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Abstract: PHEVs have become one of the best market-oriented and
industrialised technological routes in the automotive sector owing to fuel
economy. To maximise the energy-saving potential of PHEVs, this study
proposes an integrated real-time optimal strategy for a “P2+P4” PHEV. First, a
rule-based mode-switching strategy was devised based on driving conditions.
Second, an offline framework was established to optimise the equivalent
factors (EFs) based on the firefly algorithm (FA). A novel EF adaptation law
was then proposed based on the SOC feedback and duration of CD mode. Here,
AECMS was employed to achieve optimal power allocation during CS mode.
Finally, comparative simulations indicate that this PHEV can operate in CD
mode for 55 km and 42.66 km under NEDC and WLTP, respectively. In CS
mode, FA-AECMS has an approximate global optimal performance and a
better charge-sustaining capability. Furthermore, the feasibility of the proposed
strategy was validated using a drum experiment.

Keywords: plug-in hybrid electric vehicle; AECMS; adaptive equivalent
consumption minimisation strategy; equivalent factors optimisation; firefly
algorithm; a novel EF adaptation law.
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1 Introduction

To address the energy crisis and greenhouse gas emissions, the Chinese government
launched guidelines for peak and neutrality in carbon emissions (Hu et al., 2021;
Wei et al., 2022; Zhao et al., 2022). With the overall goal of low-carbon development,
decarbonisation has become a hot topic and focus in the automobile industry (Sabri et al.,
2016; Martinez et al., 2016). In recent years, PHEVs have emerged as a lucrative
alternative to solving the problem of dependence on fossil fuels and pollutant emissions
(Zhou et al., 2019). PHEVs are equipped with at least two different energy storage
systems for propulsion: an engine and an electric machine connected to a battery
(Liu, 2013). A challenging problem that arises in this domain is improving the fuel
economy by controlling the energy flow between the two power sources (Hu et al., 2016).
Therefore, it is important to design advanced strategies for PHEVs.

1.1 Literature review

Based on previous research, two basic categories can be used to distinguish
PHEV control strategies: rule-based and optimisation-based strategies (Li et al., 2016;
Yang et al., 2017). The former has been widely used owing to its low computational cost
and simple applications (Hao et al., 2016; Shen et al., 2018). The core issue is setting the
rules of thumb based on the engine’s optimal working area, engineering expertise, and
optimisation result extraction (Fan et al., 2020). Sun (2021) developed a strategy based
on an engine's optimal fuel consumption curve that exhibited excellent effectiveness and
robustness in battery state of charge (SOC) control. Meng et al. (2017) devised an
intelligent fuzzy strategy based on membership functions optimised using a genetic
algorithm (GA) for PHEV, which functions well in fuel economy and battery SOC
balance. Peng et al. (2017) developed a recalibration approach based on optimal control
laws that were calculated using dynamic programming (DP). The experiments were
conducted to highlight its superiority in terms of fuel economy.

Although the rule-based strategy is a simple method for splitting the power demand
between multiple power sources in PHEVs, it cannot ensure optimum fuel efficiency
under fixed thresholds. However, the optimisation-based strategy can maximise the
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energy-saving potential of PHEVs by optimising the torque allocation of the hybrid
powertrain using different optimisation approaches. In general, it consists of global and
instantaneous optimisation-based strategies. Among the global strategies, DP has been
exploited by many researchers to obtain theoretical optimal solutions to energy
management problems. Based on Bellman’s principle, optimal solutions can be achieved
by minimising cost functions with prior knowledge (Yang et al., 2014; Wang et al.,
2021). Mojtaba et al. (2021) designed a predictive control strategy. A trained ANFIS
model was devised to predict the reference SOC and power splitting was executed using
DP. The simulations indicated that it is implementable and near-optimal in a real control
environment. Liu et al. (2018) developed a DP-based strategy with a search range
algorithm in which the velocity was predicted using a hybrid trip model. It can provide a
practical solution for applying DP online in PHEV. In instantaneous optimisation-based
strategies, model predictive control (MPC) and equivalent consumption minimisation
strategy (ECMS) have been widely researched to resolve the energy management
problem of the hybrid powertrain. MPC enables the planning of the energy allocation at a
future time horizon with velocity prediction using the neural network (NN) and Markov
chain (Xie et al., 2017; Liu et al., 2017). Fu et al. (2018) presented a two-layer MPC
framework that planned the best SOC trajectory in a primary controller and achieved the
optimal power split in the second controller, with an improvement in the fuel
consumption and exhaust emissions. In the ECMS, the electricity consumption is
converted into an equivalent fuel consumption using the equivalent factors (EFs). The
torque split is executed further by minimising the instantaneous fuel consumption
(Paganelli et al., 2002). Gao et al. (2017) presented a real-time strategy for PHEVs using
ECMS to simultaneously reduce the total fuel consumption and maintain the battery SOC
balance. Simulations and experiments validated its fuel economy and charge
sustainability. Guo et al. (2019) also proposed a driving style-based ECMS by developing
a hybrid PSO-GA to acquire the control laws between the driving style and EF.
Compared with the ECMS, it can recognise driving styles and improve fuel economy
under varied conditions.

For real-time optimisation, the ECMS has been successful in improving the fuel
economy, where near-optimal results can be achieved under perfect EF settings (Sun et
al., 2017). To reasonably tune the EFs, considerable research has been conducted to
explore effective methods. A mathematical method was developed for calculating the
lower and upper bounds of the EF based on theoretical energy flow analysis.
Subsequently, an energy-saving opportunity-catching method was devised to obtain the
optimal EF (Rezaei et al., 2018; Rezaei et al., 2019). Zeng et al. (2018) applied PSO to
optimise the EF according to different driving patterns and initial battery SOCs. Then, the
optimisation results were adopted as a two-dimensional map related to the battery SOC
and driving distance. Consequently, the proposed simplified ECMS can decrease fuel
consumption and shorten computational time. Xie et al. (2018) employed a shooting-
method-based PMP to determine the best EFs under multiple driving patterns, and the
optimisation results were used to devise an ANN-ECMS. The proposed ANN-ECMS
demonstrates satisfactory fuel economy and real-time performance. However, the
aforementioned methods depend on prior knowledge and expert experience and cannot
guarantee perfect results under actual conditions. Musardo et al. (2005) used an adaptive
equivalent consumption minimisation strategy (AECMS) to address this issue, which
allowed instantaneous adjustment of the EF under various driving conditions. Lei et al.
(2020) leveraged a simplified DP to obtain the reference SOC and employed a fuzzy
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controller to adjust the EF based on the SOC deviation from the reference value. Besides,
there has been significant research on the use of AECMS to adjust the EF based on the
SOC deviation, such as using a feedback controller (Zhao et al., 2015) and a fuzzy sliding
mode controller (Guan et al., 2019). Zhang et al. (2017) developed a multistep velocity
prediction approach using V2V and V2I information and a CNN. A novel EF adaptation
law was then proposed based on the predicted velocity and SOC feedback. The
simulation indicated that it can achieve better fuel economy and SOC charge-sustaining
improvements compared to the traditional AECMS. To incorporate traffic information
into ECMS, Sun et al. (2022) established a road-type-based Markov velocity prediction
model for SOC planning whereby the AECMS can adjust the EFs according to the
reference SOC. Comparative simulations were then conducted to show the superiority of
this strategy in reducing fuel consumption relative to the ECMS. Zhang et al. (2021)
devised an optimisation framework to achieve adaptive energy management for an
automated HEV. The flexible torque request was involved with the fuel economy
objective to optimise the shift schedule and torque split based on ECMS. Consequently,
simulation results demonstrate its high fuel economy and traffic efficiency.

1.2 Main contributions

As discussed above, the aforementioned ECMS-based strategies can adjust the EF
through SOC feedback control based on the deviation from the reference SOC. However,
SOC planning is executed based on the predicted knowledge of the driving conditions, or
V2V and V2I information. The existing on-board controllers cannot satisfy the
requirements of predictive AECMS in terms of the computational power and data storage
capacity. Therefore, the control effect in mass-produced vehicles cannot be guaranteed.
In addition, owing to the inconsistency in the sampling time between the hybrid control
unit (HCU) and battery management system (BMS), a proper EF cannot be obtained in
real-time using a simple SOC feedback-based EF adaptation law.

To address this problem, this study seeks to develop an integrated real-time optimal
strategy for PHEVs. First, a rule-based strategy is employed to switch the vehicle’s
operation mode under complex driving conditions. Subsequently, the firefly algorithm
(FA) is adopted to optimise the initial value of EFs based on a high-fidelity simulation
model and target driving cycles, and the optimal results are further validated using a
powertrain test bench. A novel EF adaptation law is then proposed by introducing a new
element into the AECMS, the duration of the charge-depleting (CD) mode, which can be
calculated by the HCU and reflects the initial SOC value before entering the charge-
sustaining (CS) mode. Besides, the reference SOC calculation mechanism is simplified to
an adjustable parameter determined by the driver. Hence, the EF can be reasonably
adjusted based on the initial SOC and SOC deviation from the reference value. Finally,
comparative numerical simulations are conducted to highlight its advantages, and the
feasibility and real-time performance of the strategy in an actual vehicle environment are
verified using a vehicle drum experiment.

1.3 Outline

The powertrain architecture and physical models of the PHEV are detailed in Section 2.
The integrated real-time optimal strategy based on a rule-based vehicle operation
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mode-switching strategy and an EF optimisation-based AECMS is given in Section 3.
In Section 4, the pure electric range and fuel consumption are tested under NEDC and
WLTP. And the comparative results are analysed to verify the merits of FA-AECMS in
the CS stage. In Section 5, the drum experiment is conducted to validate the feasibility of
the proposed method. Finally, the conclusions are presented in Section 6.

2 System description and vehicle modelling

A parallel hybrid electric powertrain with a P2+P4 configuration was studied (Wu et al.,
2015) based on one of the most popular prototypes in the Chinese market, as shown in
Figure 1. The engine and P2 motor were mounted on the front axle, and hybrid power
coupling was achieved using an electromagnetic clutch. Additionally, the flywheel was
attached to the input shaft of a six-gear dedicated hybrid transmission (DHT), which can
improve the operating areas of the power components and realise speed reduction and
torque increase. The P4 motor and a single-level main reducer were mounted on the rear
shaft of the vehicle. Table 1 lists the key powertrain parameters, and the model
descriptions are presented in the following subsections.

Table 1 Powertrain parameters
Items Parameter(Unit) Value
Vehicle m(kg) 1943
g(N/kg) 9.8
C, 0.01
p (kg/m’) 1.2
C, 0.379
Afm?) 2.659
0 1.12
r(m) 0.342
Transmission i [3.692 2.095 1.209 0.925 0.791 0.604]
is [4.733 5.071]
i 7.7
Engine P (kW) 92
T iax(NmM) 234.7
P2 Motor P, (kW) 105.4
Tax(Nm) 309
P4 Motor P, (kW) 45
Tpax(Nm) 170
Battery Uwv) 350

O(Ah) 37
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Figure1 “P2+P4” PHEV powertrain
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2.1 Vehicle longitudinal dynamics

Fuel economy, which is primarily reflected in the longitudinal motion of a vehicle, is
crucial for developing a control strategy. Thus, only longitudinal dynamics are
considered in this study. The wheel torque is calculated as follows:

T, =(mgC, +% pPC ANV +6m %)-r , )

Tw — (Tesz'lu +Tm,f)'ig ol'/, o?]t +Tm,r .ir 7, +T}1 5 (2)

where T, is the engine torque, 7, . and 7,  denote the P2 and P4 motor torques,
respectively, 7, is the mechanical braking torque, s, represents the clutch state, 77, and
n, are the efficiency of the DHT and rear-axle main reducer, respectively, and v is the
velocity.

2.2 Engine model

To reduce the computational effort, the internal combustion processes are ignored.
Instead, a simplified engine model (Yang et al., 2018) is adopted to calculate the
instantaneous fuel consumption (FC) based on the engine map shown in Figure 2.

7’; a)e bl’

=, 3
367.1p,2 )

me()

b =f(@,T,), “
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where b, is the FC rate, @, is the engine speed, p, is the gasoline density, and m. is the
instantaneous FC.

Figure 2 Engine map (see online version for colours)
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The characteristics of the output torque should be modified to simulate the actual
dynamic response process, which is expressed as:

];' :;7;[‘0"!’ (5)
T,s+1 7

where T is the engine torque command from the energy management strategy and 7,

e,com

is the time constant.

2.3 Motor model

The P2 and P4 motors are PMSMs, which are simulated using the static method based on
the motor efficiency data shown in Figure 3. The power consumption is calculated
according to the motor torque, speed, and efficiency as follows:

N, =/(@,.1,), (©)
LOo,0 .,
P(1)= 9550n,, ’ &
I,00,0m, . _,
9550 "

where 77, represents the motor efficiency, f 1is the relationship function derived from
P

mo

the motor efficiency map, and o

m >

T, represent the motor speed, power, and torque,
respectively.
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Figure 3 Motor efficiency: (a) P2 motor and (b) P4 motor (see online version for colours)
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It is challenging to construct an exact model that considers the electrochemical
characteristics, temperature changes, and battery aging. In this study, the widely-adopted
Rint model (Yang et al., 2020) is used for simplicity. The open-circuit voltage U, and
inner resistance R, are obtained using the function of SOC shown in Figure 4. The
equations used are as follows:

U, = f(SOC),R, = f(SOC),

S(.)C _ Uoc B V ch _4Rbe

P,

bat

B

2R,0

=P +1I'R,,

®)

€))

(10)

where () denotes nominal capacity, F, denotes the terminal power, F,, denotes the
input power, and / denotes the current.

Figure 4 Battery experimental data (see online version for colours)
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2.5 DHT model

In this study, a six-gear DHT was used for the “P2+P4” PHEV. The shifting strategy and
transmission ratio are closely related to the fuel economy and driving comfort (Wang
et al., 2019). Thus, the transmission ratio was designed based on an offline optimisation,
and a two-parameter shifting strategy was devised using the powertrain bench
calibrations, as shown in Figure 5.

Figure 5 DHT shifting strategy (see online version for colours)
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3 Integrated real-time optimal energy management strategy

PHEVs have high-capacity power batteries that allow vehicles to operate in pure electric
mode for long periods and can be recharged at a low cost through external charging ports.
In daily commuting or short-distance travel tasks, drivers are more willing to adopt the
pure electric mode until the battery SOC drops to an allowable threshold. When the travel
mileage exceeds the pure electric range of the PHEV, the vehicle is propelled by the
engine and motor.

Considering the complicated and varied driving conditions, a hierarchical architecture
was proposed based on the rule-based vehicle operation mode-switching strategy and EF
optimisation-based AECMS for the PHEV, as shown in Figure 6. In the offline section,
standard driving cycles were selected as the target driving cycles and a high-fidelity
model was created and calibrated on a powertrain test bench. Subsequently, FA was
adopted to optimise the initial value of EFs based on the high-fidelity simulation model
and target driving cycles. Furthermore, the optimal EFs were validated and various
control parameters such as K,,, K; and the mode-switching threshold were calibrated on a
powertrain test bench. In the online section, a rule-based strategy was employed to switch
the vehicle operation modes to adapt to complex driving environments and avoid
inefficient engine operation. Subsequently, a novel AECMS was proposed to allocate the
energy flow between the engine and battery by introducing a new element into the EF
adaptation law to reflect the initial SOC value, that is, the duration of the CD mode
before entering the CS mode.
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Figure 6 Hierarchical architecture of the strategy (see online version for colours)
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3.1 Rule-based vehicle operation mode switching strategy

In this study, the vehicle can be switched among three operation modes based on the
varying power requirements and driver’s command, in contrast to the CD-CS strategy in
(Wirasingha et al., 2011). The three operation modes are series, CS, and CD, and each
mode is represented by a specific number as listed in Table 2. In the CD mode, the P2
motor propels the vehicle, and the P4 motor only operates during the shifting process.
Furthermore, the battery SOC gradually decreases until it reaches a designated threshold
SOC,s, which can be tuned between 30% and 80% by the driver and has a default value
of 35%, and then maintains balance. The engine and P2 motor provide power in the CS
mode. In the series mode, only the P4 motor propels the vehicle, and the engine and P2
motor work as a generator unit to charge the battery.

Series mode. When the SOC is <25%, the PHEV runs in the series mode. The series
mode is designed as a limp-in mode wherein the P4 motor provides the entire propulsion
torque, and the engine and P2 motor work as an electricity generation unit to charge the
battery and satisfy the energy requirements of the P4 motor. However, because the P4
motor has a peak power of 45 kW and cannot satisfy large driving demands, the PHEV
can only operate at a low velocity in the series mode.

CD mode. When the SOC is <35% or the EV mode button is activated, the PHEV
operates in the CD mode. Here, only the P2 motor operates under most driving
conditions, and the P4 motor propels the vehicle during the shifting process.
Additionally, regenerative braking is permitted only when the SOC is <80% to avoid
overcharging.

CS mode. When 25% < SOC <35% and the EV mode is not activated, the PHEV
operates in the CS mode. Here, the engine and P2 motor operate jointly or separately to
meet the driving torque, and the P4 motor supplies the torque during the shifting process.
The torque split is based on the AECMS, as described in the following subsection. In the
AECMS, the reference SOC is a variable parameter within the range of 30-80% and has
a default value of 35%. The driver can adjust the reference SOC in the central control
system according to the driving requirements. To ensure a satisfactory dynamic
performance, the reference SOC should be higher than the mode-switching threshold of
the series mode to minimise vehicle operation in series mode as much as possible.

Table 2 Vehicle operation mode

Mode Number
CD mode 1
CD2CS

CS mode
CS2CD
X28

Series mode
S2X

~N N R W
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In Table 2, CD2CS denotes a transition mode when the CD mode switches to the CS
mode, CS2CD denotes a transition mode when the CS mode switches to the CD mode,
X2S is a transition mode when another mode switches to the series mode, and S2X is a
transition mode when the series mode switches to other modes.

3.2 Adaptive ECMS

The ECMS is an instantaneous optimisation approach that aims to minimise the FC at
each instant by introducing a group of equivalent factors to convert the electricity
consumption into an equivalent FC. Thus, the optimal torque split can be implemented. In
this study, the FC is the overall target of the energy management problem, which is
formulated as

F =min J(u(t),x(t)) . (11)
Then, the control variable and the state variable are given as

u(t)=T,(t) (12)
x(1)=SOC(t)

Considering the actual mechanical and electrical characteristics of the powertrain, the
control and state variables should satisfy the following limitations:

ST, <1

0<w, ) <™

ST (ST

0<o)<o™ , (13)
SOC, < SOC(t) < SOC,

Ty =T, O+ T,(0)

dem

soc,,, = SOC

ini

where J denotes the FC, 7™, T, T™ and T™ denote the maximum and

max

minimum values of the P2 motor and engine torque, respectively, @

m

and @ denote
the maximum value of the P2 motor and engine speed, respectively, 7, denotes the

demand torque, and SOC, ,, SOC,,; denote the final and initial SOC, respectively.

By introducing the final SOC constraints into the objective function, equation (11)
can be reformulated as follows:

J=[" e (N)dt + (SOC,, —SOC, ), (14)

{T7 @, 1 (1)) =argmin.J , (15)

where 11.134‘,- denotes the instantaneous equivalent FC, and f is a penalty related to the
SocC,,, .
Additionally, the expression of the equivalent FC is:
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Meg (£) = 1 7 () + Monan (£)

. , 16
= my (1) +s(0) L) 1o

Thy

5 =[5 (0):5,5 (O] (17)

where m, is the engine FC, mu_c is the equivalent FC of the electricity consumption,
s represents the EF, and O, denotes the low-heating value of gasoline.

To improve the adaptability of the ECMS, an AECMS was developed to dynamically
change the EFs according to the SOC deviation. The core idea of the AECMS is that EFs
weigh the battery energy based on the SOC deviation from its reference value. In other
words, a negative deviation results in large EF values; thus, the battery energy becomes
more expensive than the fuel. However, when the deviation is positive, the EFs have a
small value, and as much battery energy as possible is used.

In general, a PI controller is adopted to calculate the EFs according to the SOC
deviation from the SOC, at each moment. In this study, a novel element was introduced
to the PI controller in addition to the SOC deviation to reflect the initial SOC value, that
is, the duration of the CD mode before entering the CS mode 7. When the duration of
the CD mode is short, T, has a small value, indicating that the fuel is more expensive
than the electrical energy. Conversely, T,.. should be a large value to penalise the
electricity consumption.

The adaptation law of equivalent factors is formulated as follows:

Sdi.v (t) = Sdis,opt + Kp (SOCref - SOC) +K.T,

i” elec

S (1) = S om + K, (SOC,, —SOC)+ KT,

i~ elec

(18)

where s, and s are the initial equivalent factors after offline optimisation using

chg ,opt
the FA, and K ,and K; denote the control parameters of the PI controller.

3.3 Firefly algorithm

To exploit the optimality of the AECMS, a key challenge is the proper tuning of the
initial EFs. EFs reflect the energy conversion efficiency of various power sources, which
are affected by the characteristics of the powertrain and road types. Therefore, the
problem of determining optimal EFs was formulated as a nonlinear global optimisation
problem. The firefly algorithm is a novel method that mimics the behaviour of flashing
fireflies (Yang, 2010). Our previous study proved that it has comparable global
optimisation ability to the GA and PSO. Therefore, it was chosen for EF optimisation.

For the standard FA process, two essential factors have been proposed to mimic the
behaviour of fireflies, luminance and attractiveness (Zheng et al., 2022). Fireflies with a
higher fitness have a higher luminance and may be more attractive to their neighbours.
However, their luminance decreases with the distance from other fireflies /; i thereby
affecting their attractiveness f. The steps of the FA are outlined below, as shown in
Figure 7.
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1 Population initialisation: A group of random fireflies is generated, and the positions
of the fireflies are within the given range of EFs.

2 Step factor calculation: The step factor is varied nonlinearly from maximum to
minimum in each iteration. The value is updated as follows:

1
107 %
0.5

a=uo

) 19

where o denotes the step factor, and & represents the iteration number.

3 Luminance ranking: The position x of each firefly is used to represent the EFs, and
its fitness value is selected as the luminance after the ECMS calculation. The fireflies
are then sorted in order of luminance.

4 Attractiveness calculation: The luminance seen by nearby fireflies is used to
determine how attractive each firefly is, which is defined as follows:

d
) =||xf—xf||=J§(xf7‘xf)z | (20)

p=py e
where £, is the initial value of S, ¥ is the light absorption coefficient.
5 Update position: The firefly movement process is determined as follows:
X, =x+p(x, —x)+a(r-0.5) . 21

6  Stopping rules: Steps (2)—(5) are repeated until the optimal EF is obtained.

Initialize the position and
fitness of fireflies

r.i

‘ Update step factor ‘

Figure 7 FA optimisation process

Calculate luminance of
each firefly according to
fitness function

I Luminance ranking ‘
I

Calculate attraction value

[
Update the position of
the firefly
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3.4 Offline EF optimisation

The target driving cycles were selected according to GB/T19753-2021 in China.
Therefore, the NEDC and WLTP were chosen. To obtain the optimal equivalent factors
for the two driving cycles, the NEDC and WLTP were combined to form a longer driving
cycle as the target driving cycle.

Subsequently, EF optimisation was performed. First, the FA was used to obtain the
optimal equivalent factors based on the high-fidelity model. The candidates obtained after
optimisation were then validated, and some control parameters were calibrated on a
powertrain test bench. Finally, the above optimal solutions were written into a real HCU
and used as control parameters to achieve optimal energy management.

4 Simulation results and analysis

In this section, the performance index of the PHEV was tested through the simulation.
Based on the mode-switching strategy, the simulation was divided into CD and CS stages
based on the SOC. The pure electric range and fuel consumption were then tested via
simulations at different stages. The fixed-step Runge-Kutta method was selected as the
solver. To ensure consistency with the real vehicle environment, the step size was set to
0.01 s.

4.1 Pure electric range simulation

In this section, the operating statuses of P2 and P4 motors in the CD stage were tested
through the pure electric range simulation under NEDC and WLTP. The initial SOC was
set to 100%.

As shown in Figure 8, the P2 motor can supply the power to track the desired
velocity. The transmission can shift the gears from the second gear to the sixth gear
according to the velocity and acceleration pedal opening. As the vehicle mileage
increases, the battery SOC gradually decreases from 100%, and the hybrid state remains
in the CD mode when the SOC is greater than 35%. However, it switches to the CS mode
until the SOC drops to the switching threshold, which represents the end of the pure
electric range simulation. The torque curves of the P2 and P4 motors are illustrated in the
fourth rows of Figure 8(a) and (b). Under most operating conditions, the P2 motor
propels the vehicle with the power it needs. However, when the transmission is shifting,
the power of the front axle is lost, and the P4 motor acts as an auxiliary power source that
provides the driving power to improve the vehicle’s dynamic performance. The pure
electric range and energy consumption are listed in Table 3. The battery capacity allows
the PHEV to travel five NEDCs or approximately two WLTPs. The energy consumptions
are 14.65kWh/100 km and 15.36 kWh/100 km under the NEDC and WLTP,
respectively. With the ending SOC of 35.32% and 35.01%, the pure electric ranges are
55 km and 42.66 km under the NEDC and WLTP, respectively, which verifies that this
P2+P4 PHEV can operate in pure electric mode for long periods.
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Table 3 Energy consumption results in the CD stage

Energy consumption

Driving cycle Ending SOC (%) Electric range(km) (kWh/100 km)
NEDC 35.32 55 14.65
WTLP 35.01 42.66 15.36

4.2 Fuel consumption simulation

This section consists of two parts. First, to prove the optimality of the FA-AECMS in the
CS mode, the rule-based control strategy, traditional ECMS, and DP were used for
comparison under two typical driving cycles. Then, the effectiveness of the EF adaptation
law was evaluated in detail and compared with that of the traditional ECMS. The initial
SOC was set to 35%.

Figure 8 Pure electric range simulation results: (a) NEDC and (b) WLTP (see online version
for colours)
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1 Comparative results of different control strategies

Figures 9 and 10 show the basic results, including the velocity, vehicle operation mode,
gear shifting, battery SOC, and torque. As shown in Figure 9(a), the highest velocity error
between the actual and desired velocities is less than 3 km/h, demonstrating that the
devised energy management approach functions well. When the velocity is low, the P2
motor propels the vehicle, and the engine and P2 motor work together when the velocity
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surpasses 45 km/h. Besides, the two-parameter shifting schedule functions well. In the
fourth row of Figure 9(a), the ending SOCs for the four strategies are 34.97%, 35.01%,
34.81%, and 35%, respectively, demonstrating the charge-sustaining capabilities of the
four strategies. Moreover, the SOC curve of the DP is more stable than those of the other
three strategies, exhibiting global optimality in the energy management problems. The
SOC tendencies of the ECMS and FA-AECMS are similar owing to the similar control
logic. However, for the rule-based strategy, the SOC decreases sharply to 29%, causing
the engine to begin propelling the vehicle and charging the battery. As shown in
Figure 9(b), the engine and P2 motor can satisfy the hybrid powertrain’s torque demand.
Since the P4 motor only operates during the mode-switching process, it was neglected in
the simulation. To avoid inefficient engine operation, the P2 motor drives the vehicle in
low-torque-demand conditions, and the engine is used to provide the driving torque when
the vehicle operates in high-torque-demand conditions to achieve better fuel economy. In
the rule-based strategy, the engine torque is located in the optimal working area, and the
engine torque trajectories of the ECMS and FA-AECMS are consistent. As for DP, the
engine and motor solely or simultaneously provide the required torque according to
optimal control law. The results in Figure 10 show a similar control effect in WLTP as in
NEDC, although the velocity trajectory is more intense and the torque demand is larger
than that in NEDC.

Figure 9 Comparison results for NEDC: (a) Velocity, gear, mode, SOC and (b) torque split
(see online version for colours)
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Figure 10 Comparison results for WLTP: (a) velocity, mode, gear, SOC and (b) torque split
(see online version for colours)
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Figure 11 illustrates the operation points of the engine and P2 motor. Although most
engine operation points are located in the optimal working area, the high output power
and long working time result in the worst fuel consumption results of the rule-based
strategy. The distribution of engine operation points for the ECMS and FA-AECMS is
similar in NEDC, while more operation points of the FA-AECMS are located in the
optimal working area than those of the ECMS in WLTP. As for DP, its engine operation
points are the best among the four strategies.

To further evaluate the optimality, the FC results are presented in Table 4. The FC of
DP is regarded as the benchmark. When compared with the rule-based strategy, the FC
improvements are 17.96% and 15.1% using the FA-AECMS in NEDC and WLTP,
respectively. Because the advantage of the FA-AECMS is its adaptability to SOC
changes, the improvement in fuel economy is relatively small compared with that of the
ECMS. However, the FC of FA-AECMS is comparable to that of the DP, exhibiting an
approximate global optimality. The computation times for FA-AECMS are listed in
Table 5. The average computation time of ten simulations of NEDC and WLTP is 61.67
and 124.33 s, respectively, indicating a high real-time performance and real vehicle
application potential.
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Figure 11 Engine and motor operation points:

S. Tian et al.
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Table 4 Fuel consumption results in the CS stage
Driving cycle Strategy FC(L/100km) Ending SOC(%)  Improvement(%)
NEDC Rule-based 6.605 34.97 -20.79
ECMS 5.648 35.01 -3.29
FA-AECMS 5.623 34.81 -2.83
DP 5.468 35 [-]
WLTP Rule-based 7.409 35.33 -16.99
ECMS 6.469 35.96 -2.14
FA-AECMS 6.453 35.8 -1.89
DP 6.333 34.99 [-]
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Table 5 Computation time of the FA-AECMS

Computation time (s)

Driving cycle Duration (s) (Avg value of 10 simulations)
NEDC 1180 61.67
WLTP 1800 124.33

Figure 12 EF and SOC trajectories of ECMS and FA-AECMS: (a) NEDC and (b) WLTP
(see online version for colours)
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2 Superiority of the EF adaptation law

To further demonstrate the superiority of the EF adaptation law, the FA-AECMS was
simulated and compared with the traditional ECMS. The comparative results, including
the EF and SOC trajectories, are demonstrated in Figure 12. In the proposed strategy,
when the SOC decreases, the EFs increase to penalise the electric energy consumption. In
contrast, the EFs decrease when the SOC increases, making the motor the primary power
source for propulsion. As for the ECMS, the EFs remain unchanged during the entire
driving cycle. Furthermore, as shown in the zoomed-in area in Figure 12(a) and the area
from 700 s to1400 s in Figure 12(b), the SOC trajectory of FA-AECMS is higher than
that of ECMS. This is because the P2 motor consumes a large amount of electrical energy
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in the first half of the simulation. Therefore, the EFs are updated to a large value to
reduce electricity usage, thereby maintaining the battery SOC. However, the constant EFs
cause a relatively sharp reduction of the battery SOC in the ECMS. These results show
that the proposed EF adaptation law possesses excellent control performance and better
charge-sustaining capability than the ECMS because the EFs can be adjusted according to
the SOC deviation and duration of the CD mode.

5 Actual vehicle drum experiment

To assess the effectiveness and real-time performance, the HIL test and actual vehicle
experiments are indispensable. Compared with the HIL test, the actual vehicle
experiment is more authentic. Hence, an actual vehicle drum experiment was conducted
to test the control performance and FC of the FA-AECMS. The four-wheel drum
experiment bench consists of a circulating fan, wheel drum, exhaust emission detection
device, and main console, as shown in Figure 13. During the experiment, the vehicle was
fixed to the experiment bench. A circulating fan was then used to simulate a practical
road wind environment, and the wheel drum was used as the loading device to simulate
real road resistance based on the driving cycle. The exhaust emissions were then
collected using a detection device and used to calculate the fuel consumption and
pollutants. In this study, only the vehicle fuel consumption experiment was carried out
according to GB/T19753-2021 in China. Standard NEDC and WLTP were then
performed on the drum experiment bench, and the initial SOC was set to 35%. It is
noteworthy that before the experiment, the vehicle was powered at a high voltage, and the
shift lever was in forward gear.

Figure 13 Vehicle drum experiment: (a) drum experiment bench and (b) main console (see online
version for colours)
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Figure 13 Vehicle drum experiment: (a) drum experiment bench and (b) main console (see online
version for colours) (continued)

(b)

Figure 14 Comparative results of the simulation and experiment: (a) NEDC and (b) WLTP
(see online version for colours)
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Figure 14 shows the results of the simulation and drum experiment. The velocity, vehicle
operation mode, battery SOC, engine and motor torque are demonstrated. The error
between the simulation and drum experiment is acceptable. As illustrated in Figure 14(a),
the velocity curves of the simulation and drum experiment are consistent in the NEDC.
The vehicle operation mode curves are also very similar, demonstrating that the rule-
based mode-switching strategy functions properly both in the simulation and experiment.
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Besides, the changing tendencies of the SOC, engine, P2 motor, and P4 motor torques are
approximately the same. The comparative results for the WLTP are shown in
Figure 14(b), and the same conclusion as that of the NEDC can be drawn. However, there
are some differences in the results of the vehicle operation mode because the air
conditioner is open and engine needs to be turned on. Thus, the vehicle operation mode is
the CS mode in the experimental results from 0 s to 200 s, 1150 s to 1480 s, and 1500 s to
1800 s.

The FC results are listed in Table 6. The FC results of the drum experiment are
slightly higher than those of the simulation. However, the final SOC of the drum test is
basically the same as that of the simulation. Overall, the proposed strategy is proven to be
practicable and exhibits excellent real-time performance in a real vehicle environment.

Table 6 Comparative fuel consumption results
Item Driving cycle FC (L/100km) Ending SOC (%)
Simulation NEDC 5.623 34.806
WLTP 6.453 35.796
Experiment NEDC 5.787 34.8
WLTP 6.702 35.8

6 Conclusion

In this study, an integrated real-time optimal energy management strategy for PHEVs
based on a rule-based vehicle operation mode switching strategy and an EF optimisation-
based AECMS is proposed. The specific work can be summarised as follows:

1  Anintegrated real-time optimal strategy that adopts a rule-based strategy to switch
the vehicle operation mode to adapt to various driving conditions and a novel
AECMS to optimise power allocation in the CS stage is proposed.

2 To obtain the optimal initial values of the EFs, two standard driving cycles, NEDC
and WLTP, were combined to form the target driving cycle. Then, the FA was
adopted to resolve the optimal EFs by minimising the fuel consumption. In addition,
the optimal EFs were validated using a powertrain test bench. To improve the
charge-sustaining capability of the AECMS, a novel EF adaptation law was proposed
based on the SOC feedback and duration of the CD mode.

3 To verify the optimality of the FA-AECMS in the CS stage, a comparison simulation
involving the rule-based strategy, ECMS, and DP was conducted. The proposed
strategy exhibits near-optimality during different driving cycles. Specifically, the
fuel consumption using the FA-AECMS is reduced by 17.96% and 15.1% in the
NEDC and WLTP, respectively, compared with that of the rule-based strategy. The
FC improvement over the ECMS is relatively small, whereas the enhancement of the
charge-sustaining capability is significant. The differences between the proposed
strategy and DP are 2.83% and 1.89% in the NEDC and WLTP, respectively,
indicating the near-optimality of the FA-AECMS. Furthermore, the drum experiment
was conducted to verify its real-time performance. The results show that flexible
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mode switching and optimal power splitting can be achieved in an actual vehicle
environment.

In the future, with the accelerating advancement of cloud computing technology and
intelligent transportation systems, the long-term prediction of the driving cycle will be
possible. The influence of road type and driving behaviour characteristics on EF will be
studied further, and a more intelligent energy management strategy should be developed
for PHEVs with autonomous technology.
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