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Abstract: Population-based decomposition methods decompose a multi-objective optimisation 
problem (MOP) into a set of single-objective subproblems (SOPs) and then solve them 
collaboratively to produce a set of Pareto optimal solutions. Most of these methods use heuristics 
such as genetic algorithms as their search engines. As a result, these methods are not very 
efficient. This paper investigates how to do a gradient search in multi-objective decomposition 
methods. We use the NBI-style Tchebycheff method to decompose a MOP since it is not 
sensitive to the scales of objectives. However, since the objectives of the resultant SOPs are 
non-differentiable, they cannot be directly optimised by the classical gradient methods. We 
propose a new gradient descent method, decomposition gradient descent (DGD), to optimise 
them. We study its convergence property and conduct numerical experiments to show its 
efficiency.
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1 Introduction

A multi-objective optimisation problem (MOP) can be
formulated as follows:

minimise F (x) = (f1(x), ..., fm(x))
T

subject to x ∈ Ω, (1)

where Ω ⊂ Rn is the decision space, x ∈ Ω is the
decision vector, and fi(x) : Ω → R, i = 1, 2, ...,m are
continuously differentiable objective functions. Since these
objectives often conflict with one another, no solution in
Ω can minimise all the objectives simultaneously. Pareto
optimality is commonly used to define the best trade-off
solutions. A decision vector x∗ ∈ Ω is called weakly Pareto
optimal if there does not exist another decision vector
x ∈ Ω such that fi(x) < fi(x

∗) for all i ∈ {1, ...,m}. A
decision vector x∗ ∈ Ω is called Pareto optimal if no
x ∈ Ω such that fi(x) ≤ fi(x

∗) for all i ∈ {1, ...,m}, and
fj(x) < fj(x

∗) for at least one index j ∈ {1, ...,m}. The
set of all Pareto optimal decision vectors is called the
Pareto set (PS). An objective vector is Pareto optimal if its
corresponding decision vector is Pareto optimal and the set
of all Pareto optimal objective vectors is called the Pareto
front (PF) (Miettinen, 2012; Ojha et al., 2019).

Population-based evolutionary algorithms (Deb et al.,
2002; Zhou et al., 2011; Coello et al., 2020; Jiang and
Yang, 2015) are efficient in finding multiple solutions
simultaneously, and decomposition-based multi-objective
evolutionary algorithms (MOEA/D) (Zhang and Li, 2007;
Trivedi et al., 2016; Wu et al., 2018; Li et al., 2021)
are widely used to find a set of Pareto optimal solutions
to approximate the PS and/or PF. MOEA/D and its
variants convert the MOP into a number of single-objective
optimisation subproblems (SOPs) (Li and Zhang, 2008;
Zhou and Zhang, 2015; Chen et al., 2021), and then
solve them simultaneously in a collaborative manner. Any
single-objective optimisation algorithm can be used to solve
each subproblem. Most existing MOEA/D algorithms use
derivative-free heuristics as their search engines, which
could be inefficient for problems with valid gradient
information.

Recently, gradient-based multi-objective optimisation
methods have attracted growing research efforts in machine
learning (Sener and Koltun, 2018; Milojkovic et al., 2019;
Mahapatra and Rajan, 2020). For example, these gradient
methods have been used in multi-objective reinforcement
learning (Xu et al., 2020), recommendation systems
(Milojkovic et al., 2019; Mitrevski et al., 2020) and
multi-task learning (MTL) (Mart́ın and Schütze, 2018;
Lin et al., 2019). The multiple-gradient descent algorithm
(MGDA) (Fliege and Svaiter, 2000; Gebken et al.,
2017) is one of the most widely used multi-objective
gradient descent methods in machine learning. It uses the
Karush-Kuhn-Tucker (KKT) condition and finds a descent
direction for all the objectives. Sener and Koltun (2018)
cast an MTL problem as a MOP and then use MGDA to
solve it. Lin et al. (2019) decomposes an MTL problem
into several multi-objective optimisation subproblems and

uses MGDA as its optimiser. A significant drawback of
MGDA is that it cannot produce a Pareto optimal solution
for a given preference. It cannot generate a set of uniformly
distributed solutions for approximating the PF.

In this paper, we propose a novel gradient-based method
to directly optimise the subproblems in MOEA/D such
that it can generate Pareto optimal solutions for any given
preferences. Specifically, due to the drawbacks of classical
scalarisation methods, we use the NBI-style Tchebycheff
method proposed by Zhang et al. (2010) as the scalarisation
method, which is insensitive to the scales of objectives.
Since the corresponding SOP is non-differentiable, scalar
optimisation methods cannot be directly adopted. Hence, we
propose a new gradient descent method, the decomposition
gradient descent (DGD) method, to optimise these SOPs.
The DGD method combines the gradient descent method
and the improved MGDA to solve the non-differentiable
subproblem. In order to get an adequate objective value
decrease, the line search based on the Armijo rule
is employed. Under some mild assumptions, there is
a decreasing sequence for each NBI-style Tchebycheff
problem. The numerical experiments show that the DGD
method can obtain a well-distributed Pareto optimal set.

Our major contributions to this paper are as follows:

• Firstly, we give the theoretical results of the
NBI-style Tchebycheff method.

• Secondly, we propose a gradient-based method for the
NBI-style Tchebycheff problem and give some
theoretical analysis.

• Thirdly, the proposed DGD method performs well in
both convergence and diversity of the obtained PS
than traditional gradient-based algorithms.

The rest of this paper is organised as follows. Section 2
introduces the decomposition-based and gradient-based
methods, including the MGDA and the increment central
descent method (ICDM). Section 3 presents the NBI-style
Tchebycheff problem and some theoretical results. Section 4
proposes a DGD method to solve the NBI-style Tchebycheff
problem. Section 5 gives the theoretical analysis of
the DGD method. In Section 6, we conduct numerical
experiments. Finally, Section 7 concludes this paper.

2 Related works

2.1 Decomposition-based approaches

The scalarisation method plays a crucial role in MOEA/D
(Zhang and Li, 2007) and its variants (Liu et al.,
2013; Lin et al., 2019). It transforms the MOP into a
sequence of single-objective optimisation subproblems. An
evenly distributed PF can be approximately obtained by
solving these subproblems. Classical scalarisation methods
include the weighted sum (WS) method (Zadeh, 1963), the
weighted Tchebycheff (TCH) method (Bowman, 1976), the
penalty-based boundary intersection (PBI) method (Zhang
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and Li, 2007), and the normal boundary intersection (NBI)
method (Das and Dennis, 1998), etc.

However, most of the existing decomposition methods
(Eichfelder, 2009) have shortcomings in approximating the
PF of the MOP. The WS method fails to obtain the
non-convex PF (Boyd et al., 2004). Moreover, the WS
and the weighted TCH methods are sensitive to the scales
of the objectives. The PBI method is sensitive to the
penalty coefficient. Compared to these three approaches
mentioned above, the NBI approach is relatively insensitive
to scales of objective functions and has no extra parameters.
However, the NBI method can not be applied directly since
the extra constraints. Since most scalarisation methods rely
heavily on extra parameters (e.g., weighting factors, penalty
coefficient) or constraints, Zhang et al. (2010) proposed
an NBI-style Tchebycheff method, which could get rid of
these drawbacks. The following section will introduce the
NBI-style Tchebycheff method and present some theoretical
results.

2.2 Gradient-based methods

2.2.1 Multi-objective gradient descent method

In MGDA (Fliege and Svaiter, 2000; Désidéri, 2012), a
necessary condition for a point x ∈ Ω ⊂ Rn to be locally
Pareto optimal is

Im(JF (x)) ∩ (−Rm
++) = ∅, (2)

where JF (x) is the m× n Jacobian matrix of F at x and
Im(JF (x)) = {JF (x)d|d ∈ Rn}. A point x that satisfies
equation (2) is called Pareto critical. This means that there
does not exist a direction d at the Pareto critical point x,
such that ∇fi(x)

T d < 0, for all i ∈ {1, ...,m}. In other
words, if a point x is not Pareto critical, then there exists
a direction d ∈ Rn at x, such that ∇fi(x)

T d < 0, for all
i ∈ {1, ...,m}. The descent direction d can be obtained by
solving the following optimisation problem:

min β +
1

2
∥d∥22

s.t. ∇fi(x)
T d ≤ β ∀i ∈ {1, ...,m}. (3)

Since the optimisation problem (3) is a convex quadratic
problem with linear inequality constraints, it always has a
unique optimal solution d. Namely, there exists ω1, ω2, ...,
ωm ≥ 0, such that d = −

∑m
i=1 ωi∇fi(x), with

∑m
i=1 ωi =

1. It is the convex combination of negative gradient descent
direction of all objectives. If d = 0, the solution x satisfies
the KKT condition and is called Pareto stationary point. It
is the necessary condition for Pareto optimality.

Based on the descent direction d, the Armijo rule is
employed to compute the step length t. Let σ ∈ (0, 1), the
condition to accept t is

F (x+ td) ≤ F (x) + σtJF (x)d. (4)

Starting from an initial point x0 ∈ Ω, the MGDA generates
a sequence

{
xk

}
with F (xk+1) < F (xk), and each

accumulation point of the sequence
{
xk

}
is Pareto critical

(Vieira et al., 2012; Gebken et al., 2017). However, these
iterative methods can not guarantee the diversity of Pareto
optimal solutions since MGDA can only converge to one
arbitrary Pareto optima. Moreover, they cannot obtain the
pre-specified Pareto optimal solution.

2.2.2 The increment central descent method

The increment central descent method (ICDM) (Oliveira
and Takahashi, 2022) was established under the
assumption that objective functions have L-Lipschitz
continuous gradients, that is, there exists L > 0, such that
∥∇fi(x)−∇fi(y)∥ ≤ ∥x− y∥, ∀x, y ∈ Ω, i = 1, 2, ...,m.
They obtain the multi-objective descent direction by solving
the following problem:

min
1

2
∥d∥22

s.t. ∇fi(x)
T d ≤ −∥∇fi(x)∥ ∀i ∈ {1, ...,m}. (5)

ICDM achieves a faster convergence rate than MGDA since
the calculation of the gradient information in ICDM is less
accurate than that of MGDA. Specifically, the constraints of
the quadratic programs (5) are more relaxed than (3). The
descent direction solution set obtained by ICDM is larger
than that of MGDA. Though the gradient descent direction
obtained by ICDM is not as accurate as MGDA, it has a
faster convergence speed than MGDA.

Many other classical scalar optimisation methods have
been generalised to solve MOPs, such as the Newton
method (Fliege et al., 2009; Wang et al., 2019), the
trust-region method (Thomann and Eichfelder, 2019), and
the SQP method (Fliege and Vaz, 2016; Ansary and
Panda, 2021) and so on. These methods can not only
solve the unconstrained MOP but have also been applied
to MOP with constraints and real-world applications (Lin
et al., 2022). On the other hand, gradient information or
the Hessian matrix can also integrate with evolutionary
algorithms (Bosman, 2011; Hernández et al., 2018; Wang
et al., 2022; Nedjah and Mourelle, 2015) to boost the
performance of classical MOEAs in solving the real-valued
MOPs.

3 NBI-style Tchebycheff method

In this work, we consider the bicriteria case (m = 2) of the
NBI-style Tchebycheff problem as an illustration. Let F :
Ω → Rm be a continuously differentiable mapping, F 1 =
(f1(x

∗
1), f2(x∗

1)) and F 2 = (f1(x
∗
2), f2(x∗

2)) be the two
extreme points of the MOP. Let the line segment linking F 1

and F 2 be the convex hull of individual minima (CHIM):

H = {αF 1 + (1− α)F 2|0 ≤ α ≤ 1}.

The NBI-style Tchebycheff method is used to solve the
following problem:
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min
x∈Ω

gtn(x|r, λ)

= max{λ1(f1(x)− r1), λ2(f2(x)− r2)},

where r = (r1, r2)
T ∈ H . λ = (λ1, λ2)

T is the normal
vector to the CHIM. This method takes advantage of
both the NBI and the weighted TCH method, which is
relatively insensitive to scales of objectives and performs
well in obtaining a well-distributed PF of the bi-objective
optimisation problem.

In order to generalise the NBI-style Tchebycheff method
into m objectives, we simplify the NBI-style Tchebycheff
problem by removing the weight vector. Let znad be the
nadir objective vector, which consists of the respective
global maximum: znadi = max

x∈Ω
fi(x), i = 1, ...,m. Let 1 =

(1, ..., 1)T be the all-one vector, and define a hyperplane
H:

H = {r ∈ Rm|1T r = −b},

where b = max
i=1,...,m

znadi . Then the NBI-style Tchebycheff
method aims to solve the problem given as follows:

min
x∈Ω

gtn(x|r) = max{f1(x)− r1, ..., fm(x)− rm} (6)

where r = (r1, ..., rm)T ∈ H . Compared to the WS and
weighted TCH methods, the NBI-style Tchebycheff method
is independent of the scales of objectives since there are no
weighting factors in equation (6).

We present some theoretical analyses concerning the
NBI-style Tchebycheff problem in the following.

Theorem 1: The solution of the NBI-style Tchebycheff
problem (6) is weakly Pareto optimal.

Theorem 2: The NBI-style Tchebycheff problem (6) has at
least one Pareto optimal solution.

The proofs of Theorems 1 and 2 can refer to Miettinen
(2012).

Theorem 3: Let x∗ be Pareto optimal, define a hyperplane
H = {r ∈ Rm|1T r = −b}. Then there exists a reference
point r ∈ H such that x∗ is a solution of the NBI-style
Tchebycheff problem (6).

Proof: Let x∗ be Pareto optimal. Let us assume that
there does not exist a reference point r such that x∗

is a solution to the NBI-style Tchebycheff problem. Let
t̂ := 1TF (x∗)+b

1T 1 and r = F (x∗)− 1t̂. Then we have r ∈ H

and ri = fi(x
∗)− t̂, i = 1, ...,m.

If x∗ is not the minimal solution of the NBI-style
Tchebycheff problem, then there exists another point x′ ∈ Ω
that is a solution of the NBI-style TCH problem, meaning
that

max
i=1,...,m

{fi(x′)− ri} < max
i=1,...,m

{fi(x∗)− ri}

= max
i=1,...,m

{fi(x∗)− (fi(x
∗)− t̂)} = t̂.

Thus fi(x′)− ri < t̂ for all i = 1, ...,m. This means that

fi(x
′)− ri = fi(x

′)− (fi(x
∗)− t̂) < t̂,

and after simplifying the expression, we have

fi(x
′) < fi(x

∗).

for all i = 1, ...,m. Here we have a contradiction with the
Pareto optimality of x∗, which completes the proof.

The theoretical results show that it is sufficient to obtain
all Pareto optimal solutions by varying reference points
on the hyperplane H . Figure 1 illustrates the NBI-style
Tchebycheff problem with two objectives.

Figure 1 Illustration of the NBI-style Tchebycheff problem
(see online version for colours)

4 The DGD method for bi-objective optimisation

This article assumes that fi(x) (i = 1, 2) are continuously
differential and supposes that all the gradients of objectives
are bounded, i.e., there exists a constant G > 0 such that
∥∇fi(x)∥ ≤ Gi, for any x ∈ Ω, i = 1, 2. Let G = max

1≤i≤2
G2

i .
For simplicity’s sake, all r values in equation (6) are
assumed to be zero. Then the NBI-style problem of the
bi-objective optimisation problem has the following form:

min
x∈Ω

gtn(x|r) = max{f1(x), f2(x)} (7)

Since the NBI-style TCH problem (7) is non-differentiable,
applying the gradient descent method to solve it directly
is infeasible. In order to utilise the gradient information to
solve the NBI-style TCH problem, we classify the variables
in the decision space into two categories:

ΩI = {x|fI(x)− fi(x) > δ, i = {1, 2} \ I},
ΩĪ = {x||f1(x)− f2(x)| ≤ δ}, (8)

where I := argmax
1≤i≤2

fi(x) ∈ {1, 2}. I implies that the

corresponding function value fI(x) is the maximum
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between f1(x) and f2(x). δ is a predefined hyperparameter
to divide the objective space better, which is related to G.

Under this decomposition mechanism, if x ∈ ΩI ⊂ Ω,
fI(x) is relatively greater than other terms in the NBI-style
Tchebycheff problem. While the point locates in the region
ΩĪ , the elements in the NBI-style Tchebycheff problem are
approximately equal to each other. To better understand
this partition, we use the NBI-style TCH problem with
two objective functions as an example. The objective
space can be divided into three regions R1, R2 and R1,2.
These regions imply that the first term in the NBI-style
Tchebycheff problem (7) is relatively greater, less than, or
approximately equal to the second one, respectively. See
Figure 2 for an illustration.

Figure 2 The division to the objective space, (a) descent
direction in different regions (b) a descent sequence
(see online version for colours)

(a)

(b)

4.1 Computing the descent direction

If the point x locates in region ΩĪ , the difference between
f1(x) and f2(x) in the NBI-style Tchebycheff problem
is no greater than δ. It is infeasible to apply the scalar
steepest descent method to calculate the descent direction
in this area. Because of the conflicting property among
objective functions, the decrease of one objective function

may cause the increase of the other. Therefore, minimising
one objective function at each iteration is inefficient since
it may cause vibration among the terms in equation (7)
that are approximately equal. Under this circumstance,
MGDA is directly applied to minimise two objectives in the
NBI-style Tchebycheff problem, that is,

min
x∈Ω

{f1(x), f2(x)}. (9)

As mentioned in Section 2, the gradient descent direction
of one differential MOP can be obtained by solving the
optimisation problem (3). The descent direction is the
convex combination of all negative gradients. In order to
restrict the succeeding point not exceeding the region ΩĪ ,
we narrow the range of the possible descent direction d.
There are m kinds of possibilities of the direction d once
the point drops in the region ΩĪ . As the shadow triangles
in Figure 2(a) show, the descent direction d needs to
ensure the decrease of two objectives simultaneously in the
region R1,2, and is required to restrict the succeeding point
not exceeding the region. Therefore, the gradient descent
direction in the region ΩĪ can be obtained by solving the
following optimisation problem:

min ∇fs(x)
T d+

1

2
∥d∥22

s.t. ∇fi(x)
T d ≤ ∇fs(x)

T d, ∀i ∈ {1, 2} \ {s}, (10)

where s = argmin
1≤i≤2

fi(x). Compared to equation (3), this

quadratic programming with linear inequality constraints
restricted the range of the gradient descent direction. The
linear inequality constraints in equation (10) restrict the
range of the descent direction. These inequalities imply that
once a point falls into the region ΩĪ , according to the
gradient update rule, the subsequent iteration process will
be restricted in this area. In the next section, we will give
proof that the succeeding points will not exceed the area ΩĪ

under some mild assumptions.
The Lagrange function of the constrained optimisation

problem (10) is given below:

L(d, λ) = ∇fs(x)
T d+

1

2
∥d∥22

+
∑
i̸=s

λi(∇fi(x)−∇fs(x))
T d. (11)

λi ≥ 0 are Lagrangian multipliers. And the KKT conditions
satisfied by the vector d and λ are

∂L(d, λ)

∂d
= d+

∑
i ̸=s

λi∇fi(x)

+

1−
∑
i ̸=s

λi

∇fs(x) = 0,

∂L(d, λ)

∂λi
= (∇fi(x)−∇fs(x))

T d = 0, for i = 1, 2.

Let ωs = 1− λs, ωi = λi, i ∈ {1, 2} \ {s}. Then we get the
gradient descent direction of equation (10):
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d = −
2∑

i=1

ωi∇fi(x),

2∑
i=1

ωi = 1, ωi ≥ 0, i = 1, 2. (12)

On the other hand, if one point x lies in the region ΩI , the
greatest objective fI(x) will be optimised with the gradient
descent method. In other words, the NBI-style Tchebycheff
problem (7) is reformulated as:

min
x∈Ω

fI(x). (13)

Hence, as Figure 2(a) shows, the gradient descent direction
at current point x is

d = −∇fI(x). (14)

4.2 Computing the stepsize

After getting the descent direction d, we compute the step
length t. Let σ ∈ (0, 1

2 ) be a prespecified constant. The
improved Armijo rule to accept t is

fI(x+ td) ≤ fI(x) + σt∇fI(x)
T d,

fi(x+ td) ≤ fI(x+ td) + σt ∥∇fI(x)∥2 ,
I = argmax

1≤i≤2
fi(x), i ∈ {1, 2} \ {I}. (15)

The second inequality in the improved Armijo rule (15)
implies that a point will not move directly from ΩI to
another region Ωi, where i = {1, 2} \ {I}. In other words,
once one point drops in one region ΩI , it will still move
within this area or move to the region ΩĪ . If {I} = {1, 2},
it means that the point drops into the region ΩĪ . Then the
improved Armijo rule degenerates into the Armijo rule.

The proposed algorithm is described in Algorithm 1.

Algorithm 1 The DGD method
1: for l = 1 to N do
2: Set k := 0, choose x0 ∈ Ω randomly.
3: while not terminate do
4: Calculate δk = |f1(xk)− f2(x

k)|,
5: if δk ≤ δ then
6: calculate the descent direction dk as

equation (10),
7: else
8: calculate the descent direction dk as

equation (14).
9: end if
10: (Line search) Compute the step size tk. Choose

tk that satisfies
tk := max{t : fI(xk + tdk) ≤ fI(x

k)
+σt∇fI(x

k)T dk,
fi(x

k + tdk) ≤ fI(x
k + tdk)

+σt
∥∥∇fI(x

k)
∥∥2

,

I = argmax
1≤i≤2

fi(x
k),

i ∈ {1, 2} \ {I}}, t ∈ (0, 0.5].
11: xk+1 := xk + tkd

k,
∆ = |gtnl (xk+1|rl)− gtnl (xk|rl)|, set k := k + 1.

12: end while
13: end for

5 Theoretical analysis

The following lemma indicates that once one point falls
into region ΩĪ , the following points will remain in this
region.

Lemma 5.1: For the bi-objective problem, if xk ∈ ΩĪ , then
xk+1 ∈ ΩĪ .

Proof: Suppose xk falls into the region ΩĪ , then we have

−δ < δk := f1(x
k)− f2(x

k) < δ.

Firstly, suppose f1(x
k) < f2(x

k), that is −δ < δk < 0.
Under this assumption, we can obtain the gradient descent
direction dk, which satisfies ∇f2(x)

T d−∇f1(x)
T d ≤

0. According to the differentiability of the objective
functions, we have fi(x

k+1) = fi(x
k) + tk∇fi(x

k)T dk +

o(
∥∥tkdk∥∥2), i = 1, 2, and we get

δk+1 := f1(x
k+1)− f2(x

k+1)

= δk + tk(∇f1(x
k)T dk −∇f2(x

k)T dk)

+ R(
∥∥tkdk∥∥2) ≥ δk > −δ

On the other hand, the gradient descent direction dk

at xk can be obtained by solving (10). The general
expression of the gradient descent direction at point xk

is dk = −(ω∇f1(x
k) + (1− ω)∇f2(x

k)). According to
Cauchy-Schwarz inequality | < u, v > | ≤ ∥u∥ ∗ ∥v∥, we
have

δk+1 = f1(x
k+1)− f2(x

k+1)

= δk + tk[∇f1(x
k)T dk −∇f2(x

k)T dk]

+ R(
∥∥tkdk∥∥2)

≤ −tk(σ∇f1(x
k)−∇f2(x

k))T (ω∇f1(x
k)

+ (1− ω)∇f2(x
k))− o(

∥∥tkdk∥∥2)
≤ tk[−σω

∥∥∇f1(x
k)
∥∥2 + (1− ω)

∥∥∇f2(x
k)
∥∥2

+ (ω + σ(1− ω))

∥∥∇f1(x
k)
∥∥2 + ∥∥∇f2(x

k)
∥∥2

2

]
− o(

∥∥tkdk∥∥2) < δ.

Therefore, we have proved that −δ < δk+1 < δ. For the
other circumstance f2(xk) < f1(x

k), we have similar proof.
Hence, we complete the proof that all subsequent points
will not exceed this area once the point moves to region
ΩĪ . Therefore, we have completed the proof that once the
point moves to the region ΩĪ , all subsequent points will not
exceed this area.

In the following theorem, we will show the component
of each subproblem‘s iteration sequence

{
xk

}
.

Theorem 4: For each subproblem (7), the sequence
{
xk

}
generated by Algorithm 1 has the following form:

{x1, x2, ..., xp︸ ︷︷ ︸
ΩI

, xp+1, xp+2, ..., xp+q︸ ︷︷ ︸
ΩĪ

}, p, q ≥ 0, (16)
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Table 1 Test problems

Instance Objective functions Variables
F1 f1(x) = x1 [0, 1]30

f2(x) = g(x)[1−
√

f1(x)/g(x)]
g(x) = 1 + 9

n−1
∗ (

∑n
i=2(xi − x1)

2)

PF: f2(x) = 1−
√

f1(x)
F2 f1(x) = x1 [0, 1]30

f2(x) = g(x)[1− (f1(x)/g(x))
2]

g(x) = 1 + 9
n−1

∗ (
∑n

i=2(xi − x1)
2)

PF: f2(x) = 1− f1(x)
2

F5 f1(x) = x1 [0, 1]30

f2(x) = g(x)[1−
√

f1(x)/g(x)]
g(x) = 1 + 9

n−1
∗ (

∑n
i=2(x

2
i − x1)

2)

PF: f2(x) = 1−
√

f1(x)
F6 f1(x) = x1 [0, 1]30

f2(x) = g(x)[1− (f1(x)/g(x))
2]

g(x) = 1 + 9
n−1

∗ (
∑n

i=2(x
2
i − x1)

2)

PF: f2(x) = 1− f1(x)
2

RF1 f1(x) = x1 +
2

|J1|
∑
i∈J1

(xi − x1 +
i
n
)2 [0, 1] × [–1, 1]29

f2(x) = 1−√
x1 +

2
|J2|

∑
i∈J2

(xi − x1 +
i
n
)2

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}
PF: {(x1, 1−

√
x1) ∈ R2|0 ≤ x1 ≤ 1}

RF2 f1(x) = x1 +
2

|J1|
∑
i∈J1

(xi − x2
1)

2 [0, 1]30

f2(x) = 1−√
x1 +

2
|J2|

∑
i∈J2

(xi − x2
1)

2

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}
PF: {(x1, 1−

√
x1) ∈ R2|0 ≤ x1 ≤ 1}

p, q represent the number of iterations in region ΩI and
ΩĪ , respectively.

Proof: On the one hand, from the assumption and the
second inequality in the improved Armijo rule (15), we
know that points located in the region ΩI will not move
directly to another region apart from ΩĪ . On the other
hand, from Lemma 5.1, we know that once points lie in
the region ΩĪ , the following points will stay in this area.
Therefore, the sequence xk generated by the DGD method
is composed of at most two kinds of variables.

In other words, the obtained sequence {xk} consists of
p+ q components. These points can be classified into at
most two groups: the first p terms and the last q terms are
located in the region ΩI and ΩĪ , respectively.

Given the Lemma 5.1 and the sequences (16) mentioned
above, we conclude that a proper parameter δ can ensure
the sequence {F (xk)} varies from region RI to the region
RĪ , as the Figure 2(b) shows.

Based on Lemma 5.1 and Theorem 4, we have the
following theorem.

Theorem 5: There exists a monotone decreasing sequence
{gtn(xk|r)}.

Proof: Based on Lemma 5.1 and Theorem 4, we know
that the generated sequence

{
xk

}
can only be the form of

equation (16). Therefore, there are three possibilities of the
sequence {xk}:

Case 1 If p = 0, q ≥ 0, the iteration sequence is
{x1, x2, ..., xq}. It means that all the objective
functions decrease simultaneously in the region
ΩĪ , that is fi(xk+1) < fi(x

k), i = 1, ...,m.
Then we have

gtn(xk+1|r) = max{f1(xk+1), f2(x
k+1)}

< max{f1(xk), f2(x
k)}

= gtn(xk|r),

Thus {gtn(xk|r)} is a decreasing sequence.

Case 2 If p > 0, q = 0, the iteration sequence is {x1,
x2, ..., xp}. For xk, xk+1 ∈ {x1, x2, ..., xp}, we
have

gtn(xk|r) = max{f1(xk), f2(x
k)} = fI(x

k).

After one step iteration, the I th objective
function decreases. It means that

gtn(xk+1|r) = max{f1(xk+1), f2(x
k+1)}

= fI(x
k+1) < fI(x

k)

= gtn(xk|r).

Therefore, {gtn(xk|r)} is a monotone
decreasing sequence.
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Figure 3 The PFs found by, (a) MGDA (b) ICDM (c) DGD method on the test problems (see online version for colours)

(a) (b) (c)
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Case 3 If p > 0, q > 0, the iteration sequence
{x1, x2, ..., xp, xp+1, xp+2, ..., xp+q} is a mixed
sequence, we only need to prove that the value
is decreasing once the point moves from the
region ΩI to the region ΩĪ . We have proved
that the sequence with points located in the
same region is decreasing. Therefore, we only
need to prove gtn(xp|r) ≤ gtn(xp+1|r). In fact,

gtn(xp|r) = fI(x
p),

gtn(xp+1|r) = max{f1(xp+1), f2(x
p+1)}

= fJ (x
p+1),

According to the gradient update rule, we get
xp+1 = xp + tk(−∇fI(x

p)), and have the
following two cases:

Case 3a If J = I , we obtain

gtn(xp+1|r) = fI(x
p+1) < fĪ(x

p)

= gtn(xp|r).

Case 3b If J ̸= I , according to the improved
Armijo rule (15) and the inequality
fI(x

k+1) ≤ fI(x
k) + tk∇fI(x

k)T dk,
we know that the following point of
xp would not move to other regions
except for original region ΩI or the
region ΩĪ .

gtn(xp+1|r) = fJ(x
p+1)

≤ fI(x
p+1)

+ σtk ∥∇fI(x
p)∥2

≤ fI(x
p) = gtn(xp|r).

Based on the two cases discussed above, we
know that gtn(xp+1|r) ≤ gtn(xp|r), which
completes the proof.

From the proof mentioned above, we conclude that, given a
random initial point x0 for each subproblem, there exists a
monotone decreasing sequence that satisfies gtn(xk+1|r) <
gtn(xk|r).

Thus we have completed the proof. Under some
mild assumption, one immediately obtains a monotone
decreasing sequence for each subproblem.

6 Experimental results and analysis

To prove the effectiveness of our method, in this article,
we employ test instances (F1–F2, F5–F6) proposed in
(Zhang et al., 2008). Moreover, we modify existing test
instances given in Li and Zhang (2008), and name them
RF1 and RF2. As shown in Table 1, these test instances are
bi-objective optimisation problems with linear or nonlinear
variable linkages. Meanwhile, these benchmark problems
do not have any local Pareto solutions. The shape of

their PFs is either convex or concave. We evaluate the
performance of MGDA, ICDM, and the proposed DGD
method on these test problems.

All these algorithms were implemented through
MATLAB R2019a. The quadratic programs (3),
equations (5) and (10) are solved by the CVX optimisation
toolbox via MATLAB R2019a. The parameter settings,
performance metrics, experimental results and analysis for
MGDA, ICDM, and DGD method are presented.

6.1 Parameter setting

MGDA, ICDM, and DGD conducted ten independent runs
on each test instance. σ = 0.2, the maximum step size
is tmax = 0.1. And there are N = 20 initial points for
each algorithm. The error of neighboring points obtained
by MGDA and ICDM is ∆ = ∥F (xk+1)− F (xk)∥, while
the error in DGD is ∆ = |gtnl (xk+1|rl)− gtnl (xk|rl)|, l =
1, ..., N . The stopping criterion is that when the algorithm
reaches the maximum iteration number (kmax = 500), or the

error ∆ is less than ϵ = 10−4. δ = 0.1 ∗ (
2∑

i=1

∥∇fi(x)∥2). δ

varies with the variable x during iteration.

6.2 Performance metrics

The inverted generational distance (IGD) (Zitzler et al.,
2003) is employed to evaluate the performance of these
algorithms. The IGD is defined as follows:

IGD(PF ∗, PF ) =
1

|PF ∗|
∑

x∈PF∗

min
y∈PF

∥x− y∥2, (17)

where PF ∗ is the true PF and PF is the approximated PF
obtained by the algorithm.

6.3 Experimental results and analysis

The mean and standard deviation of the IGD of all
compared algorithms are presented in Table 2. As shown in
Table 2, the IGD of the DGD method is the best on all test
problems. Therefore, the DGD gets a better approximation
to PFs of test instances than that of MGDA and ICDM.

Table 2 IGD of MGDA, ICDM and DGD

Test problem MGDA ICDM DGD

F1 0.32910.0499 0.40110.0755 0.03090.0012
F2 0.51380.0876 0.55540.0779 0.02180.0157
F5 0.49940.0808 0.65430.0452 0.02580.0559
F6 0.91690.1302 0.61050.0327 0.02560.0134
RF1 0.31160.0693 0.30950.0432 0.02210.0010
RF2 0.04750.0003 0.11950.0142 0.03210.0064

The obtained best PFs in ten independent runs of MGDA,
ICDM, and DGD are illustrated in Figure 3. Figure 3(a)
shows that MGDA converges to (weakly) Pareto optimal
solutions. Some of the obtained solutions are weakly
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Pareto optimal for the test instances with convex PF,
such as F1 and F5. It is a waste of computational
resources because these solutions are not helpful for
decision-makers. Moreover, for all test instances with either
convex or concave PF, solutions obtained by MGDA
distribute unevenly along the PF. For test instances RF1
and RF2, which have a more complex gradient for both
objective functions, MGDA converges to the PF of RF2
while performing poorly on RF1. While MGDA performs
relatively well in converging to the Pareto optimal solutions
of RF1, it could not get an evenly distributed PF. The lousy
performance on RF2 may be because the descent direction
obtained by MGDA moves quickly toward the direction
with the maximum decrease of objectives. Therefore, it is
unsuitable for MGDA to solve test instances to obtain a
well-distributed PF.

Figure 3(b) shows that ICDM could only converge to
one or multiple Pareto solutions. ICDM performs worse
than MGDA and DGD on all test instances apart from RF1.
ICDM converges to the PFs of all test instances with Pareto
solutions packed together. The central descent direction
obtained by equation (5) is the bisecting of the angle
between −∇f1(x) and −∇f2(x). Therefore, it obtains the
crowded approximated PF. Moreover, the bad performance
in these instances may owe to the particularity of ICDM.
As mentioned in Section 2, ICDM is designed for MOPs
with the objective functions having L-Lipschitz continuous
gradients.

Figure 3(c) illustrates that the DGD method can obtain
a uniformly distributed PF for each test instance. For each
NBI-style Tchebycheff subproblem, the iteration sequence
converges to a point on the PF irrespective of the starting
point. After a finite number of iterations, a well-distributed
PF can be obtained. Therefore, the DGD method can
obtain an evenly distributed PF within the limited number
of iterations for the MOP with differentiable objective
functions. Experimental results show that the DGD method,
compared to MGDA and ICDM, could converge to an
evenly distributed PF. The experimental results demonstrate
the effectiveness of the proposed method.

7 Conclusions

This work has investigated the gradient search methods
in solving MOPs. Motivated by the shortcomings of the
existing gradient descent algorithms, we introduce the
NBI-style Tchebycheff method and use it to decompose the
MOP into several subproblems. A decreasing sequence for
each subproblem is obtained under regularity assumptions
by solving the NBI-style Tchebycheff problem with the
proposed DGD method. The numerical experiments have
illustrated the efficiency of the DGD method in obtaining a
well-distributed PF.

In the future, we will concentrate on the MOP with three
or more objective functions to illustrate the efficiency of the
proposed algorithm.
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