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Abstract: In this study, a hybrid optimisation strategy is used to build a deep learning system for 
pan sharpening. The final output image is examined using a weighted nonlinear regression model 
after the spatial resolution of the low resolution-hyperspectral image (LR-HIS) and high 
resolution multi-spectral image (HR-MSI) is increased. The deep maxout network (DMN), which 
used residual learning to acquire its priors, is given the HR-MSI. Moreover, DMN is trained by 
fractional competitive multi-verse feedback tree algorithm (FrCMVFTA). Finally, the output 
produced from DMN and a weighted nonlinear regression model is combined together for 
obtaining pan sharpened image. The PSNR value obtained by the FrCMVFTA-based DMN for 
the dataset Indian pines by varying the number of bands is 5.41% greater than the existing 
approaches. The DD value obtained by the FrCMVFTA-based DMN for the dataset Pavia by 
varying the number of bands is 31.47% greater than existing approaches. 
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1 Introduction 
In modern days, the application of remote sensing images is 
quickly developed, but an anticipated image with high 
spatial resolution and spatial resolution cannot be attained 
through current technologies (Aiazzi et al., 2016; Hou and 
Zhang, 2016; Bhanot, 2021). Due to the increasing 
application of high-resolution (HR) multi spectral (MS) 
imaging in various domains, including spectral unmixing, 
environmental monitoring, and water quality estimation 
(Simone et al., 2002), several pan-sharpening approaches 
have been developed. The pan-sharpening technique is 
employed for getting an HRMS image through the fusion of 
HR PAN (HRPAN) image as well as low resolution MS 
image (Yang et al., 2020). The pan sharpening process is 
employed to consider the entire advantages of available 
spectral and spatial information, and it is attained from low 
spatial resolution MSI, which is connected with high spatial 
resolution PAN image (Luo et al., 2020). Remote sensing 
images are extensively utilised in several domains, like 
military, academic regions, and civil, because of the fast 
development of satellite images. However, the described 
remote sensing techniques have an inherent trade-off 
between spectral resolution and spatial resolution. As a 
result, for a certain remote sensing sensor, acquired grey 
PAN images are frequently thought to have a greater 
resolution than MS images. Besides, the pan-sharpening 
tasks are frequently observed as an essential pre-processing 
process for several remote sensing data applications (Zhang 
et al., 2022b; Wu et al., 2020), including land cover 
classification (Lv et al., 2019), urban impervious surfaces 
(Shao et al., 2019) and change identification (Bovolo et al., 
2009; Wang et al., 2021). 

The technique of combining the relevant data from two 
or more images into one image is known as image fusion. A 
data cube called the high-resolution image (HS image) 
contains a number of 2-dimensional (2D) spectral channels. 
Each of these channels provides information on the 
brightness or reflectance of a scene over a specific, limited 
wavelength range. The huge number of spectral information 
with regards to physical characteristics of material 
substances has obtained effectual achievement for target 
detection (Lin et al., 2018; Zhang et al., 20022a; Zhou et al., 
2019; Zheng et al., 2022), land use classification (Li et al., 
2017), and denoising (Yuan et al., 2018; Xie et al., 2020). 
Furthermore, high PAN and HR images as well as low 
spatial resolution MS images, are afforded concurrently 
through remote sensing satellites, like WorldView-2, 
Gaofen-2, and IKONOS, which overlay similar land regions 
(Ma et al., 2020). The HR PAN images, along with one 
band, usually include well defined spatial information, 
while low resolution MS images with multiple spectral 
bands can define the spectral diversity. Hence, fusion 

techniques, named pan-sharpening schemes, are developed 
for fusing images. In addition, the HR MS images 
encompass spectral as well as spatial characteristics (Luo  
et al., 2020). 

Various researchers applied deep learning methods to 
the pan-sharpening process (Wang et al., 2019). In modern 
days, deep neural network (DNN) driven pan-sharpening 
methods are employed for the concept of spatial image 
resolution (Cai and Huang, 2020). Additionally, various 
researchers are devised convolution neural networks 
(CNN)-based deep learning methods for the pan-sharpening 
process, like PanNet (Yang et al., 2017a), progressive 
structure-conditional generative adversarial networks 
(PSGAN) (Qian et al., 2018), and probabilistic neural 
network (PNN) (Masi et al., 2016). Deep learning-driven 
pan sharpening techniques treat the original HR MS images 
as ground truth images (Ma et al., 2020). Generally, the pan 
sharpening approaches are categorised into several types, 
such as Bayesian methods, MR analysis (MRA), matrix 
factorisation schemes, component substitution (CS), and 
tensor-based techniques (Liu et al., 2018b). The gram 
schmidt (GS) and also adaptive GS (Aiazzi et al., 2007) are 
demonstrative of CS-based techniques (Xie et al., 2020) in 
which the common CS-based fusion model is considered for 
effectual execution of pan-sharpening methods, and it 
employs linear injection method rather than backward or 
complex forward transmissions. The major contribution of 
this paper is explicated as follows: 

• FrCMVFTA-based DMN is developed for pan 
sharpening. 

• FrCMVFTA is developed by incorporating FAT and 
CMVO technique along with FC and DMN is trained 
by designed by FrCMVFTA. 

2 Literature survey 
This section explains the benefits and drawbacks of the 
current pan sharpening methods. Yang et al. (2020) 
developed a detailed optimisation approach for  
pan-sharpening. This approach effectively handled spectral 
information, although computational complexity was 
decreased. Vivone et al. (2020) introduced robust regression 
technique for the Pan sharpening process. The appropriate 
balancing was performed between the computational 
problem and fusion performance. However, this technique 
failed to enhance the overall performance. Xie et al. (2020) 
introduced HS pan sharpening approach depending on  
3-Dimensional (3-D) generative adversarial network 
(HPGAN). This approach effectively improves the spatial 
information as well as preserves spectral information. Even 
though this pan sharpening approach did not solve the  
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over fitting problems. Luo et al. (2020) presented an 
unsupervised convolutional neural network (CNN) for pan 
sharpening. This scheme enhanced the information reuse 
with the transmission but still failed to reduce the redundant 
data. 

He et al. (2020) devised spectral fidelity CNN, named 
HSpeNets for HS pan sharpening. The time consumption is 
highly reduced in this method, although it failed to solve 
various spectral distortions, like the edge of the structure in 
an enlarged box. Cai and Huang (2020) developed deep 
CNN (DCNN) for spatial resolution-guided progressive 
pan-sharpening process. This technique effectively 
improves the quantitative indicators, even though it failed to 
reduce the execution time. Ma et al. (2020) presented a  
pan-sharpening process that depends on generative 
advesarial network (GAN), termed as Pan-GAN. The 
information loss was highly decreased, but still, this scheme 
failed to improve spectral information protection. Wang  
et al. (2021) introduced dual path fusion network (DPFN) 
for the pan sharpening process. This method effectively 
reduces spectral and spatial distortion. However, this 
scheme failed to decrease the calculation complexity owing 
to the high amount of matrix operations. 

3 Problem formulation 
The high resolution-hyper spectral image (HR-HSI), as well 
as HR multi-spectral image (HR-MSI) are specified as 
matrices (Dian et al., 2019). Moreover, matrices are defined 
with two dimensions in which the first dimension represents 
the number of spectral bands, whereas other dimension 
signifies the number of pixels. The obtained LR-HSI is 
denoted as E ∈ κM×m where M indicates the number of 
spectral bands, and m = B / o here, B implies the number of 
pixels as well as o symbolises decimation factor in LR-HSI. 
Besides, HR-MSI is illustrated as, D ∈ κt×B where t signifies 
spectral band quantity. Thus, the fused image DHin is 
expressed as, 

HinD KD=  (1) 

where K refers to spectral basis, and D denotes equivalent 
coefficients. The LR-HIS T is spatially down sampled to F, 
which is given by, 

E KDRM=  (2) 

where R ∈ κB×B implies convolution between HR-HSI bands 
as well as the function of point spread of the sensor. The 
term R represents blur matrix. Furthermore, columns of 
spatial down-sampling matrix indicate the identity matrix 
subset. 

The HR-MSI F is spectrally down sampled to D, and it 
is illustrated as, 

F HKD=  (3) 

where H denotes spectral down sampling matrix in which 
rows are engaged with spectral information’s of the 
multispectral sensor. 

4 Developed Deep maxout spectral sparse prior 
representation with context encoder for  
pan-sharpening 

The block diagram of the pan sharpening model based on 
devised FrCMVFTA-based DMN is demonstrated in  
Figure 1. The hybrid optimisation driven DMN for the pan 
sharpening process is introduced. The pan-sharpening 
process is employed for fusing multi-spectral image and 
panchromatic images. Moreover, various approaches are 
developed using pan-sharpening, although these methods do 
not afford standardised implementation. Therefore, an 
effective pan sharpening approach is designed using a 
hybrid optimisation-based deep learning technique. Here, 
the LR-HSI and HR-MSI are subjected to up-sampling 
approach (Kwon and Tai, 2015) in which spatial resolution 
LR-HSI is increased as well as the final output image is 
passed to a weighted nonlinear regression model. The 
weighted nonlinear regression approach utilises the outcome 
image obtained from the upsampling process. The HR-MSI 
is given to DMN (Sun et al., 2018), which learned the  
priors by means of residual learning. Moreover, DMN is 
trained by designed FrCMVFTA, and it is newly  
introduced by integrating FAT (Li et al., 2020) and CMVO 
(Benmessahel et al., 2020) techniques along with FC 
(Bhaladhare and Jinwala, 2014). Finally, the output 
produced from DMN and a weighted nonlinear regression 
model is combined together to obtain the pan-sharpened 
image. 

Figure 1 Block diagram of pan-sharpening model based on 
developed FrCMVFTA-based DMN (see online 
version for colours) 
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Let us consider, LR-HSI image database as C with h 
quantity of LR-HSI images, which is specified as, 
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{ }1 2, ,..., ,...,v hC V V V V=  (4) 

where Vv denotes vth LR-HSI image and h represents the 
whole number of images. 

Additionally, let us consider HR-MSI image data as N 
with d number of images, which is illustrated as, 

{ }1 2, ,..., ,..,e dN G G G G=  (5) 

where Ge refers eth HR-MSI image, and d is total HR-MSI 
images. 

4.1 Up sampling 
The LR-HSI images are specified as C, which are fed to up-
sampling process for up-sampling the images into essential 
resolution. The importance of utilising up-sampling method 
(Kwon and Tai, 2015) is in order to decrease the image 
blurriness and also reducing the noises present in an image 
through recollecting natural image structure. Furthermore, 
up-sampling process increases the spatial information’s of 
HSI with the management of HR red green blue (RGB) 
image. 

The fast learning driven single image super resolution 
approach is applied for upsampling C, formulating 
structures of HR in U and also spectrum correlation between 
several wavelength channels in C. The image patches are 
sampled based on the instances of training in which every 
patch is in the dimension of 5 × 5 with primitive structures 
of W, C and U expressed as MW, MC and MU. Besides, 
ratio of resolution among W and C in training instances is 2. 
The up-sampling of the target R is performed several times, 
if up-sampling factor is bigger than 2. The spectrum 
substitution is modified following to every spatial  
up-sampling and the process is continued until C meets the 
target resolution. With consideration of every sampled 
patch, the luminance B is estimated with its RGB values, 
after that mean subtraction is employed to build a feature 
vector through pixel stacking of B channel image. The 
sample patch clustering is performed into J groups. 
Moreover, these clustered patches are considered as 
exemplars for super resolution. 

Let us assume K = {KW(g, c), KC(g, c), KU(g, c)}, such 
that 1 ≤ g ≤ J, and 1 ≤ c ≤ N(g), which expresses the trained 
exemplars, where J indicates count of clustered group and 
N(g) specifies exemplars count in every set. The exemplars 
of every set pose similar primitive structures, and 
consequently, exemplar in every set is referred as linear 
combination of other exemplars in the similar set, which is 

( )

1,
( , ) ( , )

N g
jo o c

K g c φ K g j
= ≠

=  

here φj implies linear coefficients. Therefore, linear 
coefficients are estimated depends on MC and MU, which is 
minimised as, 

2( )

1 2

( , )
arg min

( , )

N g
C C

jφ U Uj

σ K g j
φ φ

σ K g j
∗

=

   
= −   

   
  (6) 

Moreover, optimal solution φ* is formulated by means of 
simple linear regression. With the consideration of φ*, σW is 
reconstructed as, 

( )
*

1

( , )
N g

W j W
j

σ φ K g j
=

=   (7) 

After the computation of σW, patch means of C is estimated 
in order to get an accurate upsampled W. The reconstructed 
patches are accurate since overlapping patch regions 
enhanced the local compatibility. The structure is added for 
guiding total variation regularisation because the input C is 
noisy. 

( )2
2 1

ˆarg min 1o
o WW

W W W η U= − + − ∇ ∇  (8) 

where W denotes solution after exemplar super-resolution, 
∇oU implies maximal absolute gradient of U transverse 
RGB channels, 1| |W∇  refers to total variation 
regularisation, and η symbolises regularisation weight with 
rate 0.01. 

4.2 Weighted nonlinear regression model 
Let us consider HR image N and also upsampled image Dup 
(He et al., 2007) for performing the pan sharpening process. 

( ) ( )1Η( , ) ( ) ( ) ( )
2 2

X Xυ N w P υ N w P υ N N X τ N= − − + β  (9) 

where υ indicates unknown motion vector, β specifies 
regularisation parameter, w is matrix vector form, which is 
expressed as w = P(υ)N + l, here the term l is given by, 

1 ,...,
XX X

Zl l l =    (10) 

The matrix P(υ) is formed by nonlinear, differentiable 
functions of an unknown motion parametric vector. 

1[ ,..., ]X X X
Zl l l=  is the vector representing the discrete, 

concatenated and lexicographically ordered lk. Therefore, 
the weighted nonlinear regression model integrates both  
up-sampled and HR-MSI images. 

4.3 Construction of residual image using developed 
fractional competitive multi-verse feedback 
artificial tree algorithm-based deep maxout 
network 

This section explains the hybrid optimisation-based DMN 
that was developed for generating the residual image. 

4.3.1 Deep maxout network 
The outcome of the weighted nonlinear regression approach 
Din is considered as input for DMN. The DMN (Sun et al., 
2018) model indicates the multiple layer maxout, which 
utilises various benefits of trainable activation function 
approximator as well as non-saturated activation function. 
The activation function is taken into consideration by DMN, 
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which substantially speeds up training and is used for 
constructing pan-sharpening. As an example of how hidden 
elements can be activated, 

[ ]1

1
, 1,

max H
q a qa qae j

Q S ρ T
∈

= +  (11) 

[ ]2

2 1
, ,1,

max H
q a q a qa qae j

Q S ρ T
∈

= +  (12) 

[ ]
1

, ,1,
max

l

o j H
q a q a qa qae j

Q Y ρ T−

∈
= +  (13) 

1
,1,

max
j

i i H
qa q a qa qae j

Q Q ρ T−

∈  
= +  (14) 

,1,
max

j

i
q q ae j

Z Q
∈  

=  (15) 

where l implies total layers in DMN, jl signifies the number 
of units in the lth layer, ρqa refers to weights and T indicates 
bias. Moreover, DMN activation is stronger for 
approximating the arbitrary permanent activation function. 
The output produced from DMN is the residual image, 
which is signified as Dres. The structural representation of 
DMN is shown in Figure 2. 

Figure 2 Architecture of DMN (see online version for colours) 
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4.3.2 Developed fractional competitive multi-verse 
feedback artificial tree algorithm for the 
training process of deep maxout network 

Based on an FrCMVFTA that was developed to boost 
performance, DMN goes through its training procedure. In 
light of this, FAT (Li et al., 2020) and CMVO 
(Benmessahel et al., 2020) approaches, in addition to FC 
(Bhaladhare and Jinwala, 2014), are used to introduce the 
developed FrCMVFTA. The movement of biological 
material and revised branch theories encourage the use of 
the FAT approach. Many other types of real-world 
optimisation problems could be resolved using this 
approach. In addition, the competitive strategy between 
universes serves as the inspiration for the CMVO method. 
For resolving challenges with global optimisation, the 
CMVO is effective. The fundamental objective of this 
method is to create pair-wise competition, which will 
increase the rate of exploration in the search domain. By 
utilising winner-based learning, this methodology greatly 
improves the ability to exploit. However, FC is coupled 
with CMVO and FAT techniques to reduce processing time 

and information loss and to boost computing performance. 
The developed FrCMVFTA’s algorithmic procedure is 
described as follows: 

1 Initialise the population of the branch 

 In the process of receiving feedback, the branch is first 
initialised. A random sample of branches is selected 
from the branch population when the feedback process 
begins, and it is produced by the transfer of organic 
matter, which is defined as, 

( , )newA randchoose A b=  (16) 

 where A represents branch population, Anew refers to a 
selected population of the branch, and b implies the 
ratio of newly selected branch to branch population. 
Here, Anew ∈ ρq,a,T. 

2 Error computation 

 The error function, which is viewed as a minimisation 
problem, is used to identify the best solution. The best 
solution is one that produces the least mean square 
error (MSE). By, the MSE is calculated. 

( )2

1

1 z

z res
ω

γ ν D
z =

= −  (17) 

 where z denotes the total number of samples, γ 
symbolises MSE, vz indicates expected output, and Dres 
is obtained output from DMN. ω represents the training 
sample range i.e., 1  ω  z. 

3 Determine self-propagating operator 

 The self-propagating operator is carried out in order to 
renew the branch depending on CMVFTA, which is 
given by, 

( )

2 3

2 3

1 2 3

2 3

1 (0,1)

1 (0,1)

(0,1)

new

a

best

k k
A

k k rand i
k Z k A k A

rand i
k k

rand A i

+
=

+ + − ×
× + × + × − × + 

 + × × 

 (18) 

 To apply FC, substitute Az on both sides, 

( )

2 3

2 3

1 2 3

2 3

1 (0,1)

1 (0,1)
(0,1)

new z

a

z

best

k k
A A

k k rand i
k Z k A k A

k k
rand i A

rand A i

+
− =

+ + − ×
× + × + × 

 + 
 − × −
 
+ × ×  

 (19) 

 The FC concept is included in above expression, 
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[ ]

( )

2 3

2 3

1 2 3

2 3

1 (0,1)

1 (0,1)
(0,1)

f
new

a

z

best

k k
D A

k k rand i
k Z k A k A

k k
rand i A

rand A i

+
=

+ + − ×
× + × + × 

 + 
 − × −
 
+ × ×  

 (20) 

( )

1 2

2 3
3

2 3

1 2 3

2 3

1 1 (1 )
2 6

1 (1 )(2 )
24 1 (0,1)

1 (0,1)

(0,1)

new z z z

z

a

z

best

A fA fA f A

k k
f f f A

k k rand i
k Z k A k A

rand i
k k A

rand A i

− −

−

− − − −

+
− − − =

+ + − ×
× + × + × − × + − 

 + × × 

 (21) 

( )

1 2

3

2 3

2 3

1 2 3

2 3

1 1( 1) (1 )
2 6

1 (1 )(2 )
24

1 (0,1)

1 (0,1)

(0,1)

new z z z

z

a

best

A A f fA f A

f f f A

k k
k k rand i

k Z k A k A
rand i

k k
rand A i

− −

−

= − + + −

+ − −

+
+

+ + − ×
× + × + × − × + 

 + × × 

 (22) 

 where k1, k2 and k3 are random number ranges from  
[0, 1], i denotes constant, i = 0.382, Abest is best branch 
position, A indicates mean location rate of relevant 
universes, Aa is winner universe in kth round of 
competition, rand(0, 1) implies random integer among 
0 and 1, and Z symbolises coefficient, and it is 
illustrated as, 

1/

1/1
H

H
yZ
Y
 

= −  
 

 (23) 

 where y is current iteration H = 6, and Y represents 
maximum iteration. 

4 Discover dispersive propagation operator 

 The dispersive propagation operator is finished to offer 
branch evolution once the self-propagation operator is 
finished. In this situation, a second branch is found 
based on both the new branch and the position of the 
original branch. The half territory is utilised to produce 
a new branch at random in this case. Consequently, the 
dispersive operator is defined as, 

( 1,1)qo po pA A rand Q i= + − × ×  (24) 

(0,1)xo po qoA A rand A= + ×  (25) 

 where Aqo and Axo signifies oth element of Aq and Ax. 
Here, Aq and Ax are generated two branch locations as 
well as Qp indicates branch territory. 

5 Re-evaluation of error 

 Once the branch location updation is finished, then the 
error of every branch is estimated using equation (17). 

6 Termination 

 All the above steps are continued until the best optimal 
solution is obtained. 

Algorithm 1 deliberates the pseudo-code of developed 
FrCMVFTA. 

Algorithm 1 Pseudo code of devised FrCMVFTA 

S. 
no. Pseudo code of introduced FrCMVFTA 

1 Input: Arbitrary branch location A, iteration y, and 
maximum iteration Y 

2 Output: Optimal branch position Abest 
3 Start 
4  Initialise branch population and other algorithmic 

parameters 
5  Estimate the initial population 
6  Cycle = 1 
7  Repeat 
8  Estimate the count of branches in branch population 

A 
9  if A ≥ α where, α is number of branches in branch 

population 
10   if Cycle > 1 
11   Incorporate current and previous branch 

population 
12   Consider α better branches between new set of 

branches 
13   end if 
14  for o = 1 to a 
15   for p = 1 to α 
16   for z = 1 to σ do 
17    If territory of branch p is not crowd 
18     Execute crossover operator to create new 

branch 
19    else 
20     Accomplish self-evolution operator for 

new branch based on equation (22) 
21   end if 
22   If new branch is higher than branch p 
23    Break present for loop 
24   end if 
25    end for 
26 If better branch is not found 
27 Perform random operator for generating new branch 
28 end if 
29 Update the branch with new branch 
30 end for 
31 Obtain new branch 
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32 Update the best solution 
33 end for 
34 Select initial branch population for feedback 
35 else 
36 for p = 1 to A 
37 for z = 1 to σ do 
38 If territory of branch p is not crowd 
39 Perform dispersive propagation operator for the new 

branch 
40 else 
41 Perform self-evolution operator for new branch using 

equation (22) 
42 end if 
43  If a new branch is superior than branch p 
44 Break present for loop 
45 end if 
46 end for 
47  If better branch is not found 
48 Execute random operator to createa new branch 
49 end if 
50 Update the branch with the new branch 
51 end for 
52 Attain new branch 
53 Update the optimal solution 
54 Integrate current and previous branch population 
55  end if 
56  Cycle = cycle + 1 
57  Until the function evaluation number reaches the 

maximal function evaluation number 
58  Return Abest 
59 end 

4.4 Content encoder-based fusion of images 
Here, output produced from DMN Dres is combined with the 
output of the weighted nonlinear regression model Din based 
on the content encoder model. The output of DMN and 
weighted nonlinear regression technique is considered as 
input for encoder and it generates latent feature 
representation. Finally, the fused image DFin is obtained by 
fusing both outputs from DMN and the weighted nonlinear 
regression method. 

4.4.1 Encoder decoder pipeline 
The encoder and decoder are linked based on the channel 
wise fully connected layer. This process permits every unit 
in the decoder to reason about total image content (Dian  
et al., 2018). 

1 Encoder 

 The Alexnet architecture serves as the foundation for 
the encoder in this case. The first five convolutional 
layers in this scenario, followed by a pooling layer, 

were used to estimate the representation of the 
dimensional features. The convolution layers connect to 
every feature map, even if they never directly link 
every point in a given feature map. Information cannot 
be transferred directly from one corner of the feature 
map to another if the encoder model only comprises 
convolution layers. In this way, activations are 
connected directly to one another and fully 
interconnected inner products handle information 
handling. The characteristics of the encoder are also 
connected to the decoder via a channel-wise fully 
linked layer. 

2 Channel wise fully connected layer 

 This layer is more important for propagating 
information in activations of every feature map. 
Although, it is having no parameters linking to various 
feature maps as well as propagates the information in 
the feature map. 

3 Decoder 

 Based on encoder features, the decoder approach 
generates the image’s pixels. Additionally, a  
channel-wise entirely connected layer links the 
characteristics of the encoder and the decoder. After the 
channel-wise fully connected layer, five up convolution 
layers with learned filters and the rectified linear unit 
(ReLU) activation function are added. 

4.4.2 Loss function 
Moreover, the employed context encoders are trained 
through retreating the ground truth content of input images. 
Although, there are various similarly probable behaviours in 
order to fusing the images, and it is dependable with 
context. Decoupled joint loss function is used in this 
procedure to manage the output’s multiple modes and 
context continuity. Reconstruction loss, on the other hand, 
may be trusted to accurately represent the model of image 
fusion and maintain consistency with its contexts. The 
masks are automatically generated for image and training 
iterations during the training process. The loss function is 
expressed as, 

intjo rec rec adv advL τ L τ L= + +  (26) 

where Lrec depicts reconstruction loss, and Ladv represents an 
adversarial loss. 

 
The reconstruction loss is specified as, 

( )( )( )
2

ˆ ˆ( ) 1recL n C n R C n= − −   (27) 

where ° refers element wise product operation, Ĉ  implies 
binary mask, R signifies context encoder, and n represents 
ground truth image. The adversarial loss is mainly 
depending on generative adversarial network (GAN), which 
is illustrated as, 
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( )( )( )ˆmax log ( ) log 1 1adv n NX
L X n X R C n∈

 = ℜ + − −   (28) 

where X is the adversarial discriminator. 

5 Optimising fusion problem using developed 
Deep maxout-context encoder based spectral 
sparse prior representation 

The major intent is to formulate the fused image DFin in 
which the term D must be estimated (Dian et al., 2018), 
which is expressed as. 

The HR-HSI is employed in order to solve the 
optimisation problem, which is given by, 

2min Ι Μ ΖΚFin Fin oD
D R F D χ D D− + − + −  (29) 

Hence, Do is included in order to solve the sparsity and the 
resultant expression is denoted as, 

1

2

min Ι Μ ΥΚ | |FinF

Fin o

D R F D χ D

χ D D

− + − +

+ −
 (30) 

where χ2 specifies regularisation attribute. Let us consider 
P1 = D and P2 = KD, as well as produces augmented 
Lagrangian function, which is specified as, 
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1 2 1 2 2

1 1 2
2

1
1

2
2

2

Ε ,Ρ ,Ρ , , Ρ Μ ΥΚ
Ρ Κ

ΡΡ
2
ΡΡ Κ
2.

o

D O O F R F D

χ χ D D

ν D
ν

ν D
ν

= − + −

+ + −

+ − +

+ − +

 (31) 

where P1 and P2 indicates the Lagrangian multiplier. 
Through decreasing augmented Lagrangian function 
outcomes, 

( )1
1 2 1 2arg min Ε,Ρ ,Ρ , ,h h h h h

F
D O O+ =  (32) 

( )
2

1 1
2 1 2 1 2

Ρ
Ρ arg minΕ ,Ρ ,Ρ , ,h h h h hD O O+ +=  (33) 

( )
1

1 1 1
1 1 2 1 2

Ρ
Ρ arg minΕ ,Ρ ,Ρ , ,h h r h hD O O+ + +=  (34) 

The sub-problems of expression (32) (33) and (34), which 
are given below as, 
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( )1 1 1
1 1 12 Ρh h h hO O ν D+ + += + −  (38) 

( )1 1 1
2 2 22 Ρ Κh h h hO O ν D+ + += + −  (39) 

where 

( ) ( ),Α ( )*max | | Α,0 ,soft D sign D D= −  

and max(D, A) indicates the maximum of D and A. 

6 Results and discussion 
This section discusses the results and analyses of the 
developed FrCMVFTA-based DMN for pan-sharpening. 
This section includes contains details on the experimental 
setup, dataset description, experimental results, comparative 
methodologies, analysis, and commentary. 

6.1 Experimental setup 
The newly developed FrCMVFTA-based DMN for  
pan-sharpening is performed using the PYTHON tool, 
which is run on a computer running Windows 10OS, an 
Intel i3 processor, and 8GB of RAM. 

6.2 Dataset description 
The implementation of the developed pan sharpening 
approach is carried out by means of two datasets, including 
Indian Pines, Pavia (Indian Pines and Pavia Centre and 
University data, 2022). 

a Indian Pines 

 This data is collected using an AVIRIS sensor 
considering the Indian Pines test site in North-western 
Indiana. It includes 145 pixels with 224 spectral 
reflectance bands considering wavelength, which 
ranges from 0.4 to 2.5 × 10 ˄ (–6) metres. This data 
contains one-third forest and two-thirds agriculture. 

b Pavia 

 This data is accomplished with ROSIS sensor through 
flight operation throughout Pavia. In this dataset, Pavia 
includes 102 spectral bands and 1096*1096 pixels 
images. Furthermore, the geometric resolution of the 
Pavia database is 1.3 metres. 

6.3 Experimental results 
The experimental pan-sharpening results are shown in 
Figure 3. Figure 3(b) shows the outcomes of the spectral 
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sparse prior, while Figure 3(a) shows the input images 1, 2, 
3, and 4. The output from the weighted nonlinear regression 
approach is also shown in Figure 3(c), and the fused end 
result image is shown in Figure 3(d). 

Figure 3 Experimental results of developed FrCMVFTA-based 
DMN, (a) input image-1, 2, 3 and 4 (b) output image-1 
for input image-1,2,3 and 4 (c) output image-2 for 
input image-1, 2, 3 and 4 (d) final fused image-1 for 
input image-1, 2, 3 and 4 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

6.4 Comparative techniques 
The existing pan-sharpening techniques, namely Context 
based GLP (Yang et al., 2020), CNN (Vivone et al., 2020), 
low rank fuzzy fusion (Luo et al., 2020), HOGAN (Ma  
et al., 2020), CMVFTA-based DMN, pose and expression 
robust spatial-aware GAN (PSGAN) (Liu et al., 2018a), and 
path aggregation network (PanNet) (Yang et al., 2017b) are 
considered for evaluating the performance of developed 
FrCMVFTA-based DMN model. 

6.5 Comparative analysis 
The developed FrCMVFTA-based DMN approach is 
compared in this section using two datasets, including 
Indian Pines, and Pavia along with the number of bands and 
neta value. 

6.5.1 Comparative analysis using Indian pines 
This section describes the examination of the  
FrCMVFTA-based DMN developed using Indian Pines data 
by varying the number of bands and neta value. 

1 Analysis by changing the number of bands 

 Figure 4 displays the examination of the created 
FrCMVFTA-based DMN for performance indicators 
with various band counts. The examination of the 
newly introduced FrCMVFTA-based DMN for Peak 
signal-to-noise ratio (PSNR) is presented in Figure 4(a). 
In 20 bands, the developed FrCMVFTA-based DMN’s 
PSNR is 51.655 dB, compared to 26.667 dB for 
context-based GLP, 10.453 dB for CNN, 18.892 dB for 
low rank fuzzy fusion, 42.952 dB for HOGAN, 46.959 
dB for PanNet, 47.898 dB for PSGAN, and 48.856 dB 
for CMVFTA-based DMN. Figure 4(b) shows the 
examination of the developed FrCMVFTA-based DMN 
for DD. In 40 bands, the developed FrCMVFTA-based 
DMN’s DD is 0.064 dB, while the context-based GLP’s 
DD is 0.097 dB, CNN’s DD is 0.189 dB, the low rank 
fuzzy fusion DD is 0.410 dB, the HOGAN DD is 0.070 
dB, the PanNet DD is 0.066 dB, the PSGAN DD is 
0.077, and CMVFTA-based DMN is 0.064 dB. The 
examination of the newly developed  
FrCMVFTA-based DMN for SSIM is presented in 
Figure 4(c). Context based GLP is 0.714 dB, CNN is 
0.844 dB, Low rank fuzzy fusion is 0.741 dB, HOGAN 
is 0.781 dB, PanNet is 0.871 dB, PSGAN is 0.889 dB, 
and CMVFTA-based DMN is 0.906 dB. The developed 
FrCMVFTA-based DMN’s SSIM is 0.924 dB in 20 
bands. The examination of the newly introduced 
FrCMVFTA-based DMN for CC is presented in  
Figure 4(d). In 20 bands, the created  
FrCMVFTA-based DMN’s CC is 0.832 dB, context 
based GLP’s is 0.552 dB, CNN’s is 0.697 dB, low rank 
fuzzy fusion’s is 0.860 dB, HOGAN’s is 0.752 dB, 
PanNet’s is 0.785 dB, PSGAN’s is 0.760, and the 
CMVFTA-based DMN is 0.793 dB. 

2 Analysis by shifting neta value 

 Figure 5 depicts the comparison of the created 
FrCMVFTA-based DMN after changing the neta value 
with various parameters. The introduced  
FrCMVFTA-based DMN for PSNR analysis is plotted 
in Figure 5(a). When the neta value is 20, the created 
FrCMVFTA-based DMN’s PSNR is 45.217 dB, 
Context based GLP’s is 29.999 dB, CNN’s is 13.179 
dB, Low rank fuzzy fusion’s is 22.043 dB, PanNet’s is 
42.657 dB, HOGAN’s is 40.870 dB, PSGAN’s is 
41.279 dB, and the CMVFTA-based DMN is  
43.084 dB. In Figure 5(b), the analysis of the created 
FrCMVFTA-based DMN for DD is shown. When neta 
is 40, the created FrCMVFTA-based DMN’s DD is 
0.074 dB, Context-based GLP’s is 0.103 dB, CNN’s is 
0.169 dB, Low-rank Fuzzy Fusion’s is 0.408 dB, 
HOGAN’s is 0.080 dB, PanNet’s is 0.076 dB, 
PSGAN’s is 0.081, and the CMVFTA-based DMN is 
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0.102 dB. The new FrCMVFTA-based DMN for SSIM 
analysis is depicted in Figure 5(c). When neta is equal 
to 20, the created FrCMVFTA-based DMN’s SSIM is 
0.824 dB, while Context-based GLP is 0.547 dB, CNN 
is 0.690 dB, Low rank fuzzy fusion is 0.852 dB, 
HOGAN is 0.745 dB, PanNet is 0.778 dB, PSGAN is 
0.752 dB, and CMVFTA-based DMN is 0.785 dB. The 
introduced FrCMVFTA-based DMN for CC is analysed 
and plotted in Figure 5d). When neta is equal to 20, the 
CC of the developed FrCMVFTA-based DMN is 0.632 
dB, Context based GLP is 0.825 dB, CNN is 0.857 dB, 
Low rank fuzzy fusion is 0.691 dB, HOGAN is 0.770 
dB, PanNet is 0.786 dB, PSGAN is 0.801 dB, and 
CMVFTA-based DMN is 0.916 dB. 

Figure 4 Comparative analysis of developed FrCMVFTA-based 
DMN using Indian Pines with a number of bands,  
(a) PSNR (b) DD (c) SSIM (d) CC (see online version 
for colours) 

 
(a) 

 
(b) 

 

 

 

Figure 4 Comparative analysis of developed FrCMVFTA-based 
DMN using Indian Pines with a number of bands,  
(a) PSNR (b) DD (c) SSIM (d) CC (see online version 
for colours) 

 
(c) 

 
(d) 

Figure 5 Comparative analysis of introduced FrCMVFTA-based 
DMN using Indian Pines with different neta value,  
(a) PSNR (b) DD (c) SSIM (d) CC (see online version 
for colours) 

 
(a) 
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Figure 5 Comparative analysis of introduced FrCMVFTA-based 
DMN using Indian Pines with different neta value,  
(a) PSNR (b) DD (c) SSIM (d) CC (continued) (see 
online version for colours) 

 
(b) 

 
(c) 

 
(d) 

6.5.2 Comparative analysis using Pavia 
The analysis of developed FrCMVFTA-based DMN based 
on Pavia data through shifting number of bands and neta is 
plotted in this section. 

1 Analysis by changing the number of bands 

 Figure 6 displays the study of a DMN built on the 
FrCMVFTA for performance measures with various 
band counts. Figure 6(a) shows the results of the PSNR 
analysis of the newly created FrCMVFTA-based DMN. 
The created FrCMVFTA-based DMN has a PSNR of 
42.688 dB in 20 bands, compared to 36.538 dB for 
context-based GLP, 19.653 dB for CNN, 17.544 dB for 
low rank fuzzy fusion, 39.079 dB for HOGAN, 40.272 
dB for PanNet, 39.466 dB for PSGAN, and 40.674 dB 
for CMVFTA-based DMN. The generated 
FrCMVFTA-based DMN for DD is evaluated in  
Figure 6(b). A developed FrCMVFTA-based DMN’s 
DD in 40 bands is 0.064 dB, compared to 0.077 dB, 
0.092 dB, 0.460 dB, 0.070 dB, 0.066 dB, 0.081 dB, and 
0.083 dB for context-based GLPs, CNNs, low rank 
fuzzy fusions, HOGANs, PanNets, and PSGANs. 
Figure 6(c) shows the new FrCMVFTA-based DMN 
for SSIM analysis. The SSIM of the newly developed 
FrCMVFTA-based DMN in the 20 bands is 0.924 dB, 
compared to 0.714 dB, 0.731 dB, 0.781 dB, 0.741 dB, 
0.781 dB, 0.871 dB, 0.889 dB, and 0.906 dB for CNN, 
CNN-based GLP, low rank fuzzy fusion, HOGAN, 
PanNet, and CMVFTA-based DMN. Figure 6(d) shows 
the analysis of the recently introduced  
FrCMVFTA-based DMN for CC. The developed 
FrCMVFTA-based DMN’s CC in 20 bands is  
0.914 dB, compared to 0.707 dB, 0.835 dB, 0.733 dB, 
0.773 dB, 0.862 dB, 0.880 dB, and 0.897 dB for 
context-based GLP, CNN, low rank fuzzy fusion, 
HOGAN, PanNet, and PSGAN, and CMVFTA-based 
DMN, respectively. 

Figure 6 Comparative analysis of developed FrCMVFTA-based 
DMN using Pavia with number of bands, (a) PSNR  
(b) DD (c) SSIM (d) CC (see online version  
for colours) 

 
(a) 
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Figure 6 Comparative analysis of developed FrCMVFTA-based 
DMN using Pavia with number of bands, (a) PSNR  
(b) DD (c) SSIM (d) CC (continued) (see online 
version for colours) 

 
(b) 

 
(c) 

 
(d) 

 

 

 

Figure 7 Comparative analysis of introduced FrCMVFTA-based 
DMN using Pavia with different neta value, (a) PSNR 
(b) DD (c) SSIM (d) CC (see online version  
for colours) 

 

(a) 

 
(b) 

 
(c) 
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Figure 7 Comparative analysis of introduced FrCMVFTA-based 
DMN using Pavia with different neta value, (a) PSNR 
(b) DD (c) SSIM (d) CC (continue) (see online version  
for colours) 

 
(d) 

2 Analysis by shifting neta value 

 Figure 7 displays a comparison of the developed 
FrCMVFTA-based DMN after modifying the neta 
value with various metrics. Figure 7(a) shows the 
analysis of the recently implemented  
FrCMVFTA-based DMN for PSNR. When the neta 
value is 20, the PSNR of the produced FrCMVFTA-
based DMN is 43.635 dB, the PSNR of the context-

based GLP is 37.252 dB, the PSNR of the CNN is 
20.300 dB, the PSNR of the low rank fuzzy fusion is 
18.703 dB, the PSNR of the HOGAN is 37.997 dB, the 
PSNR of the PanNet is 41.165 dB, the PSNR of the 
PSGAN’s is 39.517 dB, and PSNR of the  
CMVFTA-based DMN is 41.577 dB. The analysis of 
the developed FrCMVFTA-based DMN for DD is 
shown in Figure 7(b). When neta is 40, the DD of the 
produced FrCMVFTA-based DMN is 0.073 dB, the 
DD of the context-based GLP is 0.087 dB, the DD of 
CNN is 0.112 dB, the DD of the low rank fuzzy fusion 
is 0.450 dB, the DD of HOGAN is 0.080 dB, the DD of 
PanNet is 0.074 dB, the DD of PSGAN is 0.076, and 
CMVFTA-based DMN’s DD is 0.085dB. Figure 7(c) 
shows the analysis of the recently created  
FrCMVFTA-based DMN for SSIM. The developed 
FrCMVFTA-based DMN’s SSIM is 0.878 dB at a neta 
value of 20, compared to 0.679 dB for the context-
based GLP, 0.802 dB for CNN, 0.704 dB for low rank 
fuzzy fusion, 0.743 dB for HOGAN, 0.828 dB for 
PanNet, 0.845 dB for PSGAN, and 0.861 dB for 
CMVFTA-based DMN. Figure 7(d) presents the 
analysis of the recently implemented  
FrCMVFTA-based DMN for CC. The CC of the 
created FrCMVFTA-based DMN is 0.869 dB when 
neta is 20, compared to 0.794 dB for CNN, 0.697 dB 
for Low rank fuzzy fusion, 0.735 dB for HOGAN, 
0.820 dB for PanNet, 0.836 dB for PSGAN, and  
0.853 dB for the CMVFTA-based DMN. 

Table 1 Comparative discussion 

Variation Metrics Context-based 
GLP CNN Low rank 

fuzzy fusion HOGAN CMVFTA-based 
DMN PanNet PSGAN 

Developed 
FrCMVFTA-based 

DMN 

Dataset Indian pines 

Number 
of bands 

DD (dB) 0.089 0.140 0.406 0.070 0.066 0.071 0.085 0.064 
PSNR (dB) 26.667 10.453 18.892 42.952 47.130 48.072 49.034 51.843 
SSIM (dB) 0.701 0.844 0.787 0.782 0.878 0.895 0.913 0.930 
CC (dB) 0.470 0.623 0.750 0.836 0.867 0.844 0.876 0.919 

Neta DD (dB) 0.097 0.127 0.401 0.080 0.076 0.076 0.100 0.075 
PSNR (dB) 25.523 9.138 16.052 45.404 47.088 45.859 47.559 49.913 
SSIM (dB) 0.465 0.617 0.743 0.828 0.858 0.836 0.867 0.910 
CC (dB) 0.620 0.814 0.842 0.692 0.776 0.792 0.807 0.922 

Dataset Pavia 

Number 
of bands 

DD (dB) 0.077 0.092 0.460 0.070 0.065 0.081 0.083 0.063 
PSNR (dB) 36.667 19.724 18.921 39.184 41.952 41.113 42.372 44.469 
SSIM (dB) 0.701 0.608 0.739 0.782 0.878 0.895 0.913 0.930 
CC (dB) 0.694 0.835 0.779 0.774 0.869 0.886 0.904 0.921 

Neta DD (dB) 0.086 0.108 0.457 0.080 0.075 0.076 0.087 0.073 
PSNR (dB) 37.252 20.300 18.703 37.997 41.165 39.517 41.577 43.635 
SSIM (dB) 0.679 0.802 0.704 0.743 0.828 0.845 0.861 0.878 
CC (dB) 0.660 0.794 0.741 0.736 0.826 0.843 0.859 0.876 
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6.6 Comparative discussion 
Table 1 shows a comparison of developed  
FrCMVFTA-based DMNs that were based on various 
datasets for DD and PSNR measures. In 50 bands, the 
developed FrCMVFTA-based DMN’s PSNR is 51.843 dB, 
compared to 26.667 dB for context-based GLP, 10.452 dB 
for CNN, 18.892 dB for low rank fuzzy fusion, 42.952 dB 
for HOGAN, 47.130 dB for CMVFTA-based DMN, 48.072 
dB for PanNet, and 49.034 dB for PSGAN using data from 
Indian pines. Based on the weighted nonlinear regression 
model that is being used, the PSNR of the developed 
FrCMVFTA-based DMN is much improved. For 50 bands, 
the DD of existing approaches and the FrCMVFTA-based 
DMN that was developed using data from pavaia 0.077 dB, 
0.092 dB, 0.460 dB, 0.070 dB, 0.065 dB, 0.081 dB, 0.083 
dB, and 0.063 dB. The use of the hybrid optimisation 
strategy reduces the DD of the developed pan-sharpening 
technique. 

7 Conclusions 
This research presents an effective pan-sharpening solution 
based on the FrCMVFTA-based DMN. The pan-sharpening 
procedure takes into account the images, such as HR-MSI 
and LR-MSI. The weighted nonlinear regression model’s 
output image is provided to DMN, whose priors are trained 
using the residual learning model. The DMN is also trained 
using a developed optimisation method known as 
FrCMVFTA. As a result, the FAT, CMVO, and FC methods 
were combined to create the newly designed FrCMVFTA. 
Here, the CMVO algorithm was used to solve engineering 
problems, but the FC model experienced less information 
loss. The FrCMVFTA optimisation model that was 
developed as a result is an efficient solution for deep 
learning technique training. The performance of pan 
sharpening is improved by DMN’s greatly reduced 
computational cost and computational complexity. The 
PSNR and DD measurements are also employed to evaluate 
the efficiency of the proposed pan sharpening method. As a 
result, the FrCMVFTA-based DMN that was introduced 
performed better, with a DD of 0.063 dB and a PSNR of 
51.843dB. The developed pan sharpening approach can also 
be expanded by taking into account more significant 
datasets and hybrid optimisation algorithms. 
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