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Abstract: The dynamic behaviour of lithium-ion battery system is analysed. 
The nonlinear parameters, residual errors and thermal faults of battery model 
are studied. In our study, a coupled electrothermal model is established based 
on the cell electrical dynamic characteristics. The parameter identification 
algorithm is presented based on Lyapunov observer. The core temperature and 
surface temperature of battery cell are calculated based on extended Kalman 
filter (EKF). We propose new thermal fault diagnosis method and the residual 
generation scheme. The urban dynamometer driving schedule (UDDS) 
dynamic working condition is used to verify our electrothermal model and fault 
diagnosis method. The experimental results indicate that the thermal 
characteristics can be described and the thermal fault can be diagnosed more 
accurately. 
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1 Introduction 

Many researchers in and abroad have studied the safety, efficiency and stability of energy 
storage system for lithium-ion battery (Stoppanin, 2017). The research priorities include 
electrode material and structure design, behaviour description, status monitoring, fault 
detection and balancing control (Lian et al., 2020; Lam et al., 2018). An accurate thermal 
model is mainly needed describe the thermal accumulation, thermal convection and 
thermal conduction during battery working period (Li et al., 2017; Fan et al., 2018;  
Zou et al., 2018; Liu et al., 2019; Dong et al., 2018). Wang gave a detailed review of 
thermal model and thermal generation characteristic for lithium-ion battery (Wang et al., 
2016; Mangoni and Soldati, 2021). The battery thermal model can be divided into two 
types: the Distributed Parameter model and the Lumped Parameter model. The battery 
thermal dynamic behaviour is described using a set of partial differential equations based 
on the distributed parameter model. The mechanisms of thermal accumulation, thermal 
convection and thermal conduction are defined using differential equations. The battery 
cell is considered as a whole part based on the Lumped Parameter model. Yang proposed 
an equivalent thermal model and the thermal dynamic behaviour is simulated using 
equivalent circuit elements (Yang et al., 2019). Fang presented a thermal concentration 
parameter model using one dimensional (1D) electrochemical model (Fang et al., 2010). 
Biron further proposed a second-order state equation based on the thermal parameters 
defined as core temperature and surface temperature. 

The battery system safety is critically related to the electrochemical characteristics, 
the thermal performance and the ageing state (Chaou and Ibe-Ekeocha, 2017). The 
factors are coupled and interact with each other. The ageing state and the thermal 
performance is related to the total available capacity, internal resistance and other 
parameters. The battery current, terminal voltage and open circuit voltage (OCV) will 
conversely affect the thermal performance. The battery models and thermal models 
presented recently can simulate the battery electrochemical characteristics and the 
thermal behaviour. However, they are considered independent to each other (Zhang et al., 
2019). The electrical models presented in Chen et al. (2019) are depended on the 
estimation value of battery capacity and resistance. Both are related to the environment 
temperature, ageing state and other factors. It undoubtedly limits the robustness of the 
battery model and the parameter identification process (Liu and He, 2017). Therefore, it 
is necessary to establish the coupled electrothermal model to simulate the battery 
dynamic behaviour accurately. 

The rest of the paper is as follows: Section 2 introduces the thermal generation 
mechanism of lithium-ion battery. The coupled electrothermal model and parameter 
identification process based on Lyapunov observer are presented in Section 3.  
In Section 4, the state estimation algorithm based on extended Kalman filter(EKF) is put 
forward. The thermal fault diagnosis method is established in Section 5 and the 
experimental results are analysed in Section 6. 

2 Thermal generation mechanism 

Practically, the electrical parameters and thermal parameters of lithium-ion battery model 
are difficult to be measured directly. Based on (Yassine and Anderson, 2020), the 
temperature distribution of cylinder cell is described as follows, 



   

 

   

   
 

   

   

 

   

    Coupled electrothermal model and thermal fault diagnosis method 85    
 

    
 

   

   
 

   

   

 

   

       
 

2

2

( , )( , ) ( , ) ( ( ) ( , ))

( , )
( , ) ( , ) ( , )

( , ) ( , )

jj j
j j j j s

e

j
j j j je

e

j j j j
s

x tT x t T x tc I t i x t
t xx

x t
i x t Fs J x t x t

x
Fs J x t T x t

ρ λ

η

∂Φ∂ ∂= − −
∂ ∂∂

∂Φ
− +

∂
+ ∆

 (1) 

where, j  indicates the positive pole, negative pole and the diaphragm. It is defined as 
{ }, ,j sep∈ + − . ρ  is the mass density of the battery, c  is the specific heat, T  is the 

battery temperature, λ  is the thermal conductivity, I  is the load current. ( , )ei x t  
represents the local current of electrolyte. sΦ  and eΦ  are the electrode potential and 
electrolyte potential, respectively. F  is the Faraday constant, s  is the cross-sectional 
area of solid particle surface, J  is the total ion flux on solid particle surface. s∆  
indicates the entropy change. 

The dynamic change of battery temperature is directly related to the electrical 
variables defined as sΦ , eΦ  and ei . However, the temperature distribution model is 
satisfied the partial differential equation. The cell radial thermal production is assumed 
unified in our study. Therefore, the thermal dynamic equation can be simplified as 
follows (Richardson et al., 2018), 

2

2

( , ) ( , ) ( , ) ( )
p

b

T r t T r t T r t Q tc
t r r r V

λρ λ∂ ∂ ∂= + +
∂ ∂ ∂  (2) 

where, pc  is the specific thermal capacity, bV  is the cell volume, ( )Q t  is the thermal 
production, r  is the radial length, t  is the sample time. According to the dynamic change 
of battery temperature distribution, the boundary conditions are shown as equations (3) 
and (4), 

0
( , ) | 0r

T r t
r =

∂ =
∂  (3) 

( , ) | ( )r R s e
T r t h T T

r λ=
∂ = −

∂  (4) 

where, R  only defines the cell radius. sT  and eT  are the surface temperature and 
environment temperature, respectively. h  is the convection coefficient. The distributed 
parameter model shown in equation (2) is not suitable for online working condition. The 
computing procedure is complex and the parameter identification is difficult. A Lumped 
Parameter model is designed to describe the dynamic characteristics. The core 
temperature defined as cT  and the surface temperature sT  are the model state vectors. 
The input vector is thermal production and the output vector is sT . The state space 
equation can be expressed as follows: 

s c
cc gen
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T T
a T Q

R

• −
= +  (5) 
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where, ca  and sa  are the heat capacity coefficients of the inside materials and battery 
surface, respectively. cR  is the thermal resistance between battery core and battery 
surface. uR  is the convection resistance between battery surface and surrounding 
environment. genQ  is the thermal production rate and it can be expressed as follows, 

( ) oc
gen L t oc L

U
Q I U U I T

T
∂

= − +
∂

 (7) 

where, LI  is the load current, tU  and ocU  are battery terminal voltage and OCV, 
respectively. The thermal value in equation (7) is caused by Ohmic loss and charge 
transfer overvoltage. The energy dissipated by electrode overvoltage is ignored to 
simplify our research (Richardson et al., 2017). 

3 Coupled electrothermal model and parameter identification algorithm 

3.1 Dynamic electrical model 

To simplify the main problems, the one-order RC equivalent circuit model is established 
as shown in Figure 1. oR  is the Ohmic resistance, 1R  and 1C  are the equivalent 
polarisation resistance and capacity, respectively. ocU  is the OCV, tU  is the terminal 
voltage. 

Figure 1 One-order RC equivalent circuit model 
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According to Kirchhoff’s law and Ohm’s law, the dynamic behaviour of the equivalent 
circuit model can be expressed as follows (Wu et al., 2017), 

1 1 1 1 1/ ( ) /LU U R C I C
•

= − +  

1t oc L oU U I R U= − −  (8) 

where, 1U  is the cross voltage of 1 1R C  parallel circuit. The function term L oI R  describes 
the voltage transient caused by Ohmic resistance. Function (8) can be discretised as 
follows, 
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1, 1 1, 1 ,
1 1 1 1
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t tU U R I

R C R C+
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 (9) 

, , 1, ,t k oc k k L k oU U U I R= − −  (10) 

where, t∆  is the sampling time. Our previous experimental results indicate that the 
relationship of OCV and SOC is basically stable during the battery ageing process. 
However, the OCV is the time-varying parameter and it changes slowly. The value can be 
described as 0ocU

•
≈ . Rewrite the function (8) by bring the parameter 1U  as function 

(11), 
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where, τ  and dcR  are defined as 1 1R Cτ =  and 1dc oR R R= + , respectively. During the 
capacity attenuation and internal resistance increasing, the dynamic behaviour 
characteristics will change. The DC internal resistance dcR  and capacity value must be 
updated online. Rewrite equation (11) as the state space equations (12)–(14), 
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where, [ ]tx U=  is the state vector, H  is the state transition matrix, [ ]Lu I=  is the battery 
input, y  is the battery output, ( , )f x u  is the non-linear function. C  is the battery 
observation matrix. θ  defines the electrical parameters and it satisfied as 

[ ]= , , T
dc oc oR U Rθ

∆
. Other parameters are defined as follows, 

1( , ) , ,L
Lt L

If U I I
τ τ

∆ •−⎡ ⎤= −⎢ ⎥⎣ ⎦
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 (15) 

3.2 Coupled electrothermal model 

The block diagram of coupled electrothermal model is shown in Figure 2. It includes 
three sub-models defined as equivalent circuit model, thermogenesis model and thermal 
model. The input and output vectors of the electrical model are the current tI  and the 
terminal voltage tU , respectively. The inputs of the thermal model are the environment 
temperature eT  and thermal production rate genQ . The outputs of the thermal model are 
the core temperature cT  and surface temperature sT . As shown in Figure 2, the parameter 

genQ  depends on the value of OCV and the internal resistance. 

Figure 2 Block diagram of coupled electrothermal model (see online version for colours) 

cT

sT

cR uR
eT

tU sT

eT LI

( )T r

LI

eT

cT

tU

genQ

sT

LI

 

3.3 Parameter identification algorithm 

The input vectors of equation (16) are genQ  and eT . The output vector is sT . The state 
vector is defined as [ ], T

c sz T T= . The state space model can be discretised as follows, 

1 ,k d k d q k kz A z B u η+ = + +  (16) 
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where, kη  and kv  are the independent Gaussian noise. qu  ,
T

q gen eu Q T⎡ ⎤= ⎣ ⎦  and qy  is 

defined as 
,

T

dcq sy R T
∧⎡ ⎤= ⎢ ⎥⎣ ⎦

. 
dcR

∧  is the estimated value of DC resistance. Considering 

function (5) and (6), the coefficient matrix dA  and dB  are as follows, 
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Equation (16) is rewritten using parameters dA  and dB  as follows, 
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where, cT  and sT  are represented by 1z  and 2z . genQ  and eT  are represented by ,1qu  and 

,2qu . The coefficients are defined as follows: 
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= . Where, N  is the 
sampling number. Equation (20) can be rewritten as linear function as follows: 
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By minimising the different value between the measured results and the estimated results, 
the parameters can be calculated. The optimisation objective function is shown as 
equation (23), 

2
1

1( ) ( ) ( )
N

T
opt

k
F k Z k k

N =

= − Φ Θ∑  (23) 

The parameter identification results can be obtained using function (24), 
* arg min ( )optF kΘ =  (24) 

4 Thermal fault diagnosis method 

The flow chart of fault information diagnosis is shown in Figure 3. Observer 1 is 
designed to estimate battery internal resistance based on Lyapunov observer. Observer 2 
is designed to estimate the core temperature based on extended Kalman filter. The inputs 
of Observer 1 are load current LI  and terminal voltage tU . The outputs of Observer 1 are 
the estimated value defined as dcR

∧
, oR

∧
 and ocU

∧
. The inputs of Observer 2 are surface 

temperature sT  and the core temperature cT . The outputs Observer 2 are the estimated 
value defined as sT

∧
 and cT

∧
. The differential equations of temperatures sT  and cT  are 

shown as equations (25) and (26), 

( )c s L t oc
c

c c c c c

T T I U U
T

R a R a a

• −
= − + −  (25) 

1 1( ) c e
s s

c s u s c s u s

T T
T T

R a R a R a R a

•
= − + + +  (26) 

To detect battery internal faults accurately and reliably, it is necessary to distinguish the 
system residual value in normal state and in fault state (Wu et al., 2017; Wang et al., 
2017). The system residual error can be calculated as, 

1,1

1, 1, 2,

1

; ,
/ |
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dc
k k kk

z z

Rr z T z z
g z ∧

∧
∧ ∧ ∧
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⎡ ⎤
⎡ ⎤⎢ ⎥= + − ⎢ ⎥⎢ ⎥∂ ∂ ⎣ ⎦⎢ ⎥⎣ ⎦

 (27) 

where, g  is the relationship function of dcR  and cT . kr  is a white Gaussian process in 
normal state and its mean value is considered as zero. However, the mean value of kr  is 
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non-zero when the system is in fault state. Based on the state space equation of core 
temperature and surface temperature, the fault model can be written as follows, 

1 ,k d k d q k k kz A z B u f η+ = + + +  (28) 

where, 1 2[ , ]
∆
= T

kf f f  are the fault vectors. The residual error 1z
•

 will be greater than the 
threshold value when the battery is on the condition of overcharge/over-discharge or 
short circuit( kf  is defined as 1 0f ≠  and 2 0f = ). The residual error 2z

•
 will be greater 

than the threshold value when the cooling system fails ( kf  is defined as 1 0f =  and 

2 0f ≠ ). When the internal resistance fails, 1z
•

 and 2z
•

 are both greater than the threshold 
value ( kf  is defined as 1 0f ≠  and 2 0f ≠ ). 

Figure 3 Flow chart of fault information diagnosis (see online version for colours) 
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Given the residual error samples defined as 1 2, , ,k s k s kr r r− + − + . Where, s  is the nearest 
sample number. The thermal fault diagnosis can be described as follows, 

:k thr no faultκ≤  

:k thr faultκ>  (29) 

where, 1
/k

k jj k s
r r s

= − +
=∑ . thκ  is the fault threshold. Because the system parameters are 

uncertainty and the system models are inaccuracy, the fault threshold must be determined 
adaptively. The system uncertainty is expressed as [ ]1 2, TW w w

∆
= . The thermal model can 

be rewritten as follows, 

1 ,k d k d q kz A z B u W−= + +  (30) 

where, 2 1W R ×∈ . The fault can be decoupled from the system input vectors using the 
linear state transition matrix. The uncertainty of the thermal model is mainly caused by 



   

 

   

   
 

   

   

 

   

   92 Q. Wang and W. Qi     
 

    
 

   

   
 

   

   

 

   

       
 

the parameters of ca , sa , dcR  and eT . Therefore, the system uncertainty can be 
expressed as follows, 

1 11 1 12 2 13 14genw p z p z p Q p= + + +  (31) 

2 21 1 22 2 23 24ew p z p z p T p= + + +  (32) 

where, p  is the boundary coefficient. Based on the Kalman filtering algorithm, the 
residual error can be expressed as follows, 

,

1( )
e k

k kd k d

A

z A L C z W
• •

−= − +  (33) 

Considering equations (18) and (19), the solution of equation (33) can be expressed as 
follows, 

1

0, ,
11 1

[ ( ) ]
k kk

k e j e j
ij j i

z A z A I W
−• •

== = +

= + + •∑∏ ∏  (34) 

Based on inequality defined as ab ab a b≤ ≤ , the equation (34) can be rewritten as 
follows, 

1

0, ,
11 1

[ ( ) ]
k kk

k e j e j
ij j i

z A z A I W
−• •

== = +

≤ + + •∑∏ ∏  (35) 

Combining equations (30)–(32), W  can be further written as follows, 

1 1, 11, 1 12, 2 13, 14,b b b b gen bw w p z p z p Q p
∆

≤ = + + +  (36) 

2 2, 21, 1 22, 2 23, 24,b b b b e bw w p z p z p T p
∆

≤ = + + +  (37) 

where, 1, 2,,
T

b b bW w w⎡ ⎤= ⎣ ⎦  represents the limit of model uncertainty. Function (35) can be 
rewritten as, 

1

, ,
11 1

[ ( ) ]
k kk

k kk e j e j b
ij j i

z A z A I Wκ
−• •

== = +

≤ = + + •∑∏ ∏  (38) 

where, 1κ  and 2κ  are the state threshold vectors defined as function (29). The second 
item on the right side of equation (38) can be equivalent as follows, 

, 1k e k k bA Wζ ζ −= +  (39) 

where, the adaptive state threshold is defined as 1 2[ , ]Tζ κ κ= . The system residual 
threshold can be calculated using equation (40), 

0,
1

k

k e j k
j

A zκ ζ
=

= +∏  (40) 

The derivation process and analysis above indicate that the different thermal faults can be 
expressed by the system residual. 
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5 Experimental results and its analysis 

5.1 Verification of thermal model parameters 
The UDDS dynamic working condition is used to verify our coupled electrothermal 
model (Wang et al., 2017). The test data of terminal voltage is shown in Figure 4. The 
first 1500 sampling data are used to calculate the model parameters. Based on equations 
(21)–(24), the system matrix is calculated based on Observer 1 as follows: 

0.8948 0.0153
0.0364 0.8567dA ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 
0.013 0

0 0.021dB ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The estimated results and the measured value of cT  and sT  with the calculated dA  and 

dB  are shown in Figure 5. The estimation error (MAE) and the root mean square error 
(RMSE) are shown in Table 1. We also use the extended Kalman filtering algorithm to 
calculate the parameters. As shown in Figure 5, the estimation curve of cT  converges to 
the measurement curve. The estimation error of sT  is greater than cT . During the initial 
sampling time within 500 s, the maximum estimation error of sT  is 0.88°C. Based on 
Observer 1, the RMSE of cT  and sT  are 0.13°C and 0.25°C, respectively. The MAE is 
0.49°C and 0.89°C, respectively. However, the RMSE and MAE value could be greater 
based on dA  and dB  using EKF. 

Table 1 Estimation error and RMSE of cT  and sT  based on observer 1 and EKF 

 Observer 1 EKF 

Estimation 
error(°C) Temperature maximum absolute error (°C) 

Root mean 
square error 

(°C) 

Maximum 
absolute 

error (°C) 

Root 
mean 

square 
error(°C) 

Sampling 
time(s) 

50 200 500 100 1500 2000 2500 3000   

cT  0.08 –0.05 –0.20 0.28 0.49 0.16 0.12 0.30 0.49 0.13 0.57 0.25 

sT  –0.68 –0.55 –0.088 0.50 –0.22 –0.80 0.75 0.87 0.88 0.27 0.96 0.38 

Figure 4 The test data of terminal voltage (see online version for colours) 
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Figure 5 Estimated and measured results of cT  and sT  based on dA / dB  value and observer 1 
(see online version for colours) 

o
C

 

5.2 Verification of fault diagnosis methods 

Based on equations (18) and (19), the other parameters can be calculated as follows: 
2.64 /o

cR C W= , 3.49 /o
uR C W= , o68.4 / Cca J= , o14.3 / Csa J= . In order to determine 

the model boundary value, the part of the model parameters are allowed  
to be disturbed (10%). The boundary condition parameters could be defined as 

5
11 22 10p p −= = , 4

12 21 10p p −= = , 13 14 24 0p p p= = =  and 4
23 10p −= . The thermal diagnosis 

results without thermal fault are shown in Figure 6. The residual signals of cT  and sT  are 
given in Figure 6(a) and (b), respectively. The range surrounded by the upper and lower 
solid lines is the fault free safety range. The results indicate that both signals are close to 
zero. The different value of 1r  and 2r  determines the residual signals of temperature 
value. As shown in Figure 6, the boundary value of 1r  is ranged within o0.02 C±  and the 
boundary value of 2r  is within o0.01 C± . The parameter κ  represents the dynamic 
change of parameter ζ . The residual signals of cT  is within boundary value based on 1κ . 
The residual signals of sT  is deviated based on 2κ . 

To verify our proposed fault diagnosis method, genQ  is inserted from sample time of 
1000 second. The residual signals of cT  and sT  are given in Figure 7(a) and (b), 
respectively. When the residual errors of 1r  is 0.12 W, the residual signals of cT  is close 
to zero. The value is deviated to boundary curve when 1r  is 0.2 W. As shown in Figure 7, 
the residual signals of sT  are close to zero when 2r  are both equal to 0.12W and 0.2W. 
Meanwhile, the minimum diagnosable thermal value is 0.12 W and the average thermal 
value is about 1.97 W after 1000 s. 
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Figure 6 Simulation results of cT  and sT  without thermal fault: (a) residual signal of cT   
and (b) residual signal of sT  (see online version for colours) 

o
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(a) 

o
C

 
(b) 

Figure 7 Simulation results of cT  and sT  with thermal fault: (a) residual signal of cT  and  
(b) residual signal of sT  (see online version for colours) 
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Figure 7 Simulation results of cT  and sT  with thermal fault: (a) residual signal of cT  and  
(b) residual signal of sT  (see online version for colours) (continued) 
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6 Conclusions 

Thermal fault is one of the most critical failures during the battery working period. It 
must be diagnosed online and accurately. Firstly, the thermal generation mechanism of 
the lithium-ion battery is analysed. The core temperature is monitored and the thermal 
fault is detected. Secondly, the coupled electrothermal model is established combining 
with the equivalent circuit model and the thermal model. The model parameters 
identification algorithm is proposed. Thirdly, the estimation method of internal resistance 
based on Lyapunov observer is presented. The estimation method of core temperature 
and surface temperature based on extended Kalman filter is put forwarded. Lastly, the 
thermal fault diagnosis method and adaptive residual threshold design scheme are given. 
Further works include considering more fault factors and different working conditions. 
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List of Symbols 

EKF Extended Kalman filter 
UDDS Urban Dynamometer Driving Schedule 
OCV Open circuit voltage 
j  Positive pole 

ρ  Mass density of the battery 
c  Specific heat 

T  Battery temperature 

λ  Thermal conductivity 

I  Load current 

( , )ei x t  Local current of electrolyte 

sΦ ， eΦ  Electrode potential and electrolyte potential 

F  Faraday constant 
s  Cross-sectional area of solid particle surface 

J  Total ion flux on solid particle surface 

s∆  Entropy change 

pc  Specific thermal capacity 

bV  Cell volume 

( )Q t  Thermal production 

r  Radial length 
t  Sample time 

R  Cell radius 

sT  Surface temperature 

eT  Environment temperature 

cT  Core temperature 

h  Convection coefficient 

ca , sa  Heat capacity coefficients 

cR  Thermal resistance 

uR  Convection resistance 
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genQ  Thermal production rate 

tU  Terminal voltage 

ocU  Open circuit voltage 

1U  Cross voltage 

dcR  DC internal resistance 

H  State transition matrix 

C  Battery observation matrix 

kη , kv  Independent Gaussian noise 

dA , dB  Coefficient matrix 

( )Z k
∧

 
State estimation value 

g  relationship function of dcR  and cT  

thκ  Fault threshold 

p  Boundary coefficient 

1κ , 2κ  State threshold vectors 

 


