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Abstract: To overcome the shortcomings of the classical transfer path analysis 
(TPA) and operation transfer path analysis (OTPA), the global transfer direct 
transfer (GTDT) method is adopted. This method does not require force 
determination, and direct transfer functions (DTFs) can be used to identify 
problematic subsystems, which are calculated and used to determine the cause 
of the total displacements on the railway vehicle body. When studying the 
contribution of each component of the bogie to the vehicle body displacements, 
the effect of different mechanical property parameters is analysed to find the 
problematic subsystem that causes the highest displacement for improvement. 
It is creative that mathematical mechanical modelling of a railway vehicle with 
6 and 11 degrees of freedom (DOF) is developed for GTDT analysis. Results 
show that the GTDT method is a promising method for studying the vibration 
transmission path of complex practical rail vehicle systems. It can diminish the 
vibration efficiently. 

Keywords: transmission path analysis; global transfer matrix; direct transfer 
matrix; vibration characteristics; analytic model; railway vehicle body. 
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1 Introduction 

The vibration and noise impact in the railway system have been issues of concern for 
many years (Moghaddam, 2017, Wei et al., 2019, Jin et al., 2020) intending to improve 
the effect of it on the surrounding environment and humans. Reducing railway vehicles’ 
noise and vibration can lead to an increase in product lifetime, and improvement in 
ergonomics and human ride comfort. It is necessary to identify the sources and transfer 
paths of vibration and noise to improve it. 

Many studies have identified the interaction between wheel and rail during running as 
a vital vibration source (Ling et al., 2020). Also, bridge noise (Liu et al., 2020b), 
aerodynamic noise (Cao et al., 2021), air conditioning fan noise (Lv et al., 2021), and  
other types of sources (Liu, 2020) have been recognised. Another critical point is to 
figure out the contribution of every kind of vibration and noise source to the receiver and 
apply corresponding measures for mitigation (Xia et al., 2021). 
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The demand for reducing vibration and noise led to the development of different 
types of transfer path analysis (TPA) methods (Meggitt et al., 2021). TPA can identify 
the transmission path of noise and vibration from the excitation source to the receiving 
point and analyse the contribution of each path. It finds out the main path of vibration 
transmission, and then we can improve the structure to reduce or eliminate the noise or 
vibration of the mechanical structure. 

Several methods for the TPA have been studied from theoretical developments to 
practical techniques, and they are still under improvement. The traditional TPA method 
takes up a large proportion in the automotive industry (Zhang et al., 2019). It can 
establish an exact and complex mathematical physical model, but its implementation is 
challenging. First, it needs to disassemble the active parts one by one; secondly, it needs 
to carry out experiments in professional laboratories. Therefore, this method does not 
apply to the TPA of a railway vehicle. 

Several other methods for the TPA have then emerged, among which the operational 
transfer path analysis (OTPA) (Song et al., 2021) and advanced transfer path analysis 
(ATPA) (Aragonès et al., 2019) are two applicable ones for railway vehicles. OTPA is a 
very convenient method because it is an operational method that does not need to 
disassemble parts. However, it cannot avoid the crosstalk and coupling of adjacent 
signals. 

The ATPA method regards the global transfer direct transfer (GTDT) method. In this 
method, the global and direct transfer functions (DTFs) among subsystems in a linear 
network are obtained first under steady operational conditions. Then the analysis is 
extended to a functional case to study the contribution of each subsystem. In this method, 
no force determination is necessary, and it is possible to identify the problematic 
subsystems using DTFs avoiding crosstalk. Therefore, in this paper, the GTDT method is 
applied to study the contribution of each subsystem of the railway vehicle to the overall 
vibration of the vehicle body and bogie. 

Some significant works have been done focusing on different TPA methods. In 2008, 
Guasch (2009) proposed the GTDT method in a mechanical system when blocking 
transmission paths, which was proved to be a non-intrusive alternative with less 
experimental efforts. de Klerk and Ossipov (2010) studied the OTPA using singular value 
decomposition (SVD) and analysed vehicle tyre noise. In 2016, a general framework for 
TPA was suggested (van der Seijs et al., 2016), which can be considered as a very 
essential fundament for the understanding of many possibilities and combinations of TPA 
practices. An overview (Oktav et al., 2017) of methods was proposed in 2017, revealing 
its drawbacks, advantages, and assumptions for an engine-induced structure-borne noise. 
Concerning the OTPA method, an alternative formulation called operational transfer path 
analysis-difference (OTPA-D) (Vaitkus et al., 2019) was proposed in 2019. In 2020, an 
emerging deep neural network model was presented and uses the operational responses to 
identify the contributions of all paths in the frequency domain (Lee and Lee, 2020). The 
paper provides a comparison among TPA, OTPA, and OTPA-D methods in the analytical 
and laboratory model. In the same year, the ATPA method was applied in a box with an  
air cavity inside as a laboratory prototype and a numerical model was developed to 
compare with the laboratory measurement response (Aragonès et al., 2019). 

Concerning the railway vehicle, the OTPA has been applied and drawbacks to OTPA 
are the coherence among input signals (Liu et al., 2020a). As for the GTDT method, 
although its theory had developed since the 1980s (Magrans, 1981, 1984), the application 
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in the railway vehicle is still limited. This paper will extend the GTDT method to the 
vibration TPA of a railway vehicle. 

The importance of this paper is to investigate the vertical vibration transfer path 
contribution of a railway vehicle system, modelled as 6 DOF and 11 DOF mass-spring 
mechanical systems for a half and entire vehicle, respectively. The effect of parameter 
changes on the global and DTF is discussed. The interaction contact between the rail and 
the wheel is taken as the excitations of the system to study the contribution of each 
transfer path to the vibration and noise of the vehicle. 

This paper highlights the main advantage of using the GTDT method in a mechanical 
system, as the displacement contributions can be obtained utilising DTFs. The DTFs are 
obtained to find the complex subsystems that cause the highest portions of displacements. 
Therefore, the results can provide suggestions on which component or subsystem has 
more contribution to the total vibration of the system. 

In Section 2, the GTDT method is introduced, focusing on the construction of  
transfer functions and the factorisation method. In sections 3 and 4, the two steps of the 
GTDT method are applied to the 6 DOF and 11 DOF models of railway vehicles, 
respectively. The frequency responses of global and DTFs are obtained, and the effect of 
system parameters change on the transfer function is discussed among the different cases. 
Afterwards, the operational displacements of each mass are obtained, and the 
contribution among directly connected subsystems is discussed. Section 5 is the 
conclusion of the paper. 

2 Advanced transfer path analysis (ATPA) based on global transfer  
direct transfer (GTDT) 

The GTDT method presents two types of transfer functions, DTF and global transfer 
function (GTF). This method regards the TPA among subsystems in a linear network first 
under steady operational conditions and then extended to the operational case. The first 
step of the method is to find the GTFs by simulation or experiments. Then, the DTF 
obtains from the GTFs according to the network system characteristics. The direct 
transfer matrix plays the role of the connection matrix. 

Another critical point of the method is that it involves two steps. It involves 
reconstructing signals in any subsystem through DTF and working conditions, and then 
obtaining the signals in other subsystems. This will allow effortlessly identifying which 
subsystem is not working properly and guide how to correct the impact of this signal on 
the overall system. This method also avoids the need to disassemble parts and measure 
force. 

2.1 Definition of direct transfer function (DTF) and global transfer function 
(GTF) 

The definition of DTF and GTF can be found in Magrans (1981, 1984). The GTF G
ijT  at 

frequency ω  is the transfer function between signals is  and js  in 2 subsystems i  and 
j , when subsystem i  is subjected to an external excitation ˆ ext

if : 

( ) ( ) ( ) ( ) ( )/ , 0, 0, 1,2,3,..., 1, 1,...,ˆ ˆG ext ext
kij j i iT s s f f k i i nω ω ω ω ω= ≠ = = − +   (1) 
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According to the equation above, the GTF is the portion of the signal of subsystem i  to 
subsystem j via all possible paths or global paths. For this reason, the GTF consider all 
set of paths, called Global Transmission Path, in the GTDT. The Global Transfer Matrix 

GT  of all the pairs of subsystems in the system network can be built from equation (1). 
The significance of this transfer function is that the signal j is not transmitted just 

between i  and j  directly, but also through many other paths that link these two 
subsystems. The DTF is defined as the transfer function between subsystems i  and j  
directly. 

After GTF is calculated from the system frequency response signals, the DTF is 
obtained based on the GTF. The DTF is the quotient between the signal i and signal j 
when an excitation ext

if  is applied to subsystem i  and transmitted via the direct path to 
subsystem j  while all the other signals main 0. For this reason, the change in DTF 
permits knowing the consequences of property change in one subsystem over another 
subsystem without considering the rest of the network. The DTF D

ijT  is defined as the 

signal transmitted directly from one subsystem to another: 

( ) ( ) ( ) ( )/ , 0,  0,D ext
ij j i i kT s s f s k iω ω ω ω= ≠ = ≠   (2) 

DTF D
iiT  is the quotient between the signal ´

is  and signal ext
is , with an external excitation 

ext
if  applied in i  and all other signals main 0. The signal ext

is  is obtained by the same 
excitation applied to i  and no restrictions on the other subsystem signals. In case the 
signal is transmitted to i  via global path: 

( ) ( )
( )

( ) ( )
( ) ( ) ( )

''  : 0,
, ,

 :

0
1,2,3,..., 1, 1,...,

0, 0

ext
i i kiD

ii ext ext ext ext
i i i k

for s f ss
T

s for s f f
k i i n

ω ωω
ω

ω ω ω ω

=
=

⎧ ≠⎪= ⎨
≠ =⎪⎩

− +

  (3) 

The signal i  is caused by ( )ext
if ω  and other response contributions of all remaining 

subsystems. Also ( )´
is ω  is the fraction of ext

is  and it is only due to ext
if  at .  i .. The 

DTF between two subsystems without a direct link will be zero and the transfer function 
for the two subsystems linked are non-zero. The DTF matrix also can be regarded as a 
connectivity matrix, as shown in Aragonès et al. (2019). 

The direct transfer matrix DT  can be obtained from equations (2) and (3). Equation 
(2) gives the off-diagonal elements D

ijT
 
and equation (3) gives the diagonal elements 

D
iiT  of the matrix DT . 

After matrix DT  is obtained, the first step of the method is finished. 
The second step is to reconstruct the operational signal in any subsystem, in terms of 

external signal exts  and signals in the remaining subsystems. Therefore, the external 
signal exts  can be got from measurable quantities, as the operational signal vector s  and 
matrix GT  as follows: 

( ) 1Text Gs s
−

= T   (4) 
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The signal vector ( )s ω  in the remaining subsystems is related to the external signal 

( )exts ω  as follows: 

( )dev
TD ext

TDs s s= +T Λ  (5) 

Matrix TDΛ  is the relation between the GTFs and DTFs matrices given by: 

G DE
TD= −T T Λ . (6) 

devDE D= −T T I  (7) 

where I  is the identity matrix and dev DT  the deviatoric part of DT  as defined in 
(Guasch, 2009). 

The mathematical relationship between DT  and GT  are explored in (Magrans, 1981, 
Magrans, 1984) and defined as 

-11 DE
TD iiD

iiT
= −T Λ  (8) 

1 ,
D

ij DE
TD ijD

ii

i j−= − ≠−
T

T Λ
T

 (9) 

2.2 Factorisation method 

The direct transfer matrix DT  can be used to factorise the response of each subsystem in 
terms of responses due to the force acting on it plus the responses due to the other 
subsystems. 

To find out the operational signals of each subsystem, OPX , due to operational 
forces: 

( ) ,Top D op D op extX devT X X= Λ+
 (10) 

where dev DT  represents the off-diagonal elements of the direct transfer matrix DT , 
DΛ  is the diagonal elements of DT . ,op extX  is the operational external signal vector. It 

contains the signals of each subsystem exclusively due to the external forces acting on it, 
written as: 

1, ( )op ext T opX X
−

⎡ ⎤= ⎣ ⎦
GT

 (11) 

So, to obtain the contribution of each source in the total signal in a chosen subsystem, the 
DTFs between subsystems directly linked must be obtained. Equation (12) allows 
locating the most significant vibration source in a mechanical system. 
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3 ATPA analysis of the railway vehicle with 6 DOF model 

This section is dedicated to implementing the ATPA method to analyse the vertical 
displacements of a mechanical system as a railway vehicle. A mathematical model of half 
vehicle represented by 6 DOF is proposed and four cases with different structure 
parameters are compared and discussed. The purpose is to show the effect of stiffness and 
masses change on the response of the vehicle body. It studies the effects of the decrease 
of masses due to reprofile and stiffness change due to manufacture’s error during 
production or performance deterioration during the lifetime. 

The external force simulating the wheel-rail interaction is applied as excitation on the 
wheelset, as the rolling contact force is the primary vibration and noise source. The 
Global and DTFs between subsystems are obtained based on the theory in Section 2. The 
operational response vertical displacement is found by the factorisation method, and the 
curves of displacement amplitude among connected subsystems are also displayed. 

3.1 Mathematical model of a half railway vehicle with 6 DOF 

In this study, half of a railway vehicle is modelled as a 6 DOF mechanical system 
considering the symmetry of the front and rear parts of the vehicle, as shown in Figure 1. 
In the model, mass 1M  represents the half vehicle body, mass 2M  means the bogie, and 
masses 3M , 4M , 5M , and 6M  stand for the wheels. The vehicle body 1M  is 
sustained by the secondary suspension modelled as two springs in parallel with total 
stiffness 12k . The bogie frame 2M  is supported by the primary suspension modelled as 
4 springs with stiffness 23k , 24k , 25k  and 26k . The contact stiffness between wheels 

3M , 4M , 5M , 6  M  and rails are considered with stiffness gk . The 6 Subsystems in the 
half vehicle model in Figure 1 are listed in Table 1 regarding the vertical displacements 
denoted as ( ) 1, 2, ,6iz i = . 

Figure 1 Physical model a half vehicle with 6 DOF 
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Table 1 Subsystem description 

Subsystem number 1 2 3 4 5 6 
Subsystems Half vehicle 

body 
Bogie 
frame 

Wheel 1 Wheel 2 Wheel 3 Wheel 4 

The governing equations of motion according to the Newton’s second law based on static 
equilibrium state, are the following: 

For the half vehicle body mass 1M : 

12

1 1 12 1

1 11 21 ( )
M z F f
M z fk z z

=
= −

−
−

 (12) 

In equation (12), 12F  is the restoring force of secondary suspension between the vehicle 
body and bogie with stiffness 12 k . 1M  is the half mass of the vehicle body. 1f  is the 
external force acting on the vehicle body, which might be an aerodynamic force, wind 
force or excitation from a device mounted over the vehicle body. Also, 1z  is the vehicle 
body displacement and 2z  is the bogie displacement. 

For the bogie mass: 

23 24 25 26 122 2 2

2 23 2 3 24 2 4 25 2 26 2 12 1 2 22 5 6) )( ( ( ( () ) )
F F F F F
k z z k z z k z

M z f
M z k z z k zz z f− +

= + + + − −
− + − + − − −= −

 (13) 

For equation (13), 23F , 24F , 25F  and 26F  are the restoring force of primary suspension 
with stiffness 23k , 24k , 25k  and 26k . 2f  is the external force acting on the bogie, 
generated by the excitation of the motor, gearbox and other devices mounted on the 
bogie. Also, 3z , 4z , 5z  and 6z  are the displacements of each wheel. 

Each wheel is under both the contact force of wheel and rail interaction and the 
restoring force of primary suspension connected to the bogie frame. 

For the wheel masses 3M , 4M , 5M  and 6M , we have 

3 23

3 23 3 2

3 3 3

3 33 )(
g

g

M k z F
k z k z fz z

z f
M

= − −

+ −= −
 (14) 

24

2

4 4 4 4

4 4 4 4 444 ( )
g

g

M k z F
k z k z fz z

z f
M

= − −

+ −= −
 (15) 

25

2

5 5 5 5

5 5 5 5 555 ( )
g

g

M k z F
k z k z fz z

z f
M

= − −

+ −= −
 (16) 

26

2

6 6 6 6

6 6 6 6 666 ( )
g

g

M k z F
k z k z fz z

z f
M

= − −

+ −= −
 (17) 
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In equations (14)–(17), 3f , 4f , 5f , and 6f  are the force excitation between the wheel 
and rail interaction, which come from the rail roughness or wheel irregularities. 

3.2 GTF and DTF of 6 DOF model 

For the first part of the method, the GTF and the DTF are represented in Figure 2, 
considering the external force on the wheelsets. Figure 2(a) represents the GTF 
connections, which shows the Global Transmission Path, and it considers all connections 
among the six subsystems. Figure 2(b) shows the direct transfer paths between 
subsystems. The DTF can be got after the GTF are obtained. 

Figure 2 (a) Global transfer functions among all subsystems and (b) direct transfer functions 
between two direct connected subsystems and D

iiT  

(a) (b) 

           

The excitation on the wheel has the form of ( )1,2, ,6i if F cos t iω= = … . The time-harmonic 
response of the system can be assumed as  i iz Z cos tω=  with frequency ω . Therefore, the 
equation of motion of the system can be defined as: 

( )2F Zω= −K M  (18) 

( )1 2 3 4 5 6, , , , , TZ Z Z Z Z Z Z=  is the displacement vector of the six masses, 
( )1 2 3 4 5 6, , , , , TF F F F F FF =  is the force vector. M  is the mass matrix of the mass of the 

four wheels, the bogie frame mass 2M  and the half vehicle body mass 1M  represented 
by: 

1

2

3

4

5

6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M
M

M
M

M
M

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

M  (19) 

K  is regarded as the complex stiffness matrix, and is defined by: 
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1 12

12 2 23 24 25 26

23 3

24 4

25 5

26 6

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

k k
k k k k k k

k k
k k
k k
k k

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

K

 (20) 

For the problem stated: 

1 12 2 23 24 25 26 12 3 23 4 24

5 25 6 26

; ; ; ;

;
g g

g g

k k k k k k k k k k k k k k

k k k k k k

= = + + + + = + = +

= + = +
 (21) 

A dynamic stiffness matrix is defined as: 
2SPR ω= −Z K M  (22) 

For the model in consideration, the matrix SPRZ  will be: 
2

1 1 12
2

12 2 2 23 24 25 26
2

23 3 3
2

24 4 4
2

25 5 5
2

26 6 6

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

SPR

k M k
k k M k k k k

k k M
k k M
k k M
k k M

ω
ω

ω
ω

ω
ω

⎛ ⎞− −
⎜ ⎟

− − ∗ − − − −⎜ ⎟
⎜ ⎟− − ∗

= ⎜ ⎟
− − ∗⎜ ⎟

⎜ ⎟− − ∗⎜ ⎟⎜ ⎟− − ∗⎝ ⎠

Z

 (23) 

From the matrix (23), denoting the inverse of SPRZ  as SPRH , ( ) 1SPR SPR −
=H Z , which 

is called dynamic compliance matrix: 
SPRX F= H  (24) 

The matrix GT  can be obtained by terms of SPRH , because G
ijT  between masses im  and 

jm  is given by SPR
i ji jF H X= . G

ijT  can be defined as the relation between displacements 
iX  and jX . Thus, /G

ij j iT X X= = / / /j i i iX F X F = /SPR SPR
ij iiH H , the matrix GT  can be 

defined as: 

61 11

16 66

1

/ 1

/SPR SPR

G

SPR SPR

H H

H H

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T  (25) 

In this study, the vehicle is simplified as a mass-spring system with 6 DOF, where the 
explicit expression for the GTF can be obtained as equation (25). However, the 
mechanical system of a practical railway vehicle is very complicated, which cannot be 
simplified as a mechanical system with finite DOF to obtain the GTF explicitly. Thus, 
actual vehicle tests are carried out to measure the motion of each component, and the 
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GTF can be obtained according to equation (1). Once the GTF is obtained, the DTF can 
be obtained based on the relation between the global and direction transfer function in 
equations (8) and (9). 

Equations (2) and (3) are used to obtain the DTF to find the diagonal elements and 
off-diagonal ones. As the model stated, for the non-diagonal elements of the DTF: 

13 14 15 16 31 41 51 61 34 43 35 53

36 63 45 54 46 64 56 65 0

D D D D D D D D D D D D

D D D D D D D D

T T T T T T T T T T T T
T T T T T T T T

= = = = = = = = = = =

= = = = = = = = =
 

The matrix DT , will be the following: 

11 12

21 22 23 24 25 26

32 33

42 44

52 55

62 66

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

D D

D D D D D D

D D
D

D D

D D

D D

T T
T T T T T T

T T
T

T T
T T
T T

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (26) 

For the diagonal elements D
iiT , from equations (8) and (24) as the value of SPRZ  known, 

it can be regarded as: 

( )2

1 , 1, 2,3, 4,5,6D
ii SPR

i i ii

T i
k m Hω

= ∀ =
⎡ ⎤−⎣ ⎦

 (27) 

For the non-diagonal elements, from equations (9) and (24): 

( )2
, , 1, 2,3, 4,5,6 ijD

ij
j j

k
T i j i j

k mω
= ∀ = ≠

−
 (28) 

The GTF and DTF were analysed and the values of ( ),
1020 log G D

ijT×  for pairs of 

subsystems were discussed. 
Four cases with different structure parameters are analysed to investigate the 

parameter change effect on the system behaviour. Table 2 shows the parameter values of 
cases (a), (b), (c), and (d). The model with parameters in case (a) is a symmetric one, 
where all the wheel and corresponding suspension are in an ideal state with the same 
parameters. In cases (b), (c) and, (d), the stiffness and mass have a little deviation from 
the ideal state to show the effect of structure parameters change on the transfer function. 

In case (a), the value of the secondary suspension 12k  is ten times bigger than that in 
case (b). For primary suspension values 23k , 24k , 25k  and 26k  in case (a), are ten times 
lower than case (b). For case (c), the values of primary and secondary suspension are the 
same as the case (b), except for the stiffness 23k , which is 1.2 times higher than case (b). 
As for case (d), the values of primary and secondary suspension are the same, but the 
masses of the wheels 3M  and 4M  are 10% and 15% lower respectively. 
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Table 2 Variable values 

Variables Case (a) Case (b) Case (c) Case (d) 

12k  810  N/m 710  N/m 710  N/m 710  N/m 

23k  710  N/m 810  N/m 81.2 10×  N/m 810  N/m 

24k , 25k , 26k  710  N/m 810  N/m 810  N/m 810  N/m 

gk  910  N/m 910  N/m 910  N/m 910  N/m 

1M  15.000 kg 15.000 kg 15.000 kg 15.000 kg 

2M  1.400 kg 1.400 kg 1.400 kg 1.400 kg 

3M  400 kg 400 kg 400 kg 360 kg 

4M  400 kg 400 kg 400 kg 340 kg 

5M , 6M  400 kg 400 kg 400 kg 400 kg 

Table 3 shows the natural frequencies /i i ik mω =  for each case, which corresponds to 
the peaks of the transfer functions in Figures 3–6. In equation (28), the DTF 

( )2/D
ij ij j jT k k mω= − , which shows D

ijT
 
reaches the peak at iω . In Figures 3–6 for 

transfer functions, each figure have 4 subplots for cases (a), (b), (c) and (d) respectively. 

Table 3 Natural frequency values 

Natural frequencies Case (a) Case (b) Case (c) Case (d) 

ω1 13 Hz 4 Hz 4 Hz 4 Hz 

ω2 50 Hz 86 Hz 88 Hz 86 Hz 

ω3. 253 Hz 264 Hz 266 Hz 278 Hz 

ω4 253 Hz 264 Hz 264 Hz 286 Hz 

ω5 253 Hz 264 Hz 264 Hz 264 Hz 

ω6 253 Hz 264 Hz 264 Hz 264 Hz 

The global and direction transfer functions in Figures 3–6 show some peaks and valleys. 
The peaks in the GTF G

ijT  correspond to the resonances of the acceptance, which come 
from the denominators of its GTFs. The valleys comply with the anti-resonances of the  
cross-acceptance in the numerator of the GTFs, according to the explanation in reference 
(Vaitkus et al., 2019). It represents the natural frequency of the system. Since the 
definition of global and DTFs differ, the peak and valley values for the DTF D

ijT  are 
different from the global ones. The red solid curves present the GTF and the blue dashed 
ones denote the DTF in Figures 3–6. 

For Figure 3, as the GTF from subsystem 3 to itself 33
GT =1, that is wheel 1, then 

( )10 33 20*log GT =0 as shown with red solid curves. However, the DTF 33
DT  is well defined  
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in a frequency range depending on the case, shown with blue dashed curves. Among the 
four cases, it reveals that case (a) has the lowest values of peaks and valleys. The 
frequency locations of the valleys and peaks differ from case (a) at 50Hz to the other 
cases around 85Hz. In case (d), 3 peaks and valleys appear due to the decrease of the 
mass values, at 264Hz, 278Hz and 286 Hz. 

Figure 3 (a)–(d) The global and direct transfer function of subsystem 3 (wheel 1) for cases (a), 
(b), (c) and (d), respectively. The red lines represent 33

DT . The blue dashed lines 
represent 33

GT  (see online version for colours) 

(a) (b) 

 
(c) (d) 

  

In Figure 4, the direct and GTFs 12
DT  and 12

GT  between subsystems 1 and 2, that is the 
vehicle body and bogie frame, are well defined and depend on the frequency in different 
shapes. Case (a) has the highest-level response for 12

DT  in all frequency range, and the 
resonance frequency is at 50Hz. In case (d), two more peaks and valleys appear due to the 
decrease of the mass values, at 278 Hz and 286 Hz. As for the curves of 12

DT  and 12
GT , 

they have different shapes, peaks, and valleys locations. 
For Figure 5, ,

10 2320 log G DT  corresponds to DTFs between subsystems 2 and 3, which 
are the bogie mass 2M  and wheel mass 3M . The shapes of both transfer functions are 
the same for all the frequency range. The peak levels and frequencies of the peak are 
slightly different from each other. Also, each peak represents one natural frequency of the 
system. 
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Figure 4 (a)- (d) the global and direct transfer function of subsystem 2 (bogie) to 1 (vehicle 
body) for cases (a), (b), (c) and (d), respectively. The red lines represent 12

DT . The blue 
dashed lines represent 12

GT  (see online version for colours) 
(a) 

 

(b) 

 
(c) 

 

(d) 

  

Figure 5 (a)–(d) The global and direct transfer function of subsystem 3 (wheel 1) to 2 (bogie) for 
cases (a), (b), (c) and (d), respectively. The red lines represent 23

DT . The blue dashed 
lines represent 23

GT  (see online version for colours) 
(a)

 

(b) 

 
(c) (d) 
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In Figure 6, as the masses of the vehicle body and the wheel 3M  are not directly 
connected, the DTF between subsystems 1 and 3 are 13

DT =0, so its logarithm is –∞. For 
GTF 13  GT , it’s well defined. Compared to the figures above, the response levels are much 
lower. In case (c), GTF 13

GT  shows a peak and valley at around 264 Hz and case (d) 
shows two more valleys and peaks compared to case (b) at around 278 Hz and 286 Hz. 

Figure 6 (a)–(d) The global and direct transfer function of subsystem 3 (wheel 1) to 1 (vehicle 
body) cases (a), (b), (c) and (d), respectively. The blue dashed lines represent 13

GT   
(see online version for colours) 

(a) 

 

(b) 

 
(c) (d) 

  
It can be observed that ,G D

ijT  transfer functions for any pair of subsystems, for the same 
case, have almost the same frequency peaks locations. After obtaining the global and 
DTF, it allows to investigate contribution of subsystems. 

3.3 Contribution of subsystems 

The whole system will vibrate when the railway vehicle is under operation. The motion 
of each subsystem can be obtained experimentally or analytically. In this study, the 
displacement of each subsystem is obtained from the motion equations (12)–(17). For the 
second part of the method, once the amplitude of the operational displacement of each 
subsystem is provided, the contributions due to each mass can be found out, according to 
equation (10): 

,
1 21 2 11 1* *op D op D op extZ T Z T Z= +  (29) 

,
2 12 1 22 2 32 3 42 4 52 5 62 6* * * * * *op D op D op ext D op D op D op D opZ T Z T Z T Z T Z T Z T Z= + + + + +  (30) 

,
3 23 2 33 3* *op D op D op extZ T Z T Z= +  (31) 
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,
4 24 2 44 4* *op D op D op extZ T Z T Z= +  (32) 

,
5 25 2 55 5* *op D op D op extZ T Z T Z= +  (33) 

,
6 26 2 66 6* *op D op D op extZ T Z T Z= +  (34) 

Equations (29) to (34) are the displacement contribution for connected subsystems with 
an external force. For example, in equation (32), 4

opZ  is factorised as a contribution due 
to the displacements of the bogie frame 24 2*D opT Z , plus the contribution of ,

44 4*D op extT Z  
due to an external force applied over mass 4M . The value of the operational external 
signal , , 1, 2,3, 4,5,6op ext

iZ i =  is according to the definition in equation (11). 
As the motion equation in all the DOF were already established in the modelling, 

represented by Figure 1 and Table 1, it allows predicting the Transfer Paths among them 
according to the GTDT method. As shown in Figure 7, the external forces on the wheels, 
which are the subsystems 3, 4, 5, and 6, are considered. Subsystem 2 of the bogie is taken 
as the receiver, and the input vibration is contributed by subsystems 1, 3, 4, 5, 6 through 
paths 1, 2, 4, 6 and 8. 

Figure 7 The signal transfer paths of all subsystems 

 

Assuming the four wheels have different irregularities during manufacture or operation 
defects, they are under excitations from the wheel-rail interaction. The external 
operational forces on the four wheels are 3

extf , 4
extf , 5

extf , and 6
extf , with amplitude 

values 4
3,4,5,6 10 ,(4opF = ×  4 4 45 10 ,6 10 ,7 10 )T× × ×  respectively. Subsystem 6, which is the 

wheel 4, has the largest excitation amplitude. Owing to the excitations are from 
subsystems 3, 4, 5 and 6, the vibration transfers among the entire vehicle system. 

According to the factorisation, equations (29), (30) and (32), Figures 8–10 display 
the operational response of the subsystem and the contribution of other systems to the 
system under consideration. 

Figure 8 describes the contribution of the displacement amplitude of the vehicle body 

1M  due to the bogie frame, which is the only mass directly connected to it. By equation 
(29), ,

1 21 2 11 1
op D op D op extZ T Z T Z= × + × . In the simulation, the excitation on subsystem 1 is not 

considered, which is ,
1 0op extZ = . Then, 1 21 2

op D opZ T Z= × . Therefore, red curves for 1
opZ  

and blue dashed for 21 2*D opT Z  coincide with each other. 
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Figure 8 (a)–(d) The contribution for subsystem 1 in cases (a), (b), (c) and (d), respectively. The 
red lines represent 1

opZ . The blue dashed lines represent 21 2
D opT Z×  (see online version 

for colours) 

(a) 

 

(b) 

 
(c) 

 

(d) 

  

For case (d), as the masses 3M  and 4M  were decreased, it showed a different 
disturbance, between 264 Hz and 286 Hz, with 2 peaks and valleys that did not appear in 
case (c). Also, comparing case (c) with case (d), the second peak shows higher levels of 
displacement, due to the increase in 23k  stiffness. 

Figure 9 represents the contribution of the displacement amplitude 2
opZ  of the bogie, 

due to the contribution of the wheels and the vehicle body. Also, besides each 
contribution curve, the values of each subsystem (dB) in resonance frequency are 
indicated. 

For all cases, the wheel masses have the highest impact on the bogie displacement. 
The highest displacement contribution in most frequencies is due to wheel 4 6M , which 
is subjected to the highest external force excitation. However, in case (a), the mass 1M  
until 20 Hz has the highest degree of displacement level. 

The maximum displacement of the bogie frame 2M  is in case (c), probably due to 
the increase of 23k  stiffness. For case (d), the decrease of mass 3M  and 4M  led to a 
slight increase in the displacement contribution of these wheel masses around 270 Hz and 
a disturbance in the bogie displacement. Also, the change of the wheel masses leads to 
another peak around 286 Hz, in which masses 3M  and 4M  are responsible for the bogie 
frame displacement. 
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Figure 9 (a)–(d) The contribution for subsystem 2 in cases (a), (b), (c) and (d), respectively. The 
2
opZ  is marked as red lines. The 12 1

D opT Z×  is marked as black dashed lines. The 
332

D opT Z×  is marked as yellow lines. The red dashed lines represent the 42 4 D opT Z× . The 
orange dashed lines represent the 52 5

D opT Z× . The 62 6
opDT Z×  is marked as black dotted 

lines (see online version for colours) 

(a)

Subsystem. 50Hz 253Hz 
Vehicle body -39 -143 

Wheel 1 -66  -74 
Wheel 2 -64  -73 
Wheel 3 -64 -71 
Wheel 4 -62 -70 

(b)

Subsystem. 82Hz 86Hz 264Hz 
Vehicle 

body 
-100  -102 -172  

Wheel 1 -50  -57  -61  
Wheel 2 -50   -65  -68  
Wheel 3 -50 -71 -60  
Wheel 4 -50 -59 -60 

(c)
Subsystem 82Hz 86Hz 264Hz 266Hz 

Vehicle 
body 

-78  -104  -178  -163 

Wheel 1 -23 -56 -65  -43  
Wheel 2 -26  -74  -62  -60  
Wheel 3 -26 -67  -62 -59 
Wheel 4 -26 -62  -63 -60 

(d)

Subsystem 82 
Hz 

86 
Hz 

264
Hz 

278
Hz 

286 
 Hz 

Vehicle 
body -101 -100 -169 -172 -181 

Wheel 1 -49 -57 -79 -47  -86  
Wheel 2 -49  -65  -82 -75   -56 
Wheel 3 -49  -71  -52  -82 -97 
Wheel 4 -49 -59 -52 -82 -96 
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Figure 10 (a)–(d) The contribution for subsystem 4 in cases (a), (b), (c) and (d). The red lines 
represent 4

opZ . The blue dashed lines represent 42 2
opDT Z× .1 ,

44 4
op extDT Z×  is marked as 

black dashed lines (see online version for colours) 

(a) (b) 

 
(c) (d)

  

Figure 10 shows the displacement of the wheel 4M  which has the influence on the mass 
of the bogie frame and the external force over it. For cases (b), (c) and (d), around 82 Hz, 
there is a resonance of bogie frame and wheel. In all cases, the highest contribution 
comes from the external force over the wheel. 

The bogie frame and the wheel are in resonance at different frequencies. In case (c) it 
is possible to see that at 84 Hz there is the highest displacement amplitude among the 
cases, due to the increase of stiffness 23k . Also for case (c), it shows a peak around 
266 Hz, which did not appear in case (b). As for case (d) also 2 more locations of 
resonance appear, due to the lower wheel masses. 

To validate equations (29)–(34), Figure 11(a)–(c) compare the sum of the 
displacement contributions in 1M , 2M  and 4M  subsystems with the actual operational 
displacement for case (d). All the curves overlap, which reveals the effectiveness of this 
TPA. 

3.4 Results discussion 

The curves for case (a) show different responses, because the secondary suspension 
spring stiffness represented by the parameter 12k  is ten times higher than the primary 
suspension spring stiffness represented by the parameters 23k , 24k , 25k  and 26k . In cases 
(b), (c) and (d), the stiffness 23k  is higher than 12k . Case (d) shows the disturbances in 
all subsystem displacement amplitudes due to the decrease of the masses 3M  and 4M . 
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The result of factorisation above shows case (c) with overall higher displacements 
amplitudes, as the stiffness parameter 23k  was 20% higher compared to cases (b) and (d). 

Figure 11 (a)–(c) The displacement of mass 1M , 2M  and 4M , respectively. The synthetic 
displacements ( 1, 2, 4)op

iZ i =  are marked as red lines. The actual operational 
displacements ' ( 1, 2,4)o

i
p iZ =  are marked as the blue dashed lines (see online version 

for colours) 

(a) 

 

(b) 

 

(c)  

 

For all 4 cases, the external force acting over the wheel is responsible for the highest 
contribution levels of the bogie. Also, the mass decrease in case (d) incurs disturbances  
in the displacements in all subsystems. Concerning the vehicle body displacement,  
case (c) shows the highest displacement values. Also, the peak values in the ,G D

ijT  curves 
from Section 3.2 coincide with the resonance values in the curve of displacement in 
Section 3.3. 

4 ATPA analysis of the railway vehicle with 11 DOF model 

4.1 Mathematical model of a railway vehicle with 11 DOF 

To make the model more complete, a mathematical model with 11 DOF for one entire 
railway vehicle is established, as shown in Figure 12. The symbols in the model are 
similar to those in Figure 1. 1M  denotes the vehicle body, and 2M  and 3M  denote the 
two bogies, 4M  to 11M  are the eight wheels. 24k , 25 26 27 38 39 310 311, , , , , ,k k k k k k k  are 
stiffness of the primary suspensions. 12k  and 13k  are the stiffness of the secondary 
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suspension. gk  is the contact stiffness between the wheel and rail. Only the vertical 
motions of the model are considered. 

Figure 12 Physical model of a car with 11 DOF 

 

The governing equations of motion, according to the second Newton’s law, are the 
following: 

For the vehicle body 1M : 

1 1 12 13 1

1 1 12 1 2 13 1 3 1( ) ( )
M z F F f
M z k z z k z z f

= − −
= − − − −

 (35) 

In equation (35), 12F  and 13F  are the restoring force of secondary suspension with 
stiffness 12k  and 13k . 1M  is the vehicle body mass and 1f  is the external force as 
aerodynamic force or excitation from any device mounted to the vehicle body. Also, 1z  is 
the vehicle body vertical displacement, 2z  and 3z  are the bogie frame displacements. 

For the 2 bogie frames: 

2 2 23 24 25 26 12 2

2 2 23 2 3 24 2 4 25 2 5 26 2 6 12 1 2 2( ) ( ) ( ) ( ) ( )
M z F F F F F f
M z k z z k z z k z z k z z k z z f

= + + + − −
= − + − + − + − + − −

 (36) 

In equation (36), 23F , 24F , 25F  and 26F  are the restoring forces of primary suspension 
with stiffness 23 24 25,  ,  k k k  and 26 2. k f  is the external force from the excitation of the 
motor or gearbox. Also, 3z , 4z , 5z  and 6z  are the displacements of the wheel. 

3 3 38 39 310 311 13 3

3 3 38 3 8 39 3 9 310 3 10 311 3 11 13 3 1 3( ) ( ) ( ) ( ) ( )
M z F F F F F f
M z k z z k z z k z z k z z k z z f

= + + + − −
= − + − + − + − + − −

 (37) 

In equation (37), 38F , 39F , 310F  and 311F  are the restoring forces with stiffness 
38 39 310,  ,  k k k  and 311k  acting over 3M . 3f  is the external force similar to 2f . Also, 8z , 
9z , 10z  and 11z  are the displacements of each wheel. Each wheel is subjected to the 

contact force between wheel and rail interaction with stiffness gk  and the restoring force 
of primary suspension connected to the bogie frame. 

4 4 4 24 4

4 4 4 24 4 2 4( )
g

g

M z k z F f
M z k z k z z f

= − −

= + − −
 (38) 
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5 5 5 25 5

5 5 5 5 5 2 5( )
g

g

M z k z F f
M z k z k z z f

= − −

= + − −
 (39) 

6 6 6 26 6

6 6 6 26 6 2 6( )
g

g

M z k z F f
M z k z k z z f

= − −

= + − −
 (40) 

7 7 7 27 7

7 7 7 27 7 2 7( )
g

g

M z k z F f
M z k z k z z f

= − −

= + − −
 (41) 

For equations (38)–(41), 4M , 5M , 6M  and 7M  are the masses of the wheels of the 
bogie 2M . 

8 8 8 28 8

8 8 8 28 8 2 8( )
g

g

M z k z F f
M z k z k z z f

= − −

= + − −
 (42) 

9 9 9 29 9

9 9 9 29 9 2 9( )
g

g

M z k z F f
M z k z k z z f

= − −

= + − −
 (43) 

10 10 10 210 10

10 10 10 210 10 2 10( )
g

g

M z k z F f
M z k z k z z f

= − −

= + − −
 (44) 

11 11 11 211 11

11 11 11 211 11 2 11( )
g

g

M z k z F f
M z k z k z z f

= − −

= + − −
 (45) 

For equations (42)–(45), 8M , 9M , 10M  and 11M  are the masses of the wheels of the 
bogie 3M . For each wheel, it is subjected to the contact force from wheel and rail 
interaction with stiffness gk  and the restoring force of primary suspension connected to 
the bogie frame. 

The model has 11 subsystems, as represented in Table 4. 

Table 4 Description of subsystems 

Subsystem number 1 2 3 4 5 6 
Subsystems Half vehicle 

body 
Bogie 

frame 1 
Bogie 

frame 2 
Wheel 1 Wheel 2 Wheel 3 

Subsystem number 7 8 9 10 11  
Subsystems Wheel 4 Wheel 5 Wheel 6 Wheel 7 Wheel 8  

4.2 GTF and DTF of 11 DOF model 

Figure 13(a) illustrates the global transfer relations for the entire car model with 11 DOF, 
and the GTFs analysed in the following figures are highlighted in red dashed. Like 
Section 3, the DTFs are represented in Figure 13(b), considering the external force over 
all the wheels. It shows the direct connections between subsystems which are calculated 
after the GTFs are obtained. 
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Figure 13 (a) Global Transfer Functions among all subsystems. (b) Direct Transfer Functions 
between 2 direct connected subsystems (see online version for colours) 

 
 (a) (b) 

The same procedure from Section 3.1 for 11 DOF was done. The mass and stiffness 
matrix are the following: 

1

2

3

4

5

6

7

8

9

11

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

M
M

M
M

M
M

M
M

M
M

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M  (46) 

For the stiffness matrix: 

1 12 13

12 2 23 24 25 26 27

13 23 3 38 39 310 311

24 4

25 5

26 6

27 7

38 8

39 9

310 10

311 11

0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

k k k
k k k k k k k
k k k k k k k

k k
k k
k k
k k

k k
k k
k k
k k

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

= ⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

K

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟⎜ ⎟
⎠

 (47) 
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For the problem stated: 

1 12 13 2 23 24 25 26 12 3 38 39 310 311 13

4 24 5 25

6 26 7 27 8 28 9 29 10 210

11 211

; ; ;

; ;

; ; ; ; ;

;

g g

g g g g g

g

k k k k k k k k k k k k k k k

k k k k k k

k k k k k k k k k k k k k k k

k k k

= + = + + + + = + + + +

= + = +

= + = + = + = + = +

= +

 

For the dynamic stiffness matrix: 

1 12 13

12 2 23 24 25 26 27

13 23 3 38 39 310 311

24 4

25 5

26 6

27 7

38 8

39 9

310 10

311

0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

K k k
k K k k k k k
k k K k k k k

k K
k K
k K
k K

k K
k K
k K
k

− −
− − − − − −
− − − − − −

−
−

= −
−

−
−
−
−

K

110 0 0 K

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 (48) 

where 2 , ( 1, 2,...,11)i i iK k M iω= − = . The GTF matrix has a dimension of 11 11×  and is 
obtained as a matrix (25), in the previous section. To obtain the DTF matrix, the non-
diagonal elements must be considered: 

14 15 16 17 18 19 110 111 23 28 29 210

211 32 34 35 36 37 41 42 43 45 46 47

48 49 410 411 51 53 54 56 57 58 59 510

511 61 6

D D D D D D D D D D D D

D D D D D D D D D D D D

D D D D D D D D D D D D

D D

T T T T T T T T T T T T
T T T T T T T T T T T T
T T T T T T T T T T T T
T T T

= = = = = = = = = = =

= = = = = = = = = = = =

= = = = = = = = = = = =

= = = 3 65 67 68 69 610 611 71 73 74

75 76 78 79 710 711 81 82 84 85 86 87

89 810 811 91 92 94 95 96 97 98 910 911

101 102 104 105

D D D D D D D D D D

D D D D D D D D D D D D

D D D D D D D D D D D D

D D D D

T T T T T T T T T
T T T T T T T T T T T T
T T T T T T T T T T T T
T T T T

= = = = = = = = =

= = = = = = = = = = = =

= = = = = = = = = = = =

= = = = = 106 107 108 109 1011 111 112 114

115 116 117 118 119 1110 0

D D D D D D D D

D D D D D D

T T T T T T T T
T T T T T T

= = = = = = =

= = = = = = =

 

For the diagonal elements, the expression D
iiT  was already explained in equation (27) and 

for the non-diagonal elements equation (28). The values of masses and the spring 
stiffness are shown in Table 5, and 2 cases will be analysed. The model with parameters 
in case (a) is a symmetric one, where each bogie, wheel and corresponding suspension 
are in an ideal state with the same parameters. In case (b), some parameters have a little 
deviation from the ideal state to show the effect of structure parameters change on the 
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transfer function. Stiffness 13k  in case (b) is 20% lower than that in case (a), 27k  is 20% 
higher and 311k  is 10% lower than case (a). For the masses, for case (b) 7M  is 10% lower 
and 11M  15% than case (a). 

Table 5 Variable values 

Variables Case (a) Case (b) 

12k  710 N/m  710 N/m  

13k  710 N/m  70.8 10 N/m×  

24 25 26/ /k k k  810 N/m  810 N/m  

27k  810 N/m  81.2 10 N/m×  

38 39 310/ /k k k  810 N/m  80.9 10 N/m×  

311k  810 N/m  80.9 10 N/m×  

gk  910 N/m  910 N/m  

1M  30kg  30kg  

2M  1.4kg  1.4kg  

3M  1.4kg  1.26kg  

4 5 6/ /M M M  400kg  400kg  

7M  400kg  360kg  

8 9 10/ /M M M  400kg  400kg  

11M  400kg  340kg  

Table 6 shows the natural frequencies /i i ik mω =  for each case, in Hertz, which 
correspond to the peaks and valleys of Figures 15 and 16. 

4.3 Contribution of subsystems 

When the vehicle is under excitation, the whole system will vibrate. The motion of each 
subsystem can be obtained experimentally or analytically. In this study, the displacement 
of each subsystem is obtained from the motion equation (35) to (45). Once the 
operational displacements of each subsystem are provided, the contributions due to each 
mass are the following: 

,
1 11 1 21 2 31 3* * *op D op ext D op D opZ T Z T Z T Z= + +  (49) 

,
2 12 1 22 2 42 4 52 5 62 6 72 7* * * * * *op D op D op ext D op D op D op D opZ T Z T Z T Z T Z T Z T Z= + + + + +  (50) 

,
3 13 1 33 3 83 8 93 9 103 10 113 11* * * * * *op D op D op ext D op D op D op D opZ T Z T Z T Z T Z T Z T Z= + + + + +  (51) 
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,
4 24 2 44 4* *op D op D op extZ T Z T Z= +  (52) 

,
5 25 2 55 5* *op D op D op extZ T Z T Z= +  (53) 

,
6 26 2 66 6* *op D op D op extZ T Z T Z= +  (54) 

,
7 27 2 77 7* *op D op D op extZ T Z T Z= +  (55) 

,
8 38 3 88 8* *op D op D op extZ T Z T Z= +  (56) 

,
9 39 3 99 9* *op D op D op extZ T Z T Z= +  (57) 

,
10 310 3 1010 10* *op D op D op extZ T Z T Z= +  (58) 

,
11 311 3 1111 11* *op D op D op extZ T Z T Z= +  (59) 

In the simulations, the external operational force acting on the wheel masses are 
considered as ( )4 4 4 4 4 4 4 4

1,2,3,4,5,6,7,8,9,10,11 0,0,0,4 10 ,5 10 ,6 10 ,7 10 ,8 10 ,9 10 ,10 10 ,11 10
TopF = × × × × × × × × . It 

shows the eight wheels are under excitation with different amplitude and system 11 is 
under the largest excitation. 

Table 6 Natural frequencies values 

Natural frequencies Case (a) Case (b) 

1ω  4 Hz 4 Hz 

2ω  86 Hz 88 Hz 

3ω  86 Hz 89 Hz 

4ω  264 Hz 264 Hz 

5ω  264 Hz 264 Hz 

6ω  264 Hz 264 Hz 

7ω  264 Hz 281 Hz 

8ω  264 Hz 264 Hz 

9ω  264 Hz 264 Hz 

10ω  264 Hz 264 Hz 

11ω  264 Hz 285 Hz 

Figure 14 shows the transfer path for the 11 DOF mechanical railway vehicle system, 
considering the external force over the wheel’s masses. To analyse subsystem 1 as the 
receiver, the input is provided by subsystems 2 and 3, through Path 1 and 2. The external 
forces are 4

extf , 5
extf , 6

extf , 7
extf , 8

extf , 9
extf , 10

extf , 11
extf . 
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Figure 14 ATPA path analysis (see online version for colours) 

 

Figure 15(a) and (b) describe the contribution of the displacement of the vehicle body 

1
opZ  due to 3M  and 2M  bogie masses directly connected. The peak values represent the 

resonance of the subsystems. For case (a) the contribution from 3M  is slightly higher 
than that from mass 2M  in all frequency ranges, as the excitation forces transferring 
through the wheel 3M  are higher than over 2M . Case (b) shows two more resonance 
peaks at 281 Hz and 285 Hz that do not appear in case (a), due to the different 
parameter’s values. 

Figure 15(c) and (d) represent the contribution of the displacement 2
opZ  of the bogie, 

due to the wheels and the vehicle body. The biggest contribution in most of the 
frequencies is due to the masses of the wheel 7M , which has the highest external force 
applied. Case (b) shows one more resonance frequency at 281 Hz compared with case (a). 

Figure 15(e) and (f) represent the contribution of the displacement 3
opZ  of the bogie, 

due to the wheels and the vehicle body. The highest contribution in all frequencies is due 
to the mass 11M , which is where the highest external force is applied. The results are 
similar to Figure 15(c) and (d). 

Figure 16(a) and (b) are the operational displacements of the subsystem 7M . The 
displacement contribution for the wheel is due to the bogie 2M , as it is the only mass 
directly connected to it and due to the external force acting over it. For case (b), one more 
resonance is added, at 281 Hz, due to a change of the parameter’s values. 

Figure 16(c) and (d) show the operational displacement of the subsystem 11M . The 
displacement contribution for the wheel is due to the mass of the bogie 3 M  and the 
external force acting over it. The results are similar to Figure 16(a) and (b). It is possible 
to realise that case (b) has higher values of displacements, due to the change of the 
parameters. Also, the overall displacement amplitudes are higher than the values of wheel 

7M . 

4.4 Results discussion 

The result of factorisation above shows cases (a) and (b) using different stiffness, bogie 
and wheel masses. Also, the stiffness of primary and secondary spring suspensions is 
equal or very close to Case (b) in Section 3.3. Because of this, the shape and values of 
displacement contributions are very similar. 
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Figure 15 (a), (b) The contribution for subsystem 1 in case (a) and (b), respectively. The 1
opZ  is 

marked as red lines. The black lines represent the 21 2
opDT Z× . The blue dashed lines 

mean the 31 3
opDT Z× . (c), (d) The contributions for subsystem 2 of the case (a) and (b), 

respectively. The red lines mean the 2
opZ . The 12 1

opDT Z×  is marked as orange dashed 
lines. The yellow lines represent the 42 4

opDT Z× . The green dashed lines mean the 
52 5

opDT Z× . The 62 6
opDT Z×  is marked as blue dashed lines. The 72 7

opDT Z×  is marked as 
black dashed lines. (e) and (f) are the contributions for subsystem 3 of the case (a) and 
(b), respectively. The 3

opZ  is marked as red lines. The orange dashed lines represent the 
13 1

opDT Z× . The yellow lines mean 38 8
opDT Z× . The 93 9

opDT Z×  is marked as green lines. 
The 310 10

opDT Z×  is marked as blue dot-dashed. The black dashed lines represent the 
311 11

opDT Z×  (see online version for colours) 

(a) (b) 

 
(c) (d) 

(e) (f) 

  

For the 2 cases, the external force acting over the wheel was responsible for the highest 
contribution levels in the bogie. Also, the decrease of the masses 7M  and 11M  in case 
(b), like Section 3.1, caused disturbances in the displacement responses in the vehicle 
body and bogie frame 2M  and 3M . The change in the stiffness also influences the 
increase of the values of the displacement in the resonance, when comparing cases (a) 
and (b), especially in the second resonance peak. 
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Figure 16 (a) and (b) The contributions for subsystem 7 of the case (a) and (b), respectively. The 
7
opZ  is marked as red lines. The black dashed lines represent the 72 2

opDT Z× . The 
,

77 7
op extDT Z×  is marked as blue dashed lines. (c), (d) The contributions for subsystem 

11 of the case (a) and (b), respectively. The 11
opZ  is marked as red lines. The black 

dashed represent the 113 3
opDT Z× . The blue dashed represent the ,

1111 11
op extDT Z×   

(see online version for colours) 

(a) (b) 

 
(c) (d) 

  

For both 6 DOF and 11 DOF models, different parameters of mass and stiffness in the 
primary suspension can increase the value of responses and cause disturbances in all the 
subsystems. Most importantly, for both physical models, the change in the wheel masses 
are the cause of the appearance of a new resonance frequency which can lead to damage 
in the system. 

5 Conclusion 

This paper aims to validate and demonstrate the effectiveness of the DTFs to determine 
the influence of displacements among the most important subsystems. It proves that the 
displacement of any subsystem can be factorised in terms of displacements of subsystems 
directly connected plus the displacement due to an external force. 

The railway vehicle is modelled as a 6 DOF and 11 DOF mechanical system and the 
ATPA method is used to analyse the vertical displacements at different frequencies. For 
the 6 DOF model, four cases with different structure parameters are compared and the 
effects of the parameters on the transfer functions are discussed. Two cases with different 
system parameters are analysed for the 11 DOF model to show the effect of stiffness and 
masses change on the response of the vehicle body. Also, the half and entire models of 
the railway vehicle are compared to figure out whether the half model is feasible for the 
analysis, as it will save computational resources. For both models, different parameters of 
mass and stiffness in the primary suspension can increase the value of responses and 
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cause disturbances in all the subsystems. Also, when the stiffness of the secondary 
suspension is higher than the primary suspension the result in the bogie response will be 
different if it is the contrary. Most importantly, for both physical models, the change in 
the wheel masses are the cause of the appearance of a new resonance frequency which 
can lead to damage in the system. 

It is possible to find from which subsystem the biggest contribution comes by using 
the GTDT method in a mechanical system. Therefore, the problematic equipment or 
component can be removed or improved to reduce its influence on the total displacement. 
Applying the method in a railway vehicle, the source of the disturbance to the vehicle 
body can be detected, if it is due to aerodynamic force, equipment’s below or over the 
floor/roof or the contact between the wheel and the rail. 
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