurate state estimation 

Sensitive to parameter 
changes 

HGO State feedback 
controller can be 
designed 
independently of the 
HGO by performing 
progressive estimation 
of state quantities 
based on measurement 
results 

Simple structure, easy 
design, robustness and easy 
application 

More sensitive to 
measurement noise, 
robustness is inversely 
proportional to noise 
reduction capability 

STA-based 
HOSM 

To estimate the state 
and unknown inputs, a 
combination of a 
nonlinear Lipschitz 
observer and a 
modified 
Supertwisting observer 
based on higher-order 
sliding mode (HOSM) 
is used 

Overcomes chattering 
problems during estimation 
without filtering and 
accurately estimates vehicle 
status and tyre dynamic 
adhesion 

Unknown input 
estimation is prone to 
parameter uncertainty 
and modelling 
mismatch, and the 
presence of modelling 
mismatch affects the 
estimation of unknown 
input quantities 

4.1 Based on vehicle dynamics model 

TRFC estimation method based on wheel vehicle dynamics model using the dynamics 
model of the system and parameter measurement state, combined with algorithms such as 
KF method, PF method, RLS method to estimate the TRFC, the process chart of this 
estimation method is shown in Figure 3. This section describes several commonly used 
vehicle dynamics models. 
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Figure 3 Estimation methods based on vehicle dynamics models 

 

4.1.1 Quarter vehicle model 

The quarter vehicle model is a 2-degree-of-freedom vehicle model, mainly used to 
simulate the vertical dynamics of a car’s suspension. Assume that the tyre is a spring with 
stiffness ku, studying the mass of a single wheel. The suspension system is simplified as 
the parameters are a spring absorber with stiffness ks and damping cs, since it is a quarter 
body model so the body mass is taken as a quarter, the vehicle model is shown in  
Figure 4, and the body and wheel dynamics equations are shown in equations (8) and (9). 

( ) ( ) 0s s s s u s s um x c x x k x x+ − + − =   (8) 

( ) ( ) 0u u s u s u s u s sm x c x x k k x k x+ − + + − =   (9) 

where ms, mu are the body mass and wheel mass, respectively; xs, xu are the body 
displacement and wheel displacement, respectively. 

Figure 4 Quarter vehicle model 

 

The use of a quarter vehicle model can be combined with the RLS (Ding and Taheri, 
2010), IMMEKF vehicle status estimation method (Tsunashima et al., 2006), HGO 
algorithm (Gao et al., 2010), etc. in conjunction to obtain tyre normal force and road 
profile. 

4.1.2 Four-wheel vehicle model 

The four-wheel 3-degree-of-freedom vehicle model, also known as the double-track 
model, assumes that the vehicle motion is not affected by pitch and roll, and only 
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considers the lateral, transverse and yaw motion of the vehicle, the vehicle dynamics 
model is shown in Figure 5. 

Figure 5 Four-wheel vehicle model (see online version for colours) 

 

In the picture, δfl, δfr, δrl, δrr present vehicle left front wheel steering angle, right front 
wheel steering angle, left rear wheel steering angle, right rear wheel steering angle, 
respectively. The sideslip angle of each wheel is similar, αfl, αfr, αrl, αrr present vehicle 
left front wheel sideslip angle, right front wheel sideslip angle, left rear wheel sideslip 
angle, right rear wheel sideslip angle; β is the mass center sideslip angle. 

The differential equations of motion of longitudinal velocity xv , lateral velocity yv , 
yaw velocity r with other state parameters:  

x x yv a v r= +   (10) 

y y xv a v r= −   (11) 

1
z

z

r M
I

=   (12) 

where, ax, ay are the vehicle longitudinal and lateral acceleration, Mz is the yaw torque of 
the vehicle around the Z-axis, Iz is the moment of inertia of the vehicle around the Z-axis. 

The four-wheel vehicle model can be used to estimate the TRFC by combining 
nonlinear observer technology (Grip et al., 2008), and UIO technology (Imsland et al., 
2007), Cheng et al. (2011) used UKF combined with a four-wheel vehicle model to 
estimate the vehicle slip angle, tyre lateral force and TRFC. 
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4.1.3 Single-track model 

The single-track model, also known as the bicycle model, is mainly used to estimate the 
lateral state of the vehicle. Consider the lateral and yaw movement of the vehicle, 
ignoring other movements such as the longitudinal, pitch, roll, and vertical movement of 
the vehicle, as shown in Figure 6. 

1 1 2
1 sin cosf x y r y

z

l F F l F
I

ψ δ δ⎡ ⎤⎡ ⎤= + −⎣ ⎦⎣ ⎦   (13) 

1 1 2 2
v

1 sin( ) sin( ) cos sinx y y x
g

F F F F
m V

β β δ β δ β β ψ⎡ ⎤= − − + − + − −⎣ ⎦   (14) 

1 1 2 2
v

1 cos( ) sin( ) cos sing x y x yV F F F F
m

δ β δ β β β⎡ ⎤= − − − + +⎣ ⎦   (15) 

where lf and lr respectively represent the front wheelbase and rear wheelbase of the 
vehicle, Vg is the velocity of centre of gravity, Ψ is the vehicle yaw rate, δ is the vehicle 
steering angle, β is the vehicle sideslip angle, mv is the body quality. 

Figure 6 Single-track model (see online version for colours) 

 

Combined with single-track model, Villagra et al. (2011) proposed a combination of 
basic diagnostic tools and new algebraic techniques for filtering and estimating 
derivatives based on basic diagnostic tools; Rezaeian et al. (2014) independently 
estimated the parameters of the vehicle tyre model to enhance the robustness of the model 
structure, and used three calculation modules to estimate the longitudinal force of the 
tyre, the vertical force of the tyre, and the lateral force of the tyre. Vazquez et al. (2018) 
used the bicycle model to calculate the longitudinal and transverse tyre-road forces on the 
axis, used the Hoverboard Model to calculate the left and right virtual forces of the tyre, 
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and constrained the closed-loop observer scheme of EKF to accurately calculate the tyre 
forces at each position. 

4.2 Based on tyre model 

The tyre model is mainly used to explain the relationship between the wheel motion 
parameters and the tyre force, that is, the input and output relationship of the tyre under 
specific working conditions. The driving, braking and steering of the vehicle are all 
achieved through the tyre force. Therefore, tyre characteristics play an important role in 
the dynamic control of vehicles. This section introduces the tyre model used for vehicle 
tyre road interaction estimation. As shown in Figure 7, the input and output relationship 
of the tyre under specific operating conditions. 

Figure 7 Tyre model input and output relationship 

 

4.2.1 Pacejka model 

The Pacejka model is also known as the magic formula (Pacejka and Bakker, 1991), uses 
the same set of trigonometric formulas to uniformly represent the longitudinal and 
transverse forces of the tyre, describes the relationship between the longitudinal force Fx 
and slip λ of the tyre road. In the absence of any measurement noise, the Pacejka model 
with the most parameters can obtain ideal results (Albinsson et al., 2017), its general 
‘magic formula’ form is as follows:  

[ ]{ }sin arctan ( arctan( ))y D C Bx E Bx Bx= − −   (16) 

where y can represent the longitudinal and lateral forces and moments of the tyre, while x 
relative to y can represent the sideslip angle and slip rate. 

Yi et al. (1999) used the eight-state nonlinear vehicle transmission simulation model 
of the Bakker-Pacejka formula tyre model, verified the identification of the TRFC based 
on the observer’s least squares method and the observer’s filter regression method. This 
recogniser can provide a good estimate of TRFC under normal driving, can quickly 
reduce the initial estimation error, and has robustness to modelling errors and parameter 
uncertainties. Cabrera et al. (2018) considered the contact between the tyre and the road 
during driving, as well as the main factors affecting the force in contact, uniformly 
studies the coefficient of friction, and corrects the Pacejka model, considering the road 
composition and its state, tyre type, vehicle speed, slip and other influencing parameters 
to obtain a more accurate tyre-road friction model. 
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4.2.2 Dugoff model 

Dugoff tyre model (Dugoff et al., 1970) belongs to the semi-empirical tyre formula and 
has the characteristics of approximately high precision. In order to accurately express the 
nonlinear mechanical properties of the tyre, the tyre model introduces the boundary value 
L and corrects the model, so that the function expression between the longitudinal and 
lateral forces of the tyre and TRFC of can be obtained. For the force analysis of a single 
tyre, the expressions of longitudinal force and lateral force are obtained as follows (Wang 
et al., 2022): 

, ( )
1x z kN xF F C f Lλµ

λ
=

−
  (17) 

,
tan ( )
1y z kN yF F C f Lαµ

λ
=

−
  (18) 

In the formula 

(2 ),    1
( )

1,                1
L L L

f L
L

− <⎧
= ⎨ ≥⎩

  (19) 

2 2 2 2

2 2 2 2

(1 )(1 tan )

2 tan
x x y

x y

v C C
L

C C

λ ε λ α

λ α

− − +
=

+
  (20) 

where Fz,kN = 
1000

Fz ; µ is the TRFC; ε is the speed influence coefficient; L is the boundary 

value; Cx, Cy are the tyre longitudinal stiffness and lateral stiffness, respectively, λ is the 
sideslip rate, α is the sideslip angle, Fz is the tyre vertical force. 

4.2.3 Brush model 

Brush model (Svendenius et al., 2009) regards the contact between the tyre and the road 
surface as a series of elastic bristles in contact with the ground, and these bristles can be 
deformed in a direction parallel to the road surface, which can reflect the nonlinear 
characteristics of the combined longitudinal and transverse forces of the tyre under the 
friction ellipse. The expression is as follows (Bascetta and Ferretti, 2022):  

,
( /1 )x i i

x i i
i

C s s
F F

f
+

=   (21) 

,
(tan / (1 ))i i

y i i
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C s
F F
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α α +

= −   (22) 

In the formula 
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where Cx, Cy are the tyre longitudinal stiffness and lateral stiffness, respectively; µ is the 
TRFC, si is the sideslip rate, αi is the sideslip angle, i = 1, 2, 3, 4, respectively, the tyre 
orientation is left front, right front, left rear and right rear. 

Compared with the Dugoff tyre model, the derivation of the Brush model is more 
rigorous and it can accurately describe the nonlinear relationship between tyre force and 
slip rate, sideslip angle, vertical load and friction coefficient. Zhang et al. (2022) 
proposed an improved model with adaptive stiffness on the basis of the brush model, 
which improved the accuracy of calculating tyre force. 

4.2.4 LuGre model 

LuGre model (De Wit and Tsiotras, 1999) assumes that the two contact surfaces are 
rough and uneven contact surfaces, from a microscopic point of view, the protruding part 
of the contact surface is regarded as fine bristles, the essence of the contact between the 
two surfaces is the contact of the bristles on the contact surface. The two contact surfaces 
are subjected to tangential forces and undergo elastic deformation and plastic 
deformation. The LuGre model is divided into a centralised friction model and a 
distributed friction model. The two models are briefly introduced below. 

4.2.4.1 Centralised LuGre model 

The centralised LuGre model has a relatively simple form, but the friction conditions of 
each position in the contact area between tyre and road surface are not the same, so the 
friction conditions in the contact area obtained by using the centralised LuGre model are 
very different from the actual situation. The expression is as follows:  

0

0 1 2

/ ( )
( )

( ) ( ) exp( / )

r r r

r z

r c s c r s

z v v z g v
F z z v F

g v v v δ

σ ⋅ ⋅
σ σ σ ⋅

µ µ µ ⋅

⎧ = −
⎪⎪ = + +⎨
⎪

= + − −⎪⎩

  (24) 

where z is the internal friction state, vr is the relative velocity, σ0 is the stiffness 
coefficient, σ1 is the damping coefficient, σ2 is the relatively viscous damping, Fz is the 
normal load, g(vr）is the Stribeck effect when the relative velocity is included. µc is the 
dynamic friction coefficient, µs is the static friction coefficient, vs is the Stribeck velocity. 

4.2.4.2 Distributed LuGre model 

The distributed model discretises the imprint area into a series of tiny elements. Unlike 
the centralised friction model, the z that expresses the internal friction state is not only a 
function of time t, but also a function of its position x in the imprint. The expression is as 
follows:  
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where fn(x) is the normal force distribution. 

4.2.5 Uni-Tire model 

Uni-Tire can use dimensionless expressions to uniformly express the tyre characteristics 
under different loads, the mechanical properties under pure working conditions and 
composite working conditions, and can better solve nonlinear problems. At the same 
time, it has good extrapolation ability and prediction ability, and can accurately predict 
the tyre characteristics under composite working conditions, various road surfaces and 
speed conditions (Guo, 2016). The expression is as follows:  

xi
xi i xi zi

i

F F FµΦ
=

Φ
  (26) 

yi
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where Fxi, Fyi are the longitudinal tyre road force and lateral tyre road force, respectively; 
Fzi is the normal force; µx, µy are the longitudinal and lateral TRFC, respectively; v is the 
tyre velocity; α is the sideslip angle; Ω is the rotation angular velocity; γ is the tyre roll 
angle; Re is the effective rolling radius; Sx, Sy are the longitudinal slip rate and lateral slip 
rate, respectively; ϕx, ϕy, ϕ are the relative longitudinal, lateral slip rate and 
comprehensive slip rate; Kx, Ky are the tyre longitudinal and lateral stiffness, respectively. 

4.2.6 HSRI model 

HSRI (Tielking, 1974) model is suitable for estimating TRFC in linear and nonlinear 
areas. The ratio of lateral stiffness to longitudinal stiffness is used in the estimation 
algorithm, so that the different characteristics of tyres under different working conditions 
and the degree of tyre wear have little effect on the ratio of lateral stiffness to longitudinal 
stiffness, and it has good robustness and adaptability. The expression is as follows:  
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where FN is the tyre normal force; µ is the maximum TRFC; Cx, Cy are the tyre 
longitudinal stiffness and lateral stiffness, respectively; λ is the sideslip rate; α is the 
sideslip angle. 

4.2.7 Burckhardt model 

Burckhardt model (Hu et al., 2021) is an empirical model that expresses the relationship 
between TRFC µ and the slip rate s obtained by fitting various typical road test data. The 
model expression is as follows:  

( ){ } 4
1 2 3( ) 1 exp c vs c c s c s eµ −= − − −⎡ ⎤⎣ ⎦   (34) 

where ci is determined by road conditions, 4c ve−  is the change in friction coefficient 
caused by velocity change. 

The simplified expression after ignoring the impact of velocity changes is as follows:  

( )1 2 3( ) 1 exps c c s c sµ = − − −⎡ ⎤⎣ ⎦   (35) 

4.3 Slip-slope 

Slip-slope uses the relationship between the normalised slip rate and the longitudinal 
force of the wheel to determine the size of the road adhesion coefficient µ. This method is 
based on the assumption that under normal driving conditions, the low slip part of the slip 
curve can be used to estimate the maximum friction between the tyre and the road surface 
(Gustafsson, 1997; Lin and Huang, 2013). In the case of low slip, the normalised 
longitudinal force of the wheel has a linear relationship with the slip rate. When the 
absolute value of the slip rate exceeds 0.05, the accuracy of estimating the friction 
coefficient of the road surface using the Slip-slope method cannot be guaranteed. The 
slope of the curve (slip-slope) changes with the change of µ. This method needs to obtain 
the longitudinal force, normal force and slip rate information of the wheel. The 
relationship is as follows:  

/x zF F Ksρ = =   (36) 

When braking 
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When accelerating 

w w w

w w

r v
s

r
ω

ω
−

=   (38) 

The normal wheel load can be calculated by the vehicle dynamics equation, and the 
longitudinal force cannot be directly calculated. It can be obtained by the tyre force 
sensor or the filtering algorithm combined with the tyre model. 

Qi et al. (2015) on the basis of the 4-degree-of-freedom vehicle model, an EKF 
estimator for vehicle motion and tyre force estimation was designed, and the longitudinal 
tyre force (Fxfl + Fxrl), (Fxfr + Fxrr) and transverse tyre force (Fyfl + Fyfr), (Fyrl + Fyrr) was 
estimated with a smaller error. In addition, another EKF estimator was designed based on 
the estimated force and the proposed new tyre model, and the ideal tyre model estimation 
parameters and tyre longitudinal and transverse forces were obtained. The estimation 
process is shown in Figure 8. 

Figure 8 Estimation process 

 

However, this method still needs to be improved in the following points:  

1 construct and improve the tyre force model under linear and nonlinear conditions 

2 describe the robustness of the parameters relative to the measured noise 

3 in more extreme driving conditions, use real data for detailed simulation or testing 

4 verify its applicability in the automotive industry, etc.  

The comparison and analysis of the above-mentioned various model-based estimation 
methods are shown in Table 3. 

5 Sensor-based estimation 

The two types of estimation methods for the TRFC (cause-based method and effect-based 
method) require sensors to obtain changes in the influencing parameters or vehicle 
driving parameters. Based on the cause-based method, the main research is on the factors 
that affect the change of friction. After obtaining these factors through the sensor, the 
TRFC is predicted based on the existing experience and friction model. The effect-based 
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method needs to obtain and identify factors such as tread deformation and tyre noise 
during vehicle driving (Erdogan et al., 2011), that is, when there is a certain amount of 
excitation on the road surface, TRFC is estimated based on the functional relationship 
between tyre mechanical response and excitation. This section introduces several sensors 
commonly used in TRFC estimation research. 

Table 3 Comparison and analysis of model-based estimation methods 

Model Scope of application Advantages Disadvantages 

Based on 
vehicle 
dynamics model

At the same time, there are 
measurable state parameters, 
state parameters that cannot 
be directly measured, and 
state parameters that can be 
derived from estimation 
algorithms. For different state 
estimates, different vehicle 
dynamics models can be 
selected 

No expensive sensors 
are required, external 
factors are reduced, 
and the estimation 
results are accurate and 
repeatable 

The vehicle dynamics 
model is highly 
specific, and multiple 
vehicle models need to 
be used for joint 
research, and specific 
vehicle models are 
required for specific 
performance and 
parameters 

Based on tyre 
model 

Use the relationship between 
tyre ground force and torque, 
slip rate and slip angle to 
estimate friction and friction 
coefficient, including physics 
and semi-empirical formulas 

No additional sensors 
are required, reducing 
signal processing 
work. Many models, 
easy to use 

The accuracy of the 
tyre model must be 
matched with the 
vehicle model, the 
specificity is strong, 
and the ability to 
estimate the static state 
of the tyre is limited 

Slip-slope The relationship between 
longitudinal slip and 
longitudinal tyre force and 
the slip rate curve are used to 
estimate TRFC, and the slope 
of the µ-s curve is estimated 
using this method to obtain 
the road friction 

The parameters used in 
this method are easier 
to obtain by the on-
board sensor, and the 
accuracy can be 
improved by 
combining EKF and 
RLS methods 

The experimental 
vehicle needs to 
perform sufficient 
acceleration and 
braking, and provide a 
sufficiently large slip 
rate. For tyres working 
in linear areas and 
nonlinear areas, they 
should be discussed 
separately 

Vehicle dynamic state estimation can be regarded as the process of obtaining vehicle 
status information through multi-sensor data fusion technology and using data obtained 
from on-board sensor measurements. Multi-sensor data fusion means that various sensors 
are fully and rationally selected, the effective information in them is extracted and the 
multi-sensor resources are fully utilised. Through the reasonable control of the sensor and 
its observation data, the information obtained is combined according to certain principles, 
redundant information is discarded, complementary information is optimised, and better 
performance is obtained (Tian et al., 2022; Song et al., 2009). 

5.1 Optical sensor 

Cause-based estimation methods often use optical sensors and cameras to obtain road 
surface information (Koskinen, 2010), For example, it is used to measure the light 
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absorption and scattering characteristics of roads to identify water and other substances 
on roads. This type of estimation method uses a special device to diffuse the beam of 
light, and the corresponding sensor can obtain the reflected wave of the road, and analyse 
the spectrum of the reflected wave, and identify the type of road according to the 
difference in spectral analysis; or use the colour matrix and the grey cooccurrence matrix 
to extract features, based on the support vector machine to achieve image classification, 
through statistical data to achieve the mapping relationship between the image and TRFC 
(Leng et al., 2021). Accurate TRFC information can be obtained under certain conditions, 
but the work restrictions are large and easily affected. 

Doumiati et al. (2010) used the wheel speed signal of the magnetic sensor and the 
steering wheel angle signal of the optical sensor to predict the tyre lateral force and 
sideslip angle. This method uses more measured values and is relatively complex. 
Shinmoto et al. (1997) developed an optical positioning sensor for measuring the 
displacement of the tyre contact patch relative to the rim to estimate TRFC. Tuononen 
(2008) used an optical sensor to estimate the deformation of the side walls. The sensor 
can measure the deflection of the tyre relative to the rim, and the vertical force of the tyre 
is better measured, but the calculation of the tyre force is not sensitive to the recognition 
of the rotation angle, and further research is still needed on durability and energy issues. 
Based on the maximum likelihood estimation, Hou et al. (2021) solved the lidar 
reflection intensity distribution model parameters of common types of pavement on 
structured roads, and established a typical pavement database based on this to sensitively 
detect surface mutations, and it was robust to different lighting conditions at day and 
night, but its scope of application needs to be further verified under more complex 
lighting conditions. 

5.2 Acoustic sensor 

The acoustic sensors installed in the tyres can be used to ‘listen’ to determine the 
deformation of the tyres and TRFC. Some acoustic sensors can also classify the types and 
conditions of the road surface according to the noise of the road surface, such as asphalt 
pavement, concrete pavement, dry pavement or wet pavement, etc. The identification 
system composed of acoustic sensors is called the Acoustic Road Type Estimation 
(ARTE) system. The system can be composed of a cheaper microprocessor and an 
internal interface, which reduces the size and power consumption, so that it can be 
integrated and installed in the car (Alonso et al., 2015). Kalliris et al. (2019) proposed a 
wet road condition detection method based on acoustic measurement, which proves the 
feasibility of acoustic measurement and machine learning algorithms to distinguish 
between dry, wet and wet roads. The estimator improves the classification accuracy and 
robustness, and the equipment cost required for acoustic measurement and processing is 
relatively low. Signal processing methods in the fields of acoustics and speech 
recognition are used to extract road conditions and characteristics, and artificial neural 
networks or support vector machines are used for classification. There are also studies 
that use microphones installed in fixed road positions to record the noise generated  
when vehicles pass by, and use the recorded data to estimate road conditions 
(Kongrattanaprasert et al., 2010). 



   

 

   

   
 

   

   

 

   

    A review on estimation of vehicle tyre-road friction 75    
 

    
 

   

   
 

   

   

 

   

       
 
 

5.3 Intelligent tyre 

Due to the integration, miniaturisation and economy of sensors, through the installation 
of various sensors in the tyres, the tyres have changed from ‘passive’ to ‘active’ to 
receive various types of information while driving, and intelligent tyres have been 
developed to study TRFC estimation and other issues. Intelligent tyres install sensors 
inside the tyres. Compared with installing sensors in other locations of the vehicle, 
intelligent tyres respond more directly and sensitively to road conditions (Yang et al., 
2022). The research on intelligent tyres can be divided into the following 4 types (Fu et 
al., 2022):  

1 sonic type intelligent tyres 

2 optical type intelligent tyres 

3 piezoelectric type intelligent tyres  

4 acceleration sensor type intelligent tyres.  

Wang et al. (2020) built intelligent tyres to obtain tyre-road surface action information 
more directly. Starting from the statistical characteristics of the signal, machine learning 
algorithms were used to identify and classify roads, and support vector machine 
classifiers were used to identify switching road conditions. Jeong et al. (2021) proposed 
an estimation algorithm that combines intelligent tyres and vehicle dynamics, using a 
linear load transfer model as the vehicle dynamics model, used Multi-input multi-output 
(MIMO) to estimate dynamic and static tyre loads and vehicle parameters such as tyre 
dynamic, static loads and vehicle parameters, with fast sampling rate and strong 
robustness. Mendoza-Petit et al. (2022) combined the LuGre model with the results of 
strain-based intelligent tyres to estimate the friction limit based on the relationship 
between the friction force applied to the tyre and the normal load. 

However, the rapidly changing tyre state environment and harsh working conditions 
bring instability and unreliable performance to the intelligent tyre system. In order to 
overcome the challenges of being applied to real vehicles, the intelligent tyre system 
should be reasonably designed to maintain strong real-time, short-term perception and 
long-term robustness in complex application scenarios. Xu et al. (2022) combined the 
development and training of three different machine learning technologies, and the 
intelligent tyre system with a three-axis acceleration sensor installed in the inner layer of 
the tyre can effectively and accurately predict the tyre force under different operating 
conditions. García-Pozuelo et al. (2019) used a real-time physical model based on tyre 
carcass strain and/or displacement measurement to describe the dynamics of intelligent 
tyres. In this literature, it was proposed that the flexible ring model established on the 
basis of viscoelasticity can reproduce the tyre dynamics of concentrated and distributed 
forces by introducing discrete methods, and the longitudinal dynamics of tyres can also 
be analysed in real-time. 

Sensor-based estimation methods are applied to both cause-based methods and effect-
based methods. In the former, the dynamic response of vehicle motion is obtained, and in 
the latter, the road surface information obtained by the sensor is measured and processed 
to obtain the influence of road conditions on the TRFC. Taking into account the 
improvement of the robustness of parameter estimation and the dynamic characteristics 
of the vehicle, this method needs to be used in conjunction with the model-based method 
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under most operating conditions, otherwise the accuracy will be greatly reduced when the 
experimental conditions deviate from the conditions of algorithm training. The following 
table summarises some sensor-based TRFC estimation methods, as shown in Table 4. 

Table 4 Summary of sensor-based methods 

Estimation method Sensors Brief description 

Cause-based Camera and optical 
sensor 

It is used to measure the light absorption and 
scattering characteristics of roads to identify water and 
other substances on the roads and obtain road surface 
information 

 Acoustic sensor The identification system composed of acoustic 
sensors is used to determine the deformation of the 
tyre and the friction coefficient of the road surface 

Effect-based Tyre tread sensor Monitor the interaction between the tyre and the road 
surface through different sensors inside the tyre 

 Intelligent tyre Integrated installation of various types of intrauterine 
sensors to improve the perception and responsiveness 
of the road surface 

6 Neural network-based estimation 

In order to make up for the shortcomings of vehicle dynamics-based methods, such as the 
time denaturation of tyre and suspension parameters, the high requirements of sensors on 
the working environment, and the reduction of the number of data points obtained, neural 
networks are often used to describe the suspension behaviour of tyres and wheels, and 
then neural networks optimised by genetic algorithms are used to identify the TRFC. 
Neural networks are an important branch in the field of machine learning. They have 
strong intelligent processing capabilities such as self-learning and complex relational 
mapping. The neurons in the neural network represent the weight parameters in the 
network with interconnected line segments, and bias and activation functions are set in 
the neurons to enhance the nonlinear expression ability of the network. It can learn 
potential statistical characteristics in noisy datasets. Under the nonlinear working 
conditions of vehicle driving, the application of this method has achieved good test 
results (Matuško et al., 2008). 

The time delay neural network (TDNN) can detect TRFC under the excitation of 
lateral forces, avoiding the use of standard tyre mathematical models, Ribeiro et al. 
(2020) used this method to independently estimate TRFC on each wheel, providing an 
estimate of the lower root mean square (RMS) error. It requires less computing time at 
every moment and may be the best choice for real-time implementation in embedded 
systems. But it requires a sufficient level of horizontal excitation to correctly identify 
friction, and it requires a sufficient and representative database. Guo et al. (2023) 
combined pre-obtained road information from the on-board camera and used a 
lightweight convolutional neural network (CNN) to identify road types with a typical 
TRFC range, used the UKF method to directly estimate TRFC based on the dynamic state 
of the vehicle. Li et al. (2022) improved the RBF neural network structure through the K-
means algorithm, and used the Double Radial Basis function and EKF (DRBF&EKF) 
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method that adaptively adjusted the network structure to improve the estimation 
accuracy, realised the dynamic joint estimation of the vehicle’s centroid sideslip angle 
and TRFC. This method used the multivariate analysis method of principal component 
analysis (PCA) of high-dimensional dataset reduction to extract the characteristic 
parameters of the principal element and established a TRFC estimator. Other than that, 
Lin et al. (2021) proposed a TRFC estimation method based on improved Keras model, 
Wu et al. (2021) proposed a method for identifying TRFC based on Elman neural 
network, the average absolute error, RMS and absolute percentage error were improved 
respectively, proving the effectiveness and reliability of these two methods. 

However, since the mapping relationship of neural networks is strongly dependent on 
experimental data, it is difficult to explain the mechanism of the mapping relationship. In 
addition, the neural network applied to vehicle road parameter estimation has a slow 
convergence rate, and it is difficult to determine its numerical stability, making the 
estimation accuracy unable to meet the requirements of driving under various operating 
conditions. 

7 Estimation of TRFC of distributed drive vehicles 

The most direct difference between TRFC estimation method for distributed drive 
electric vehicles and the estimation method of traditional vehicles is that: since the 
longitudinal force of each tyre can be accurately estimated in real-time, the speed and 
torque of the in-wheel motor can be directly obtained, so the vehicle yaw torque caused 
by the longitudinal force of the tyre, and the amount of change in the sideslip angle of the 
vehicle’s centroid caused by the yaw torque can be accurately obtained, which provides 
convenience for the observation of these dynamic states. On the basis of KF algorithm 
and its improved algorithm, various parameters of distributed drive vehicles (such as 
longitudinal friction coefficient and transverse friction coefficient) are integrated to make 
a more accurate estimate of TRFC (Chen et al., 2015; Wang and Li, 2020; Ping et al., 
2019; Zhang et al., 2019). 

Chen et al. (2022) proposed a longitudinal and transverse collaborative estimation 
algorithm based on Adaptive Square Root CKF (ASRCKF) and partition Similarity 
Principle (SP), the vehicle status and tyre-road peak friction coefficient of distributed 
drive vehicle were estimated. The algorithm is conducive to estimating µmax in the 
nonlinear region. The experimental and simulation results showed that the estimation 
method can achieve good performance under different operating conditions. Based on the 
federal volume KF theory, Wu et al. (2021) established a nonlinear 3-degree-of-freedom 
vehicle dynamics model, obtained the state space equation, performed multi-source 
fusion of sensor signals, and used the vehicle dynamics theory to establish an algorithm 
estimator to achieve the accuracy and stability of the state estimation of distributed drive 
wehicle. Wang et al. (2015) used the upper-level controller of the Linear Quadratic 
regulator (LQR) and the lower-level controller of the stable tyre working area. The brush 
tyre model was used to estimate TRFC by combining the longitudinal force and the 
transverse force, respectively. Xiong et al. (2020) designed the estimation method of 
TRFC under different excitation conditions in different working conditions, used the 
vehicle state parameters to determine which excitation conditions were satisfied, fuzzy 
deduced the current longitudinal, lateral tyre force can reach the limit, and designed the 
fusion observer to fuse the estimation results accordingly. The observer can quickly 
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estimate the peak TRFC and maintain high estimation accuracy. Chen et al. (2018) 
proposed a method for estimating the longitudinal force and sideslip angle of distributed 
drive electric vehicles based on observer iteration and information fusion. The observer 
estimation strategy based on observer iteration and information fusion realised the 
estimation of the lateral force. The Luenberger observer was used to achieve a priori 
estimation of the measured values of fewer sensors, and then EKF was used to achieve 
higher-precision posteriori estimation. The estimation of the Luenberger observer was 
used as the EKF input of the pseudo-sensor, and the fuzzy weight controller was used to 
enhance the adaptive ability of the observer system. 

8 Conclusion and perspectives 

Accurate and fast estimation of the TRFC plays a crucial role in the autonomous driving 
technology of conventional engine driven and distributed drive electric vehicles. This 
paper presents a comprehensive review of the current research on TRFC estimation 
methods, discussing the principles, advantages and disadvantages of each method from 
the mainstream filter and observer techniques for parameter estimation; the principles and 
research development of model-based estimation methods are presented in three 
directions: vehicle dynamics model, tyre model and slip-slope; the three parts of optical 
sensors, acoustic sensors and intelligent tyres are used to classify the interaction between 
tyres and the ground, and the monitoring of road surface quality, this sensor-based 
estimation method generally has higher requirements for sensors, and is limited by 
certain road surface types and experimental environments; the neural network estimation 
method is based on the combination of traditional estimation methods and intelligent 
information estimation methods., it is a data-driven artificial intelligence estimation 
method that does not depend on the reference vehicle model and avoids the problems that 
arise in traditional estimation method; distributed drive electric vehicles can directly 
obtain some parameters based on their structural characteristics, based on their structural 
characteristics, many research scholars have proposed new parameter estimation methods 
and proved the accuracy and reliability of these estimation methods. 

The following is the outlook for the future TRFC estimation method:  

1 On the basis of traditional filtering algorithms and observer algorithms, ant colony 
algorithms, genetic algorithms, forgetting factors, etc. are integrated or multiple 
algorithms are combined to update state parameters and observe and estimate at the 
same time. Compared with traditional algorithms, the new algorithm has better 
adaptability, real-time, reliability and accuracy. 

2 Improve the vehicle and tyre model to achieve a more accurate estimation ability for 
certain parameters and performance, and combine the filtering algorithm and the 
observer algorithm to further improve it. Taking into account the time-varying 
vehicle parameters and environmental parameters during driving, the real-time 
collaborative estimation of other parameters such as vehicle centroid sideslip angle, 
longitudinal speed, centroid position, tyre characteristics, etc. can improve the state 
estimation accuracy, robustness and adaptability. 

3 Use the multi-sensor information fusion method to make full use of data resources 
and reduce the requirements for sensors; build a pavement type database to improve 
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the classification accuracy and robustness, and improve the estimation accuracy 
under different road quality and working conditions. 

4 With the improvement of sensor technology and the development of tyre systems, 
the level of tyre intelligence will continue to be improved. The control algorithm of 
each sensor in the tyre will be built to combine the intelligent tyre with the vehicle 
control system to improve the ability to obtain state parameters and the ability to 
respond to parameters. 

5 In the research of connected vehicles and the development and use of cloud 
computing technology, a large number of vehicle dynamic parameter calculations 
can be transferred to cloud computing to reduce the calculations in the driving 
process of the vehicle. According to the upload and calculation of real-world 
environmental parameters by multiple vehicles, parameters such as the TRFC on the 
same route can be obtained and shared, and the TRFC at the next time can be 
predicted to facilitate the decision-making and behaviour planning of autonomous 
driving technology. Through on-board wireless information and communication 
technology, realising a collaborative environmental perception systems and 
achieving a comprehensive network connection and information interaction 
integration between vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2X). 
Through the intelligent transportation system, real-time road surface, temperature 
and other environmental information is transmitted to the intelligent car, and the on-
board estimation results are predicted in advance or corrected in real-time, so as to 
improve the overall intelligent driving level and travel efficiency of the vehicle, and 
reduce the incidence of accidents. 
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