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Abstract: High utility itemset mining (HUIM) discovers itemsets that are
profitable in nature. Previously, the recency of an itemset was determined by
adding the recency of each transaction of an itemset. A major disadvantage
of this method is that some transactions of an itemset which are very recent
can cause the whole itemset to be recent. To overcome this limitation, we
present a novel measure called average recency to mine recent and high
utility itemsets. Average recency upper-bound (arub) and estimated recency
co-occurrence structure (ERCS) are proposed to prune unpromising itemsets.
A variation of list structure known as average recent utility list (ARUL) has
been created to hold data regarding utility and recency of itemsets. Through
a series of comprehensive experimentation carried out on both real as well
as synthetic datasets, it has been demonstrated that the proposed system
surpasses the baseline algorithm in runtime, memory utilisation, and candidate
generation.
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1 Introduction

The topic of data mining has been researched effectively for many years (Chen et al.,
1996). The process of extraction of itemsets which are frequent in nature is called
frequent pattern mining (FPM) (Gan et al., 2017; Han et al., 2000; Shanthi et al., 2016).
Rules that are extracted from frequent itemsets are called association rules (Agrawal
et al., 1994). FPM has large number of applications in real world such as marketing of
certain products to increase the profitability of an organisation. As FPM extracts itemsets
that are only frequent in nature, these itemsets are sometimes not useful as they do not
mine itemsets that are profitable to the organisation. Unlike FPM which only computes
itemsets that are frequent in nature, HUIM (Ahmed et al., 2009; Gan et al., 2018b;
Liu and Qu, 2012; Liu et al., 2005b) is used to compute itemsets that are profitable
in nature. When the usefulness of an itemset exceeds a particular minimum threshold
value set by the user, it is considered to have high utility. HUIM has its advantages
over FPM. For example, an itemset containing milk and cereals which appears together
ten times in the database are less profitable than an itemset containing a camera and a
laptop which appear only once in the database. Unlike FPM, HUIM is not downward
closed, therefore exponential candidate itemsets are generated. The field of HUIM has
been significantly researched and investigated. As far as our knowledge, RUP (Gan
et al., 2019) is the only algorithm which has used recency and utility as constraints to
mine recent as well as high utility itemsets (HUIs). The proposed system uses a novel
measure called average recency to mine recent as well as HUIs.

1.1 Motivation

The proposed system is driven by the following motivation.

1 The proposed HARUIM mines itemsets that are recent as well as high utility,
therefore trending itemsets can be extracted.

2 The itemsets that are trending can be marketed aggressively for greater profits.

3 As HARUIM algorithm mines trending itemsets the store owner or the manager
can order large amount of stock without worrying about the stock being unsold.

4 Average recency presents a fair representation of the recency of the itemsets.

1.2 Contributions

This research has the following contributions.

• High average recent utility itemset mining (HARUIM) is the first work to propose
average recency as a measure to mine recent as well as HUIs.

• A modified average recent utility list (ARUL) structure stores details about
recency and utility of itemsets.

• Two novel pruning techniques, arub and ERCS are used to eliminate
unpromising itemsets.
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• Comprehensive experimentation performed on various datasets showcase the
significance of HARUIM algorithm.

1.3 Organisation of the paper

Section 2 describes various algorithms related to HUIM and Recent-HUIM. Section 3
lists various definitions used throughout this research. Section 4 lists three proposed
algorithms for extraction of high average recent utility itemsets (HARUIs). Section 5 is
used to test the HARUIM algorithm using various real and synthetic datasets. Section 6
explains in brief about the work done and potential applications of the proposed system.

2 Related work

The process of extracting itemsets with a utility value surpassing the user-defined
threshold is accomplished through the use of HUIM. There are various real-time
applications of HUIM such as market basket analysis, web mining, stream processing,
bio-medicine (Erwin et al., 2008; Li et al., 2018; Lin et al., 2016; Gan et al., 2018a;
Ahmed et al., 2011, 2009; Shie et al., 2011, 2013; Golab and Özsu, 2003; Chi et al.,
2004; Liu et al., 2013). Extensive amount of work has been done in the field of HUIM.
A two− phase algorithm (Liu et al., 2005b), used an apriori-based approach to mine
HUI’s in two phases. During the initial stage, candidate itemsets were extracted using
twu as an upper-bound. In the second stage, a thorough scan of the database was needed
to extract all the HUI’s. UP − growth, (Tseng et al., 2010) algorithm was proposed to
mine HUI’s using a tree-based data structure. In the first phase various strategies such
as discarding local unpromising (DLU) were used to eliminate unpromising itemsets.
A final database scan was required to mine HUI’s from the candidates which were
generated from the utility-pattern (UP-growth) tree structure.

HUI −miner (Liu and Qu, 2012) was introduced to extract the HUI’s in just one
phase. A list data structure was used to store information about itemsets. A recursive
approach was used to mine HUI’s in just two database scans. FHM (Fournier-Viger
et al., 2014a) algorithm proposed a new matrix-based structure called EUCS to prune
unpromising two-itemsets. Co-related HUIs were extracted by using a bond measure
(Fournier-Viger et al., 2016a). Minimum co-relation was used as an constraint to mine
co-related HUIs. In some instances, a store might sell a particular item at a loss so
that a profit can be made on the overall itemsets bought by the customer. FHN
(Fournier-Viger, 2014) algorithm was developed to include items that are sold for a
loss. The items that are sold for a loss are represented using a negative utility. In
order to mine HUI’s in a more efficient manner EFIM (Zida et al., 2015) algorithm
was introduced. This algorithm employs a technique to project and merge transactions
to lower the expense of database scans. Several algorithms have been put forth to
mine concise representations of HUI’s. CHUI −miner (Dam et al., 2019) used three
pruning strategies to prune itemsets that are not promising. An algorithm to mine
Top-K utility itemsets was proposed (Tseng et al., 2015). PHM (Fournier-Viger et al.,
2016b) was introduced for the purpose of mining HUI’s that are periodically purchased
by customers. An algorithm to mine HUI’s with on-shelf time periods of items was
proposed with items having negative or positive profit (Fournier-Viger and Zida, 2015).
FHM+ (Fournier-Viger et al., 2016c) algorithm mines HUI’s with length constraints.
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It uses length upper-bound reduction as well as two upper-bounds to remove itemsets
that are not promising.

Table 1 HUIM

Algorithm Explanation No. of phases Data structure
Two− phase (Liu et al.,
2005b)

Uses two phases to mine
HUI’s

Two Apriori-based

UP − growth (Tseng
et al., 2010)

Uses a tree structure to mine
HUI’s

Two Tree

HUI −miner (Liu and
Qu, 2012)

Algorithm uses utility list
structure to mine HUI’s

One List

FHM (Fournier-Viger
et al., 2014a)

A novel EUCS structure was
used to prune unpromising

2-itemsets

One List

FCHM (Fournier-Viger
et al., 2016a)

Algorithm mines co-related
HUI’s using a bond measure

One List

FHN (Fournier-Viger,
2014)

Algorithm mines HUI’s with
both positive and negative

utilities

One List

EFIM (Zida et al.,
2015)

Algorithm proposes
techniques to merge and
project transactions

One Horizontal

CHUI −miner (Dam
et al., 2019)

Efficient algorithm to mine
closed HUI’s using novel

pruning strategies

One List

TKO (Tseng et al., 2015) Algorithm is used to mine
top-K HUI’s with using a
minimum utility threshold

One List

PHM (Fournier-Viger
et al., 2016b)

Algorithm is used to mine
periodic HUI’s

One List

FOSHU (Fournier-Viger
and Zida, 2015)

Algorithm is used to mine
HUI’s with on-shelf time

periods of items

One List

FHM+ (Fournier-Viger
et al., 2016c)

Algorithm efficiently mines
HUI’s with length constraints

One List

TPAU (Hong et al.,
2009)

Algorithm is used to mine
high average utility itemsets

(HAUI’s)

Two Tree

EHAUPM (Lin et al.,
2017)

Efficient algorithm to mine
HAUI’s using novel pruning

techniques

One List

High average utility itemset mining (HAUIM) (Kumar and Rana, 2021) gives an
accurate representation of the utility of an itemset. TPAU (Hong et al., 2009) used a
breadth first approach to mine high average utility itemsets (HAUI’s) in two phases.
EHAUPM (Lin et al., 2017) algorithm used a depth first approach. It used a utility list
structure to mine all HAUI’s in one phase. The algorithms that are detailed in Section 2
are tabulated in Table 1.

As for as our knowledge some amount of research has been done in the field of
recent-HUIM. UDHUP − apriori and UDHUP − list (Lin et al., 2015) algorithms
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mine up-to-date patterns. Up-to-date HUIs represent itemsets that are not only of high
utility but also recent in nature. RUP (Gan et al., 2019) algorithm mines recent HUIs
using a recent utility list data structure. Table 2 represents all algorithms which mine
recent HUI’s.

Table 2 Recent-HUIM

Algorithm Explanation No. of phases Data structure
UDHUP − apriori
(Lin et al., 2015)

Algorithm mines up-to-date HUI’s
using an level-based approach

Two Apriori

UDHUP − list (Lin
et al., 2015)

Algorithm uses a utility list
structure to mine up-to-date HUI’s

One List

RUP (Gan et al., 2019) Algorithm mines recent HUI’s
using recency as an additional

measure

One List

3 Definitions and problem statement

This sections presents a list of preliminaries that pertain to HARUIM. Transaction
database Table 3 and external utility Table 4 are used to define and illustrate various
notations related to HARUIM.

Table 3 Transaction database

Trd Timestamps Items with quantities

Tr1 08/07/2021 07:15 a:1, b:1, e:2
Tr2 08/07/2021 08:45 b:2, e:1
Tr3 08/07/2021 09:55 c:1, d:1
Tr4 08/07/2021 10:25 a:2, d:1
Tr5 08/07/2021 12:52 a:1, c:1, d:3
Tr6 08/07/2021 13:20 b:2, d:1
Tr7 08/07/2021 14:33 b:3, c:1
Tr8 08/07/2021 16:24 a:1, b:3
Tr9 08/07/2021 17:50 a:2, b:2, d:1
Tr10 08/07/2021 20:10 d:2, e:2

3.1 Definitions

Consider IT = {it1, it2, ..., itm}, be m unique items and let DB be a quantitative
database, where DB = {Tr1, T r2, ..., T rn}. Every transaction, Trd ∈ DB and 1 ≤ d ≤
n, where d is a unique identifier for each transaction called Trd. Each item itp(1 ≤ p ≤
m), has the quantity purchased which is represented by internal utility. It is denoted by
iu(itp, T rd). External utility of an item is denoted by eu(itp).

Item utility for transaction Trd, can be defined as, ut(itp, T rd) = iu(itp, T rd)×
eu(itp). For example, from Tables 3 and 4, iu(a, Tr1) = 1, eu(a) = 2, ut(a, Tr1) =
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1× 2 = 2. A set of k unique items X = {it1, it2, ..., itk}, where X ⊆ IT , is called a
k-itemset, where k refers to the length of the itemset X , X ⊆ Trd.

Table 4 External utilities

Item Profit

a 2
b 3
c 1
d 3
e 2

Definition 3.1 (Yao et al., 2004): Utility of an itemset X , in a transaction Trd, is denoted
by ut(X,Trd), and is defined by,

ut(X,Trd) =
∑

itp∈X∧X⊆Trd

ut(itp, T rd). (1)

Using Tables 3 and 4, ut(ab, Tr1) = 1× 2 + 1× 3 = 5.

Definition 3.2 (Yao et al., 2004): Utility of an itemset X , in a transactional database
DB, is denoted as ut(X), and is defined as,

ut(X) =
∑

X⊆Trd∧Trd∈DB

ut(X,Trd). (2)

Using Tables 3 and 4, ut(ab) = ut(ab, Tr1) + ut(ab, Tr8) + ut(ab, Tr9) = 5 + 11 +
10 = 26.

Definition 3.3 (Yao et al., 2004): Transaction utility tu, of a transaction Trd, is denoted
as tu(Trd), and is defined as,

tu(Trd) =
∑

itp∈Trd∧Trd∈DB

ut(itp, T rd). (3)

From Tables 3 and 4, tu(Tr1) = ut(a, Tr1) + ut(b, T r1) + ut(e, Tr1) = 2 + 3 + 4 =
9.

Definition 3.4 (Yao et al., 2004): The sum of transaction utilities of all the transactions
in a database DB, where Trd ∈ DB, is denoted as ut(DB), and is defined as,

ut(DB) =
∑

Trd∈DB

ut(Trd). (4)

From Tables 3 and 4, ut(DB) = 93.
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Definition 3.5 (Yao et al., 2004): Given a minimum utility threshold by the user δ,
minimum utility, i.e., min util, is defined as,

min util = δ × ut(DB). (5)

Given minimum utility threshold δ = 0.1, from Tables 3 and 4, min util = 0.1× 93 =
9.3.

Definition 3.6 (Liu et al., 2005a): The transaction weighted utilisation (twu) of an
itemset X , in a database DB, is defined by the sum of utilities of all the transactions
containing X in DB. Transaction weighted utilisation is denoted by twu(X), and is
defined as,

twu(X) =
∑

X⊆Trd∧Trd∈DB

tu(Trd). (6)

twu(ab) = tu(Tr1) + tu(Tr8) + tu(Tr9) = 33.

Definition 3.7: EUCS is defined as a set of triplets of the form (X,Y, Z) ∈ IT × IT ×
R. A triplet (X,Y, Z) is denoted by, twu(X,Y ) = Z, where X , Y are itemsets and Z
represents the twu value of (X,Y ) (Fournier-Viger et al., 2014a).

Theorem 3.1: A full search space to mine HARUI’s is depicted using a set-enumeration
tree (Rymon, 1992) where items (nodes) are sorted in ≺ order of their twu values.

Proof: From the set-enumeration tree (Rymon, 1992) and RUP-tree (Gan et al., 2019),
2m − 1 itemsets (nodes) can be formed from the items (nodes) in IT . Let m be the
number of distinct items (nodes) in IT . Using a depth first search approach, all the
supersets of items (nodes) in IT can be enumerated according to their transaction
weighted utilisation (twu). This representation is complete and correct as all the
supersets of the root node are explored. Items arranged according to twu values are,
c ≺ e ≺ a ≺ d ≺ b. The number of nodes in the search space are 25 − 1 = 31. The
complete search space is represented using Figure 4.

Definition 3.8 (Liu et al., 2005a): An itemset X , is called a high transaction-weighted
utilisation itemset (HTWUI), if twu(X) ≥ min util. As twu(ab) = tu(Tr1) +
tu(Tr8) + tu(Tr9) = 33 > 9.3(min util), therefore {ab} is a HTWUI.

Theorem 3.2 (Liu et al., 2005a): Let Xk, be a k-itemset and Xk−1, be a k − 1 itemset
such that Xk−1 ⊂ Xk, if Xk is a HTWUI, Xk−1 is also a HTWUI.

Proof: Let TrXk , be a set of transactions containing itemset Xk and TrXk−1 be a set of
transactions containing itemset Xk−1. As Xk−1 ⊂ Xk, TrXk−1 is a superset of TrXk .

twu(Xk−1) =
∑

Xk−1⊆Trd∈DB

tu(Trd)

≥
∑

Xk⊆Trc∈DB

tu(Trc)
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= twu(Xk)

≥ min util.

Definition 3.9 (Yao et al., 2004): An itemset X , in a transactional database DB, is
called a HUI, if its utility ut(X), is not less than min util.

HUI ← {X|ut(X) ≥ min util}. (7)

where X ⊆ Trd ∧X ∈ DB. ut(ab) = 26 > 9.3, therefore itemset {ab} is a HUI.

Theorem 3.3 (Liu et al., 2005a): Let HTWUI be all the HTWUI’s in a transactional
database DB, and let HUI represent all the HUIs in a database DB, then HUI ⊆
HTWUI .

Proof: For all X ∈ HUI , if X is a HUI, then,

min util ≤ ut(X) =
∑

X⊆Trd

ut(X,Trd)

=
∑

X⊆Trd

∑
itp∈X

ut(itp, T rd)

≤
∑

X⊆Trd

∑
itp∈Trd

ut(itp, T rd)

=
∑

X⊆Trd

tu(X,Trd)

= twu(X).

Therefore an itemset, X ∈ HUI , is also a HTWUI .

Definition 3.10: Recency of an itemset X , in a transaction Trd, is denoted as rec(X ,
Trd), and is defined as,

rec(X,Trd) = rec(Trd) = Trd/n. (8)

where n represents the number of transactions in a database DB, Trd represents
a transaction id. From Tables 3 and 4, rec(abd, Tr9) = rec(Tr9) = 9/10 = 0.9,
rec(a, Tr9) = rec(Tr9) = 9/10 = 0.9, rec(be, T r2) = rec(Tr2) = 2/10 = 0.2.

Definition 3.11: Recency of an itemset X , in a database DB, is denoted by rec(X),
and is defined as,

rec(X) =
∑

X⊆Trd∧Trd∈DB

rec(X,Trd). (9)

From Tables 3 and 4, rec(abd) = rec(abd, Tr9) = 0.9, rec(a) = rec(a, Tr1) +
rec(a, Tr4) + rec(a, Tr5) + rec(a, Tr8) + rec(a, Tr9) = 0.1 + 0.4 + 0.5 + 0.8 + 0.9
= 2.7, rec(be) = rec(be, T r1) + rec(be, T r2) = 0.1 + 0.2 = 0.3.
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Unlike the RUP (Gan et al., 2019) algorithm the proposed HARUIM algorithm does
not use the ‘decay factor’ to calculate the recency of an itemset. Recency measure has
been inspired by RUP (Gan et al., 2019) algorithm.

Definition 3.12 (Agrawal et al., 1994): Support count is the number of times an itemset
X , occurs in a transactional database DB. It is denoted by supportcount(X) and is
defined as:

supportcount(X) = Count(X,DB) (10)

where X ⊆ Trd ∧ Trd ∈ DB. From Tables 3 and 4, supportcount(abd) = 1,
supportcount(a) = 5, supportcount(be) = 2.

Definition 3.13: Average recency of an itemset X , in a transactional database DB, is
denoted by avgrec(X), and is defined as:

avgrec(X) = rec(X)/supportcount(X). (11)

where X ⊆ Trd ∧ Trd ∈ DB. avgrec(abd) = 0.9/1 = 0.9, where recency of
rec(abd) = 0.9 and supportcount(abd) = 1, avgrec(a) = 2.7/5 = 0.54, where recency
of rec(a) = 2.7 and supportcount(a) = 5, avgrec(be) = 0.3/2 = 0.15, where recency
of rec(be) = 0.3 and supportcount(be) = 2.

Property 1: The average recency of an itemset X in a transactional database DB is:

1 Not less than the average recency of its subsets (or).

2 Not greater than the average recency of its subsets.

Definition 3.14: The average recency upper bound (arub) of an itemset X , in a
transactional database DB, is denoted by arub(X), and is defined as,

arub(X) = max(rec(X,Trd)). (12)

where X ⊆ Trd ∧ Trd ∈ DB.

arub(c) = max{rec(Tr3, T r5, T r7)} = max{0.3, 0.5, 0.7} = 0.7.

Definition 3.15: User defined minimum recency threshold is denoted by min rec, and
is defined as,

0 ≤ min rec ≤ 1 (13)

For example, we consider min rec = 0.8.

Definition 3.16: ERCS is defined as a set of triplets of the form (X,Y, Z) ∈ IT × IT ×
R. A triplet (X, Y, Z) is denoted by, arub(X,Y ) = Z, where X , Y are itemsets and Z
represents the arub value of (X,Y ) (Fournier-Viger et al., 2014a).
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Definition 3.17: An itemset X is called a high recency weighted itemset (HRWI), if
the average recency upper bound of X is greater than minimum recency threshold. It is
denoted as HRWI(X), and is defined as,

HRWI(X)← {X|arub(X) ≥ min rec}. (14)

where X ⊆ Trd ∧ Trd ∈ DB.

arub(a) = max{rec(Tr1, T r4, T r5, T r8, T r9)}
= max{0.1, 0.4, 0.5, 0.8, 0.9} = 0.9.

As 0.9 > 0.8(min rec), {a} is a HRWI.

Theorem 3.4: Let Xk, be a k-itemset and Xk−1, be a k − 1 itemset such that Xk−1 ⊂
Xk, if Xk is high recency-weighted itemset, Xk−1 is also a high recency-weighted
itemset.

Proof: Let TrXk , be a set of transactions containing itemset Xk and TrXk−1 be a set of
transactions containing itemset Xk−1. As Xk−1 ⊂ Xk, TrXk−1 is a superset of TrXk .

arub(Xk−1) = {Xk−1, Xk−1 ⊆ Trd ∈ DB | max(rec(Xk−1, T rd))}
≥ {Xk, Xk ⊆ Trd ∈ DB | max(rec(Xk, T rd))}
= arub(Xk)

≥ min rec.

Corollary 3.4.1: The arub of an itemset X is not less than its average recency, i.e
arub(X) ≥ avgrec(X).

Corollary 3.4.2: Anti-monotonic property is satisfied by arub. Let X and Y be two
itemsets, if X ⊂ Y , then arub(X) ≥ arub(Y ).

Corollary 3.4.3: If arub(X) < min rec, where X is an itemset, then the itemset X is
a low average recent itemset along with all its supersets.

Definition 3.18: An itemset X , is said to be high average recent itemset (HARI) if
the average recency avgrec(X), of the itemset X , is not less than the user defined
minimum recency threshold min rec.

HARI ← {X|avgrec(X) ≥ min rec}. (15)

where X ⊆ Trd ∧ Trd ∈ DB. avgrec(abd) = 0.9/1 = 0.9 > 0.8(min rec), where
rec(abd) = 0.9, supportcount(abd) = 1 therefore itemset {abd} is a HARI.
avgrec(a) = 2.7/5 = 0.54 < 0.8(min rec), where rec(a) = 2.7, supportcount(a) =
5 therefore itemset {a} is not a HARI. avgrec(be) = 0.3/2 = 0.15 < 0.8(min rec),
where rec(be) = 0.3, supportcount(be) = 2, therefore itemset {be} is not a HARI.
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Theorem 3.5: Let HRWI be all the high recency-weighted utilisation itemsets in
a database DB, and let HARI represent all the HARIs in a database DB, then
HARI ⊆ HRWI .

Proof: For each itemset X ∈ HARI , X is also a HRWI .

min rec ≤ avgrec(X) =
∑

X⊆Trd

rec(X,Trd)/supportcount(X)

≤ {X,X ⊆ Trd | max(rec(X,Trd)}
= arub(X).

Therefore an itemset, X ∈ HARI , is also a HRWI .

Property 2: Using Theorems 3.2, 3.3, 3.4, 3.5, for any itemset X , if twu(X) <
min util ∨ arub(X) < min rec, then the itemset X can be:

1 A low utility itemset along with all its supersets (or)

2 A low average recency itemset along with all its supersets (or)

3 A low utility and a low average recency itemset along with all its supersets.

Definition 3.19: An itemset X , is called a high average recent utility upper bound
itemset (HARUUI), if transaction weighted utilisation twu(X), is not less than
min util, and the average recency upper-bound arub(X), is not less than min rec. It
is denoted as HARUUI(X) and is defined as,

HARUUI(X)← {X|twu(X) ≥ min util ∧ arub(X) ≥ min rec} (16)

where X ⊆ Trd ∧ Trd ∈ DB. Consider min util = 9.3 and min rec = 0.8, twu(bd)
= 22, arub(bd) = max{rec(Tr6), rec(Tr9)} = max{0.6, 0.9} = 0.9. As twu(bd) = 22
> 9.3(min util) and arub(bd) = 0.9 > 0.8(min rec), itemset {bd} is a HARUUI.

Definition 3.20: An itemset X is said to be a HARUI, if its utility ut(X), is not less
than min util, and its average recency avgrec(X), is not less than min rec.

HARUI(X)← {X|ut(X) ≥ min util ∧ avgrec(X) ≥ min rec}. (17)

where X ⊆ Trd ∧ Trd ∈ DB.
ut(de) = 10 > 9.3(min util), avgrec(de) = 1/1 = 1 > 0.8(min rec), where

rec(de) = 1 and supportcount(de) = 1, therefore itemset {de} is a HARUI.

Definition 3.21: The ARUL of an itemset X , in a transactional database DB, is a set
of rows, such that each row contains (Trd, iutil, rutil, rec) for each transaction Trd,
containing X . The element iutil (Liu and Qu, 2012) of a row represents the utility of
an itemset X in Trd, and is denoted by ut(X,Trd). The element rutil (Liu and Qu,
2012) of a row for a particular transaction Trd, is defined as,

∑
itp∈Trd∧itp /∈X

ut(itp, T rd).

A separate row of ARUL for an itemset X is denoted by (arub), and is defined as,
X.aurb = max(rec(X,Trd)).
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The ARUL of {a} is {(Tr1, 2, 7, 0.1) (Tr4, 4, 3, 0.4) (Tr5, 2, 10, 0.5) (Tr8, 2,
9, 0.8) (Tr9, 4, 9, 0.9) (0.9)}. ARUL of an itemset {ab} is {(Tr1, 5, 4, 0.1) (Tr8, 11,
0, 0.8) (Tr9, 10, 3, 0.9) (0.9)}.

Definition 3.22 (Liu and Qu, 2012): Given ARUL, the sum of utilities of an itemset X
is denoted by X.IU , and is defined as,

X.IU =
∑

X⊆Trd∧Trd∈DB

X.iutil. (18)

a.IU = 2 + 4 + 2 + 2 + 4 = 14 and ab.IU = 5 + 11 + 10 = 26.

Definition 3.23 (Liu and Qu, 2012): Given ARUL of an itemset X , the sum of remaining
utility of X is defined as,

X.RU =
∑

X⊆Trd∧Trd∈DB

X.rutil. (19)

a.RU = 3 + 3 + 9 + 9 + 9 = 33 and ab.RU = 0 + 0 + 0 = 0.

Definition 3.24: Given ARUL of an itemset X , the sum of recency is denoted by
X.SUMREC and is defined as,

X.SUMREC =
∑

X⊆Trd∧Trd∈DB

X.rec (20)

Given ARUL of an itemset X , the average recency is denoted by X.AV GREC, and is
defined as,

X.AV GREC = {X|X.SUMREC/X.supportcount} (21)

where X ⊆ Trd ∧ Trd ∈ DB and X.supportcount is the count of an itemset X occurs
in a transactional database DB.

a.AV GREC = (0.1 + 0.4 + 0.5 + 0.8 + 0.9)/5 = 0.54 and ab.AV GREC = (0.1
+ 0.8 + 0.9)/3 = 0.6.

4 Proposed HARUIM algorithm

The current section presents a novel algorithm called HARUIM for extracting all
HARUIs. The ARULs of all extensions of each item itp ∈ IT , are processed recursively
using a method that follows a depth-first approach. A modified ARUL structure is used
to store utility, recency, arub values. Additionally, two new strategies for pruning are
employed to remove unpromising itemsets. Algorithms 1, 2 and 3 are explained with a
complete and comprehensive running example.

Step 1 Scan the transactional database DB, to compute the twu (Liu et al., 2005b)
and arub of all items itp ∈ IT , Definitions 3.6 and Definition 3.14
[Algorithm 1, line 3].
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Algorithm 1 HARUIM-algorithm
1: Input:DB,min util,min rec
2: Output:Set of all HARUIs
3: Scan DB to compute twu and arub of each item itp ∈ IT ;
4: Find IT (twu(itp) ≥ min util ∧ arub(itp) ≥ min rec);
5: Arrange the items in IT in ≺ order of twu values;
6: Revise DB according to ≺ order of twu values;
7: Scan DB to build X.ARUL of each item itp ∈ IT and construct EUCS and ERCS

structures;
8: search-HARUIM (ϕ, IT,min util,min rec, EUCS,ERCS);
9: return HARUIs.

Algorithm 2 Search-HARUIM
1: Input:X, extensionsOfX,min util,min rec, EUCS,ERCS
2: Output:Set of all HARUIs
3: for itemset Xa ∈ extensionsOfX do
4: calculate the values of Xa.AV GREC, Xa.IU , Xa.RU from Xa.ARUL;
5: if (Xa.IU ≥ min util) ∧ (Xa.AV GREC ≥ min rec) then
6: HARUI ← HARUI ∪Xa;
7: end if
8: if (Xa.IU +Xa.RU ≥ min util) ∧ (Xa.arub ≥ min rec) then
9: extensionsOfXa ← ∅;
10: for Xb ∈ extensionsOfX such that a ≺ b do
11: if ∃arub(ab) ∈ ERCS ∧ arub(ab) ≥ min rec then
12: if ∃twu(ab) ∈ EUCS ∧ twu(ab) ≥ min util then
13: Xab.ARUL← construct(X,Xa,Xb);
14: end if
15: end if
16: end for
17: Search-HARUIM(Xa, extensionsOfXa,min util,min rec, EUCS,ERCS)
18: end if
19: end for

Algorithm 3 Construct procedure-ARUL
1: Input: X: An itemset, Xa: Extension of X with an item a, Xb: Extension of X with an

item b
2: Output: Xab.ARUL: ARUL of an itemset Xab

3: set Xab.ARUL← ∅;
4: for element Ea ∈ Xa.ARUL do
5: if ∃Ea ∈ Xb.ARUL ∧ Ea.tid = Eb.tid then
6: if X.ARUL ̸= 0 then
7: Search E ∈ X.ARUL,E.tid = Ea.tid
8: Eab ← (Ea.tid, Ea.iutl + Eb.iutil − E.iutil, Eb.rutil, Eb.rec);
9: else
10: Eab ← (Ea.tid, Ea.iutl + Eb.iutil, Eb.rutil, Eb.rec);
11: end if
12: Xab.ARUL← Xab.ARUL ∪ Eab;
13: end if
14: end for
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For example, using Tables 3 and 4, the twu of items are, {a = 52, b = 60,
c = 26, d = 55, e = 27}. For example, The arub of items are, {a = 0.9,
b = 0.9, c = 0.7, d = 1.0, e = 1.0}.

Step 2 Pruning strategy (twu): If the twu (Liu et al., 2005b) of an item itp ∈ IT ,
is not greater than min util, the item is pruned and none of its supersets
are explored, Definition 3.6, Theorem 3.2 [Algorithm 1, line 4].

Though out the running example min util, is considered as 9.3.

For example, from Step 1, it can be observed that the twu of all the items
are not less than the user defined min util of 9.3. Therefore, no item is
pruned and all the items are high transaction weighted utilisation itemsets
(HTWUIs), Definition 3.8.

Step 3 Novel pruning strategy (arub): If arub of an item itp ∈ IT , is less than
min rec, the item itp is pruned and no other supersets of itp are explored,
Theorem 3.4, Corollary 3.4.3 [Algorithm 1, line 4].

For example, from Step 1, it can be observed that
arub(c) = 0.7 < 0.8(min rec). Therefore item {c} is pruned and no
supersets of {c} are explored.

Though out the illustrative example min rec is considered as 0.8.

Step 4 The twu values are sorted in ≺ order where each item itp ∈ IT ,
Theorem 3.1 [Algorithm 1, line 5].

For example, items are stored in the order, e ≺ a ≺ d ≺ b.

Step 5 The transactional database DB, is revised for all items itp ∈ IT , according
to ≺ of twu values [Algorithm 1, line 6].

The transaction database DB is revised as Table 5.

Table 5 Revised transaction database

Trd Timestamps Items with quantities

Tr1 08/07/2021 07:15 e:2, a:1, b:1
Tr2 08/07/2021 08:45 e:1, b:2
Tr3 08/07/2021 09:55 d:1
Tr4 08/07/2021 10:25 a:2, d:1
Tr5 08/07/2021 12:52 a:1, d:3
Tr6 08/07/2021 13:20 d:1, b:2
Tr7 08/07/2021 14:33 b:3
Tr8 08/07/2021 16:24 a:1, b:3
Tr9 08/07/2021 17:50 a:2, d:1, b:2
Tr10 08/07/2021 20:10 e:2, d:2

Step 6 The transactional database DB is scanned again to build the ARULs of all
items, itp ∈ IT , Definition 3.21 [Algorithm 1, line 7].
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For example, using Table 5, Table 4, ARULs of {e}, {a}, {d}, {b} are
constructed.

Figure 1 ARUL of {e}, {a}, {d}, {b} (see online version for colours)

Step 7 Estimated utility co-occurrence (EUCS), ERCS structures are constructed,
Definitions 3.7 and 3.16 [Algorithm 1, line 7].

For example, using Table 5, Table 4, EUCS and ERCS structures are
constructed as shown in Figures 2 and 3.

Figure 2 EUCS structure

Figure 3 ERCS structure

Step 8 The search Algorithm 2 uses a prefix-based recursive approach to mine all
the HARUIs using a set-enumeration (Rymon, 1992) tree. A total of 2m − 1
non-empty itemsets can be formed by items in IT containing m elements.
The algorithm employs a depth-first approach to extract all the HARUIs.

Step 9 In ARUL, if X.IU and X.AV GREC are no less than min util and
min rec respectively, the item is added to the set of HARUIs,
Definitions 3.21, 3.24, 3.22, 3.20, Figure 1 [Algorithm 2, lines 5 and 6].
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For example, Consider ARUL for item {e}, e.IU = 10 > 9.3(min util),
e.AV GREC = 1.3/3 = 0.43 < 0.8(min rec) where e.SUMREC = 1.3,
e.SUPPORTCOUNT = 3. As utility of {e} is not less than min util,
but average recency of {e} is less than min rec, item {e} is not a HARUI,
Figure 1.

Step 10 Consider ARUL for an item X , if the sum of utilities X.IU , remaining
utilities X.RU , is not less than min util, and arub of X is not less than
min rec, the item cannot be pruned and its supersets are explored,
Property 2, Definition 3.14, 3.22, 3.23 [Algorithm 2, line 8].

For example, Consider ARUL for item {e},
e.IU + e.RU = 27 > 9.3(min util), e.arub = 1.0 > 0.8(min rec),
therefore {e} is not pruned and its supersets are explored, Figure 1.

Step 11 If an item itp ∈ IT , is a HARUUI , its superset is explored,
Definition 3.19 [Algorithm 2, line 10].

For example, item {e}, is a HARUUI , therefore its superset {ea} is
explored with item {e} as a prefix, where e ≺ a.

Step 12 Pruning strategy (ERCS): For itemset X , containing two items, the
constructed ERCS structure is checked whether arub(X) < min rec. If it
is true the itemset X is pruned and no supersets of X are explored. ERCS
structure avoids construction of itemsets containing two items, thus
avoiding expensive join operations, Definition 3.16 [Algorithm 2, line 11].

For example, arub(ea) = 0.1 < 0.8(min rec), therefore {ea} is pruned
and no supersets of {ea} are explored, Figure 3.

Step 13 Pruning strategy (EUCS): For itemset X , containing two items, the
constructed EUCS structure is checked whether twu(X) < min util. If it
is true the itemset X is pruned and no supersets of X are explored. EUCS
structure avoids construction of itemsets containing two items, thus
avoiding expensive join operations, Definition 3.7 [Algorithm 2, line 12].

For example: As itemset {ea}, is already pruned, EUCS structure is not
checked for twu(ea).

Step 14 Itemset {ed}, is considered with {e} as prefix. From the ERCS structure,
arub(ed) = 1.0 > 0.8(min rec), therefore itemset {ed}, is not pruned,
Definition 3.16, Figure 3.

From the EUCS structure twu(ed) = 10 > 9.3(min util), therefore itemset
{ed}, is not pruned, Definition 3.7, Figure 2.

Itemset {eb} is considered with {e} as prefix. From the ERCS structure
arub(eb) = 0.2 < 0.8(min rec), therefore itemset {eb}, is pruned,
Definition 3.16, Figure 3.

As itemset {eb}, is already pruned, EUCS structure is not checked for
twu(eb), Definition 3.7.
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Step 15 Construct ARUL of itemset {ed}. As ed.IU = 10 > 9.3(min util) and
ed.AV GREC = 1.0/1 > 0.8(min rec), where ed.SUMREC = 1.0,
ed.SUPPORTCOUNT = 1, therefore itemset {ed} is a HARUI,
Definitions 3.20, 3.22, 3.24, Figure 5.

Step 16 As no supersets of {ed} exist in the search space, consider ARUL of item
{a}. As a.IU = 14 > 9.3(min util), a.AV GREC = 2.7/5 = 0.54 <
0.8(min rec), where a.SUMREC = 2.7, a.SUPPORTCOUNT = 5,
therefore item {a} is not a HARUI, Definitions 3.20, 3.22, 3.24, Figure 1.

As a.IU + a.RU = 47 > 9.3(min util), a.arub = 0.9 > 0.8(min rec),
therefore item {a} is a HARUUI and its supersets are explored,
Definitions 3.19, 3.21, 3.22, 3.23, Figure 1.

Step 17 Consider itemset {ad}, from the ERCS structure
arub(ad) = 0.9 > 0.8(min rec), therefore itemset {ad}, is not pruned,
Definition 3.16, Figure 3.

From the EUCS structure twu(ad) = 31 > 9.3(min util), therefore itemset
{ad} is not pruned. ARUL of itemset {ad} is constructed, Definition 3.7,
Figure 2.

Now, for itemset {ab}, from the ERCS structure,
arub(ab) = 0.9 > 0.8(min rec), therefore itemset {ab} is not pruned,
Definition 3.16, Figure 3.

From the EUCS structure twu(ab) = 33 > 9.3(min util), therefore itemset
{ab} is not pruned. ARUL of itemset {ab} is constructed, Definition 3.7,
Figure 2.

Step 18 Construct ARUL of {ad}. As ad.IU = 25 > 9.3(min util) but
ad.AV GREC = 1.8/3 = 0.6 < 0.8(min rec), where ad.rec = 1.8,
ad.supportcount = 3, therefore itemset {ad} is not a HARUI,
Definitions 3.20, 3.22, 3.24, Figure 5.

As ad.IU + ad.RU = 31 > 9.3(min util), and
ad.arub = 0.9 > 0.8(min rec), itemset {ad} is a HARUUI and superset of
{ad} can be explored, Definitions 3.19, 3.21, 3.22, 3.23, Figure 5.

Step 19 For itemset {adb}, using ERCS structure for itemset {db},
arub(db) = 0.9 > 0.8(min rec), therefore itemset {adb} is not pruned,
Definition 3.16, Figure 3.

Using EUCS structure for itemset {db}, twu(db) = 22 > 9.3(min util),
therefore itemset {db} is not pruned and ARUL of itemset {abd} is
constructed, Definition 3.7, Figure 2.

Step 20 Construct ARUL of {adb}. As adb.IU = 13 > 9.3(min util) and
adb.AV GREC = 0.9/1 = 0.9 > 0.8(min rec), where
adb.SUMREC = 0.9, adb.SUPPORTCOUNT = 1, therefore itemset
{adb} is a HARUI, Definitions 3.20, 3.22, 3.24, Figure 5.

Step 21 Consider item {d} in ARUL, as d.IU = 27 > 9.3(min util) but
d.AV GREC = 3.7/6 = 0.61 < 0.8(min rec) where d.SUMREC = 3.7,
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d.SUPPORTCOUNT = 6, therefore item {d} is not a HARUI,
Definitions 3.20, 3.22, 3.24, Figure 1.

Figure 4 Pruned search-space (see online version for colours)

Figure 5 ARUL of {ed}, {ad}, {ab}, {db}, {adb} (see online version for colours)
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As d.IU + d.RU = 39 > 9.3(min util) and d.arub = 1.0 > 0.8(min rec),
therefore item {d} is a HARUUI and supersets of {d} can be explored,
Definitions 3.19, 3.21, 3.22, 3.23, Figure 1.

Step 22 Construct ARUL of {db}. As db.IU = 18 > 9.3(min util) and
db.AV GREC = 1.5/2 = 0.75 < 0.8(min rec), where
db.SUMREC = 1.5, db.SUPPORTCOUNT = 2, therefore itemset {db}
is not a HARUI, Definitions 3.20, 3.22, 3.24, Figure 5.

Step 23 Consider ARUL of {ab}. As ab.IU = 26 > 9.3(min util) and
ab.AV GREC = 1.8/3 = 0.6 < 0.8(min rec), where ab.SUMREC = 1.8,
db.SUPPORTCOUNT = 3, therefore itemset {ab} is not a HARUI,
Definitions 3.20, 3.22, 3.24, Figure 5.

Figure 4 represents the pruned search space for 25 − 1 = 31 itemsets. It can
be observed that out of 31 itemsets, pruning strategies arub and ERCS
avoid construction of 22 ARULs. By using transaction database Table 3,
and external utility Table 4, the proposed HARUIM algorithm mines
itemset {d, e} and {a, d, b} as HARUIs.

4.1 Complexity analysis

Suppose there are m distinct items and n transactions in the database DB. The database
is scanned first to compute the twu, rec and arub values of all items itp ∈ IT . It takes
O(m× n) time in the worst case. Sorting each item itp in ascending order of twu
takes O(mlogm) time. Scanning the database DB and constructing ARUL for each
item in IT also requires O(m× n) time. In the worst case, calculating the arub value
of each item or an itemset X requires O((2m − 1)× n) time. Traversing the search
space to mine all HARUIs takes O(2m − 1) time in the worst case. Therefore, the time
complexity of HARUIM in the worst case is O((2m − 1)× n).

5 Experimental results

This section details the results of HARUIM algorithm on three real datasets (foodmart,
retail, and mushroom) and two synthetic datasets (t20i6d100k and t25i10d10k). The
minimum utility and recency thresholds, denoted by min util and min rec respectively,
have been applied as constraints in the experiments.

The efficiency of the HARUIM algorithm is compared with several other
algorithms including:

1 FHM (Fournier-Viger et al., 2014a): This algorithm only uses utility to mine
HUI’s.

2 RUP (Gan et al., 2019): This algorithm uses recency as a measure along with
decay factor to mine recent high utility utemsets (RHUIs).

3 HARUIMbaseline: This baseline algorithm uses average recency as a measure
without using the pruning techniques used in the proposed HARUIM algorithm.
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4 HARUIM : The proposed algorithm uses average recency as a measure along
with two novel pruning strategies (arub, ERCS).

5.1 Execution steps

1 The experiments were conducted on a system equipped with a Dell Intel Core i3
processor with a clock speed of 1.70 GHz, 8 GB of RAM, and a 64-bit
Windows 10 operating system.

2 Pattern analysis was performed on patterns derived using all the four algorithms
FHM (Fournier-Viger et al., 2014a), RUP (Gan et al., 2019), baseline, proposed
algorithms.

3 Efficiency evaluation in terms runtime was performed by comparing the baseline,
proposed algorithms.

4 Efficiency evaluation in terms of memory utilisation was performed by comparing
the baseline and the proposed algorithms.

5 In all the experiments min util threshold was increased while keeping the
min rec as constant.

6 Effect of pruning strategies, arub and ERCS was shown through the number of
candidates generated by FHM (Fournier-Viger et al., 2014a), RUP (Gan et al.,
2019), baseline, proposed algorithms.

5.2 Dataset characteristics

1 Foodmart: The foodmart dataset utilised in the experiments has 4,141 transactions
and 1,559 unique items. The average length of a transaction is 4.42 items.

2 Retail: The retail dataset used in the experiments has 88,162 transactions and
16,470 unique items. The average length of a transaction is 10.30 items.

3 Mushroom: The mushroom dataset used in the experiments consists of 8,124
transactions with 119 unique items. The average length of a transaction is 23
items.

4 t25i10d10k: This dataset comprises of 9,976 transactions and 929 unique items.
The average length of a transaction is 24.77 items.

5 t20i6d100k: This dataset comprises 99,922 transactions and 893 unique items. The
average length of a transaction is 19.90 items.

5.3 Pattern analysis

This section aims to analyse the patterns generated by the HARUIM algorithm and
compare them with those generated by two other algorithms, namely RUP (Gan et al.,
2019) and FHM (Fournier-Viger et al., 2014a). The HARUIM algorithm utilises a
novel measure known as average recency and two pruning strategies, arub and ERCS,
to extract concise and interesting patterns from the dataset. To illustrate, we will consider
the patterns obtained from the dataset shown in Table 6.
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1 When foodmart dataset was used at min util = 1,500 and min rec= 0.7,
HARUIM algorithm mines 62,539 patterns compared to 191,173 patterns mined
by FHM (Fournier-Viger et al., 2014a) algorithm. As the min util increases
from 1,500 to 3,500, the number of patterns decrease from 62,539 to 21,752.

2 When retail dataset was used at min util = 5,500 and min rec = 0.4,
HARUIM algorithm derives 2,350 patterns when compared to the FHM
algorithm which mines 2,598 patterns. The number of patterns decrease from
2,350 to 920 as min util is increased from 5,500 to 9,500.

3 When synthetic dataset t25i10d10k was used at min util = 2,000 and min rec =
0.7, HARUIM algorithm derives 401,219 patterns when compared to RUP
(Gan et al., 2019) which mines 1,046,525 patterns. The number of patterns
decrease from 401,219 to 539 as min util is increased form 2,000 to 6,000.

Table 6 Patterns generated

Dataset Algorithms Number of patterns

Test1 Test2 Test3 Test4 Test5

Foodmart (min rec = 0.7) min util 1,500 2,000 2,500 3,000 3,500
FHM 191,173 154,670 117,592 85,034 59,351
RUP 191,173 154,670 117,592 85,034 59,351

HARUIMbaseline 62,539 51,464 39,993 29,874 21,752
HARUIM 62,539 51,464 39,993 29,874 21,752

Retail (min rec = 0.4) min util 5,500 6,500 7,500 8,500 9,500
FHM 2,598 1,967 1,526 1,208 992
RUP 2,598 1,967 1,526 1,208 992

HARUIMbaseline 2,350 1,776 1,392 1,114 920
HARUIM 2,350 1,776 1,392 1,114 920

Mushroom (min rec = 0.7) min util 250,000 260,000 270,000 280,000 290,000
FHM 31,706 27,186 23,590 20,945 18,772
RUP 31,706 27,186 23,590 20,945 18,772

HARUIMbaseline 1,692 1,230 877 608 402
HARUIM 1,692 1,230 877 608 402

t25i10d10k (min rec = 0.7) min util 2,000 3,000 4,000 5,000 6,000
FHM 1,046,525 410,545 114,125 18,547 1,157
RUP 1,046,525 410,545 114,125 18,547 1,157

HARUIMbaseline 401,219 260,797 87,218 15,611 539
HARUIM 401,219 260,797 184,135 15,611 539

t20i6d100k (min rec = 0.5) min util 5,000 15,000 25,000 35,000 45,000
FHM 336,490 78,299 13,476 1,923 188
RUP 336,490 78,299 13,476 1,923 188

HARUIMbaseline 121,070 20,528 5,507 407 48
HARUIM 121,070 20,528 5,507 407 48

4 It can be observed that HARUIM and HARUIMbaseline algorithms mine same
number of patterns but the number of derived candidates might vary due to the
novel pruning techniques (arub, ERCS) used in the proposed system. For
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example, using foodmart dataset at min util = 1,500 and min rec = 0.7, the
number of patterns derived by HARUIM and HARUIMbaseline algorithms are
62,539, whereas it can be observed from Table 9 that the number of candidates
(nodes) visited by HARUIM and HARUIMbaseline are 150,716 and 498,082
respectively.

Figure 6 Patterns-real datasets (see online version for colours)

Figure 7 Patterns-synthetic datasets (see online version for colours)

Using Table 6, Figures 6 and 7 the following observations can be made:

1 HARUIM algorithm mines concise as well as high quality patterns.

2 In HARUIM , as min util increases, the number derived patterns decrease.

3 Although the HARUIMbaseline and HARUIM algorithms generate similar
patterns, the number of candidates generated by each algorithm may differ due to
the application of novel pruning techniques in HARUIM . While the
HARUIMbaseline algorithm utilises a traditional approach without pruning
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techniques, the HARUIM algorithm applies the arub and ERCS strategies to
effectively decrease the search space.

Table 7 Runtime analysis

Dataset Algorithms Runtimes (ms)

Test1 Test2 Test3 Test4 Test5

Foodmart (min rec = 0.7) min util 1,500 2,000 2,500 3,000 3,500
FHM 1,451 1,178 1,150 1,100 1,019
RUP 1,746 1,479 1,423 1,366 1,291

HARUIMbaseline 1,799 1,558 1,326 1,202 1,150
HARUIM 1,334 1,123 1,094 996 931

Retail (min rec = 0.4) min util 5,500 6,500 7,500 8,500 9,500
FHM 11,355 10,592 10,065 9,244 8,600
RUP 10,881 10,556 10,291 9,058 8,949

HARUIMbaseline 17,449 15,796 15,545 15,290 14,827
HARUIM 16,726 15,513 14,985 14,338 13,893

Mushroom (min rec = 0.7) min util 250,000 260,000 270,000 280,000 290,000
FHM 19,808 17,814 15,881 14,450 13,045
RUP 20,552 17,780 16,561 14,822 14,727

HARUIMbaseline 20,266 17,951 16,158 15,119 13,501
HARUIM 11,479 10,821 9,408 8,565 7,778

t25i10d10k (min rec = 0.7) min util 2,000 3,000 4,000 5,000 6,000
FHM 19,219 12,448 8,540 6,685 4,906
RUP 28,146 14,326 9,288 7,381 5,906

HARUIMbaseline 25,191 13,582 10,058 8,205 6,818
HARUIM 20,915 13,412 10,056 8,185 6,819

t20i6d100k (min rec = 0.5) min util 5,000 15,000 25,000 35,000 45,000
FHM 54,000 53,417 37,016 25,975 21,203
RUP 242,321 56,560 34,843 26,315 20,229

HARUIMbaseline 136,278 62,820 41,650 32,093 26,279
HARUIM 137,104 71,940 41,571 32,325 26,909

5.4 Runtime evaluation

This section analyses the effect of pruning strategies on the runtime of the HARUIM
algorithm. Specifically, runtime performance of HARUIM is compared with two other
algorithms, namely HARUIMbaseline and RUP (Gan et al., 2019). By doing so, we
aim to assess the efficiency of the HARUIM algorithm in terms of runtime.

1 From Table 9, when foodmart dataset was used at min util = 1,500 and min rec
= 0.7, HARUIM algorithm prunes 347,366 more candidates than the
HARUIMbaseline algorithm.

2 The proposed system generates 69.74% less candidates (nodes) in comparison to
the HARUIMbaseline algorithm. As exponential number of candidates (nodes)
have been pruned the efficiency of the proposed system with respect to runtime
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increases by almost half a second. As foodmart is a sparse dataset, min rec
prunes more number of candidates (nodes) when compared to a dense dataset.

Figure 8 Runtime-real datasets (see online version for colours)

Figure 9 Runtime-synthetic datasets (see online version for colours)

3 Similarly Table 7 shows that the proposed system also outperforms the RUP
(Gan et al., 2019) algorithm by 412 ms. The efficiency of HARUIM algorithm
cannot be compared with FHM (Fournier-Viger et al., 2014a) as the proposed
system uses two constraints namely min util, min rec when compared to the
FHM (Fournier-Viger et al., 2014a) algorithm which uses a single constraint
called min util to mine high utility patterns.

4 From Table 7, when Mushroom dataset (dense) was used at min util = 250,000,
min rec = 0.7 the proposed system outperforms the HARUIMbaseline algorithm
by 8.7 seconds. Similarly HARUIM algorithm outperforms RUP (Gan et al.,
2019) algorithm by 9.07 seconds.
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5 When synthetic dataset t25i10d10k (dense dataset) with min util = 2,000,
min rec = 0.7 was used, the proposed HARUIM algorithm outperforms the
HARUIMbaseline algorithm by 4.2 seconds, Table 7.

Table 8 Memory utilised

Dataset Algorithms Memory

Test1 Test2 Test3 Test4 Test5

Foodmart (min rec = 0.7) min util 1,500 2,000 2,500 3,000 3,500
FHM 77.64 76.25 65.35 52.94 41.94
RUP 77.93 77.93 77.93 64.43 50.02

HARUIMbaseline 54.32 50.11 49.34 49.30 40.14
HARUIM 39.62 37.13 31.64 26.94 22.16

Retail (min rec = 0.4) min util 5,500 6,500 7,500 8,500 9,500
FHM 379.4 362.4 349.3 336.8 328.5
RUP 384.6 355.9 354.6 344.7 335.7

HARUIMbaseline 564.7 545.1 522 508.8 490
HARUIM 551.02 529.25 514.34 494 475.2

Mushroom (min rec = 0.7) min util 250,000 260,000 270,000 280,000 290,000
FHM 123.16 122.55 121.71 121.55 120.96
RUP 124.81 123.82 122.21 121.89 119.88

HARUIMbaseline 123.24 122.05 121.95 121.35 119.88
HARUIM 120.53 120.51 119.93 116.91 115.73

t25i10d10k (min rec = 0.7) min util 2,000 3,000 4,000 5,000 6,000
FHM 550.79 522.95 510.31 484.15 257.95
RUP 652 611.49 584.38 551.06 279.72

HARUIMbaseline 855.53 848.89 855.58 626.53 283.94
HARUIM 837.69 832.91 824.44 608.82 275.42

t20i6d100k (min rec = 0.5) min util 5,000 15,000 25,000 35,000 45,000
FHM 1,131.08 1,097.11 1,077.57 842.71 687.18
RUP 1,140.13 1,130.38 1,112.63 1,009.86 683.79

HARUIMbaseline 1,274.65 1,250.99 1,249.14 1,240.52 859.38
HARUIM 1,276.69 1,267.57 1,261.59 1,244.70 853.72

Using Table 7, Figures 8 and 9 the following observations can be made:

1 The HARUIM algorithm employs two pruning strategies, namely arub and
ERCS, to decrease the search space.

2 As min util increases, the runtime of the HARUIM algorithm decreases.

3 The execution time of the HARUIM algorithm is lower than that of the
HARUIMbaseline algorithm. This is because the HARUIM algorithm uses two
pruning techniques, arub and ERCS, which help to eliminate unpromising
itemsets. In contrast, the HARUIMbaseline algorithm requires the construction of
ARULs, which increases the computational complexity and hence the execution
time.
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Figure 10 Memory-real datasets (see online version for colours)

Figure 11 Memory-synthetic datasets (see online version for colours)

5.5 Memory utilisation

This sub section focuses on comparing the memory utilisation of the proposed
HARUIM algorithm with the HARUIMbaseline and RUP (Gan et al., 2019)
algorithms.

1 As arub, ERCS structures prune unpromising itemsets (nodes) less number of
ARULs are constructed thereby resulting in less amount of memory being utilised.
HARUIM algorithm works well with sparse datasets namely foodmart and retail.

2 For example, from Table 8 when Foodmart dataset was used at min util = 1,500,
min rec = 0.7, HARUIMbaseline, RUP (Gan et al., 2019) algorithms require
14.7 MB, 38.31 MB of memory more than the proposed HARUIM algorithm.
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3 When mushroom (dense) dataset was used at min util = 250,000, min rec = 0.7,
HARUIMbaseline, RUP (Gan et al., 2019) algorithms require 2.71 MB,
4.28 MB of memory more than the proposed HARUIM algorithm.

4 When synthetic dataset t25i10d10k, was used at min util = 2,000, min rec =
0.7, HARUIMbaseline algorithm requires 17.84 MB more than the proposed
HARUIM algorithm.

Table 9 Number of candidates

Dataset Algorithms Candidates
Test1 Test2 Test3 Test4 Test5

Foodmart min util 1,500 2,000 2,500 3,000 3,500
(min rec = 0.7) FHM 249,041 230,854 206,141 174,882 141,406

RUP 498,082 461,708 412,282 349,764 282,812
HARUIMbaseline 498,082 461,708 412,282 349,764 282,812

HARUIM 150,716 143,912 132,144 115,344 95,576
Retail min util 5,500 6,500 7,500 8,500 9,500
(min rec = 0.4) FHM 40,753 30,482 23,846 19,353 16,249

RUP 81,506 60,964 47,692 38,706 32,498
HARUIMbaseline 81,506 60,964 47,692 38,706 32,498

HARUIM 79,530 59,702 46,746 37,994 31,956
Mushroom min util 250,000 260,000 270,000 280,000 290,000
(min rec = 0.7) FHM 61,514 17,814 15,881 14,450 13,045

RUP 123,028 102,708 86,842 75,762 66,974
HARUIMbaseline 123,028 102,708 86,842 75,762 66,974

HARUIM 59,644 51,122 43,542 38,330 33,736
t25i10d10k min util 2,000 3,000 4,000 5,000 6,000
(min rec = 0.7) FHM 5,767,024 1,935,227 863,859 403,981 188,705

RUP 11,534,048 3,870,454 1,727,718 807,962 377,410
HARUIMbaseline 11,534,048 3,870,454 1,727,718 807,962 377,410

HARUIM 11,491,010 3,865,496 1,727,508 807,944 377,410
t20i6d100k min util 5,000 15,000 25,000 35,000 45,000
(min rec = 0.5) FHM 10,618,457 776,959 220,981 89,033 43,746

RUP 21,236,914 1,553,918 441,962 178,066 87,492
HARUIMbaseline 21,236,914 1,553,918 441,962 178,066 87,492

HARUIM 21,236,914 1,553,918 441,962 178,066 87,492

5.6 Effect of pruning techniques

In this subsection, we examine how the number of candidates (nodes) generated is
affected by pruning strategies, specifically arub and ERCS.

1 The efficiency of HARUIM algorithm can be observed in terms of the
percentage of candidates or nodes pruned. Sparse datasets such as foodmart and
retail are more efficiently pruned by the proposed system than dense datasets such
as t25i10d10k and t20i6d100k. This suggests that the effectiveness of the pruning
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strategy is dependent on the dataset’s sparsity. The number of candidates (nodes)
pruned is directly proportional to the runtime and memory utilisation of the
proposed system.

2 From Table 9 it can be observed that HARUIM algorithm visits less number of
nodes (candidates) than its baseline algorithm. The real efficiency can be found by
comparing the proposed system to the HARUIMbaseline algorithm.

3 When foodmart dataset was used at min util at 2,000 and min rec at 0.7,
HARUIM algorithm visits just 143,912 candidates (nodes) where as the
HARUIMbaseline algorithm visits 461,708 candidates (nodes) in the search
space. The number of candidates (nodes) visited by HARUIM algorithm are
68.83% less than the HARUIMbaseline algorithm.

4 Similarly, retail dataset was used to test the proposed system. When min util was
set to 6,500 and min rec to 0.4, the number of candidates (nodes) visited by
HARUIM algorithm are 2.07% less than the HARUIMbaseline algorithm. As
min rec value was set to a lower value of 0.4, less number of candidates (nodes)
are pruned by the proposed system.

5 When mushroom dataset was used to test the system at min util = 260,000,
min rec = 0.7, the proposed algorithm generates 51,586 candidates less than the
HARUIMbaseline algorithm.

6 When synthetic dataset t25i10d10k was used at min util = 3,000, min rec = 0.7,
the HARUIM algorithm generates 4,958 candidates less than the
HARUIMbaseline algorithm. HARUIM which uses average recency as a novel
measure works well with sparse datasets.

Using Table 9, Figures 12 and 13, the following observations can be made:

1 The efficiency of the HARUIM algorithm is improved by pruning the search
space, resulting in fewer nodes, and the algorithm performs faster as min util
increases.

2 As HARUIM prunes large amount of search space, smaller search space is
processed much faster than the complete search space.

3 A smaller search space due to pruning strategies results in faster runtime and
lesser utilisation of memory.

5.7 Scalability

The efficiency of the proposed system remains stable even as the database size is
increased. Using synthetic dataset t20i6d100k, when the size of the database is increased
by 20,000, the runtime and memory allocation increase. For example, with min util
= 5,000, min rec = 0.5, when database size is increased from 20,000 to 40,000, the
runtime increases by 18.57 seconds and memory utilisation increases by 567.01 MB.
When the database size is increased from 20,000 to 60,000, the runtime increases
by 58 seconds and memory utilisation increases by 632 MB. Therefore the proposed
HARUIM algorithm scales well with respect to runtime and memory allocation,
Table 10.
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Figure 12 Candidates-real datasets (see online version for colours)

Figure 13 Candidates-synthetic datasets (see online version for colours)

Table 10 Scalability

Dataset Database size

t20i6d100k 20,000 40,000 60,000 80,000 99,922

min util = 5,000 Patterns 8,466 56,233 97,884 117,935 121,070
min rec = 0.5 Candidates 276,418 1,588,844 5,856,010 12,620,444 21,236,914

Runtime (ms) 7,702 26,278 65,231 97,168 137,104
Memory (MB) 436.32 1,003.33 1,068.32 1,176.75 1,276.69

5.8 Generalisation of the proposed HARUIM algorithm

The HARUIM algorithm has the flexibility to be applied to any item that is connected
with a weight or profit value. HARUIM can not only be used in context to retail and
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e-commerce but can also be used in other domains such as finance and healthcare. An
illustration of using HARUIM in the domain of finance is the use of the NIFTY-50 stock
dataset. We refer to a set of stocks as ‘stocksets’. Since each stock has an associated
profit or loss value, we transform the raw stock data from a period of one hundred
trading days into SPMF format (Fournier-Viger et al., 2014b) to mine high average
recent stocksets. These stocksets can be used by investors and traders to recognise recent
trending stocksets. To collect historical data for all stocks in the NIFTY-50, we utilised
Yahoo Finance (https://finance.yahoo.com/) and obtained a set of data containing various
columns for each stock. The dataset’s focus was on the percentage difference between
the previous day’s closing price and the current day’s closing price for each stock on a
given day.

Utility = (todays close value− previous day close value)

/ (previous day close value)

Figure 14 Scalability-varied minimum utility (see online version for colours)

Figure 15 Data pre-processing (see online version for colours)

5.8.1 Steps to convert raw data into spmf (Fournier-Viger et al., 2014b) format

1 Add closing value of previous day to each row of each file of stock, Figure 16.
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Figure 16 Previous close (see online version for colours)

2 Add utility column, Figure 17.

Figure 17 Utility column (see online version for colours)

3 Join utility columns based on date, Figure 18.

Figure 18 Stock utility columns (see online version for colours)

4 Encode and convert to .txt format which is used as an input to the proposed
HARUIM aglorithm. For example, snapshot of NIFTY-50 stocks converted into
spmf (Fournier-Viger et al., 2014b) format is shown in Figure 19. As trending
stocksets are mined, we only considered stock sets with a positive increase in
percentage of stock price while mining for trending stocks. Each transaction has
the following format:

Items : transaction utility : individual utility

Figure 19 NIFTY-50-SPMF-format
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The proposed HARUIM algrorithm applied on NIFTY-50 dataset yeilds the following
results (Table 11).

Table 11 HARUIM-NIFTY-50

Dataset Algorithm HARUIM-NIFTY-50

Test1 Test2 Test3 Test4 Test5

NIFTY-50 min util 235 245 255 265 275
(min rec = 0.5) Stocksets 50,646 11,034 2,027 301 36

Candidates 84,298,210 49,905,160 31,067,408 20,229,282 13,710,988
Runtime (ms) 35,511 18,493 12,815 9,032 6,313
Memory (MB) 133.45 133.42 133.29 133.34 133.38

When NIFTY-50 dataset was used at min util = 275 and min rec = 0.5, the proposed
HARUIM algorithm mines 36 trending stocksets. One example of mined stockset is:

ut(ADANIENT, INDUSINDBK, INDUSINDBK,HDFCBANK,

UPL, TATACONSUM,TATASTEEL,ONGC,ULTRACEMCO,

ICICIBANK,BHARTIARTL, SBIN,HINDALCO,BHARTIARTL,

GRASIM) = 277.45, from Definition 3.2.
avgrec(ADANIENT, INDUSINDBK, INDUSINDBK,HDFCBANK,

UPL, TATACONSUM,TATASTEEL,ONGC,ULTRACEMCO,

ICICIBANK,BHARTIARTL, SBIN,HINDALCO,BHARTIARTL,

GRASIM) = 0.564, from Definition 3.13.

5.9 Guidelines for policy makers based on HARUIM

Based on the findings we enumerate various guidelines that policymakers can follow:

1 Identification of HUI’s: The proposed HARUIM algorithm is used to identify the
most profitable itemsets purchased by the customers. These itemsets can help to
identify customer preferences, market trends and demand patterns.

2 Analysing average recency measure: The average recency measure used in the
proposed HARUIM algorithm helps the policy makers to design marketing
strategies and promotions based on recently purchased itemsets.

3 Based on the findings of the proposed system, the policy makers can adjust the
prices of certain items/itemsets according to their average recency values.

4 Items/itemsets can be recommended to customers based on their past purchases
and the average recency measure.

6 Conclusions and future work

HARUIM is a novel method to mine HARUI’S. Large number of HUIM algorithms only
consider utility as a measure to mine HUI’s, which might result in outdated patterns.
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To overcome this limitation, we introduced a novel measure, namely average recency,
which computes the average recency of the transactions to mine HARUIs. Unlike the
previous approach, this measure considers both recent and past transactions and avoids
the limitation of extremely recent transactions. To further enhance the performance of
HARUIM algorithm, we developed novel pruning techniques to discard unpromising
itemsets. The experimental results obtained using real and synthetic datasets demonstrate
that HARUIM outperforms the baseline algorithm with respect to runtime and memory
utilisation. Our future work includes extending HARUIM with various databases like
uncertain and dynamic databases.
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