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Abstract: In this article, we consider a single server queue in which
customers arrive according to the Markovian arrival process (MAP) and their
corresponding two modes of service based on phase-type (PH) distribution.
The main server may affect by breakdown while offering service whether it is
any one of the modes of service or additional service immediately go for the
repair process. At that moment, the service process switchover to the standby
server until the main server rejuvenated from the phase-type repair. When
vacation completion epoch, the main server will do the start-up process. Using
the matrix-analytic method, we investigated the total number of customers in
the system under steady-state probability vector. We examined the stability
condition, busy period and characteristics of some performance measures
of the system are discussed. Numerical results are tabulated and graphical
representations are provided for a clear view of our model.
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1 Introduction

The versatile Markovian point process has been first introduced and examined by Neuts
(1979). He has discussed the PH-distributions, point process and some applications
including the Poisson process, PH renewal process, Markov-modulated Poisson process
and the Markov-arrival process. Chakravarthy (2010) has described the point process
and marked point process which are the first building blocks in the development of MAP
and the PH distributions are the generalisations of exponential distributions. He has also
described the Poisson process and PH-renewal process are the second building blocks in
the development of MAP concepts and then he incorporated the distinct types of special
cases of MAP. Ayyappan and Karpagam (2019) have studied the non-Markovian batch
arrival and bulk service queueing model with standby server, single vacation and some
performance measures including the expected waiting time. Chakravarthy and Agarwal
(2003) incorporated the machine repair problem with the concepts of unreliable server,
service and repair process based on phase-type distribution. They have analysed their
model using matrix analytic methods.

Jain et al. (2004) have incorporated the machine repair system deliberates the
concepts of N or more units has failed then the removable repairman turns on for start
the repair work afterward if there is no failed unit for repair, the repairman will turn off.
The arriving failed unit may renege due to impatient behaviour during the repairman
is busy. Ke (2003) has analysed the M/G/1 queue with vacation under N-policy,
unpredictable breakdowns and do start-up process for serving the waiting customers until
the system becomes empty. Whenever the server affected by breakdown immediately
goes for the repair process and also analysed the cost optimisation. Kumar and Sharma
(2019) have analysed the multi-server Markovian queueing model with reneging and
retention of reneging customers. Kumar and Arumuganathan (2008) have incorporated
a single server retrial queueing system with two phases of heterogeneous service, batch
arrival of customers follows the Poisson process and discussed the Bernoulli schedule
vacation. Sudhesh and Azhagappan (2019) described the heterogeneous multi-server
queue with balking and reneging of customers. Kannadasan and Sathiyamoorthi (2021)
described a single server queue with working vacation serving at a slower rate during the
start-up period. Dudin and Nishimura (1999) have studied the batch Markovian arrival
process for arriving customers with controllable two service modes follow the general
distribution.

Wang et al. (2007) have described a single removable and unreliable server with
unpredictable breakdowns and also discussed when the server affect by the breakdown
which is emergently recovered and it has need start-up process of preparatory time
to start the service again. They have developed a cost analysis for the optimisation
of their model. Ke (2001) has incorporated a single server non-Markovian queueing
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model with two types of vacations in which server can go type one vacation which
the system is empty likewise when vacation completion epoch if the number of
customers in the system less than Q again the server will take type one vacation or else
number of customers in the system is Q ≤ N, the server goes for type two vacation.
However, if the number of customers in the system reaches N or more and the vacation
completion epoch, the server turned on and do some preparatory work on the basis
of the start-up process. Furthermore, he has analysed the cost model to attaining the
threshold optimisation. Kalita and Choudhury (2021) have analysed the non-Markovian
single server queueing system in which the server takes the maximum number of random
vacation up to finds a minimum of one message waiting in a queue when the vacation
completion epoch and the server would be dormant in the system after completing the
maximum number of random vacations. Singh et al. (2020) have incorporated the bulk
arrival retrial queue with the unreliable server, optional additional service and arrival of
negative customers.

Bagyam and Udayachandrika (2011) have studied non-Markovian retrial queueing
model with two types of service. Ayyappan and Udayageetha (2020) have analysed the
retrial queue with priority services, start-up and closedown time, vacation, impatient
customers and working breakdown which is rendering service at a slower rate even
after affected by the breakdown while offering normal service to the customers. Nobel
and Tijms (1999) have analysed a single server queue station with batch arrival of
customers follows the Poisson process and dealt with the arriving customer has an option
to choose any one of the modes of service in which it deliberates high speed and regular
speed service. They also added the switch over times for changing one mode to another
mode of service. Choudhury and Kalita (2017) have investigated the non-Markovian
queue with a breakdown, delayed repair and two types of service from the server, the
customer who has an option to get the same service once again if the customer is
not satisfied with the essential service. Baruah et al. (2012) have analysed the batch
arrival queueing system with two types of heterogeneous service deliberates the arriving
customers could choose any one types of service, re-service and impatient behaviour of
customers. Although several aspects of queueing models with the concept of two types
of service in the literature, no works have been done with the concepts of two modes
of heterogeneous service, additional service, standby server subject to unpredictable
breakdowns and phase-type repair process. Therefore, in this paper we investigate the
MAP/PH(1), PH(2), PH(3)/1 queueing system using matrix-analytic methods with
start-up time, vacation, two modes of heterogeneous service, standby server, breakdown,
both the service and repair follows the phase-type distribution and arrival considered
under MAP is the suitable way of approaching the correlated and non-correlated arrival
concepts.

The overall goal and intentions of our paper are given as follows:

• We formulate some scenarios faced by customers in the banking sector as well as
in internet banking into mathematical form.

• We derive the stability condition of the system for the condition check of our
model to remain balanced. To analyse the busy period of the system and the
waiting time analysis for the customers.
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• To describe the Total cost of the system for optimisation of our proposed model.
To examine the consequence of the various parameters on the characteristics of
the system performance measures whether they increase or decrease according to
the situations.

The motivation for this article comes from the banking sector. In banking systems,
the arriving customers usually demand either deposit or withdrawal of their amounts
(two modes of heterogeneous service) then they received either any one of the modes
of heterogenous services then after some people may demand print the details of
the transactions in their passbook (additional service) or else they will leave out of
the system. While the customer receiving service from any one of the counters, the
computer or the printer may be struck by the breakdown then that service receiving
customer would take care of by any other staff member (standby server). During the
vacation period the waiting customer who may leave out of the system (reneging) due
to impatient behaviour. Similarly, consider the internet banking sector, the customers
who use this source either will pay the bills, fees to their corresponding educational
sector, etc. otherwise they will deposit their amounts in the investment avenues like
equity, bonds, mutual funds, exchange-traded fund (ETF) and a cryptocurrency (Bitcoin,
Litecoin, Ethereum, Altcoin and Ripple), etc. While using internet banking with the help
of any one of the broadband Wi-fi connection which may not come properly in some
situations, in those moments people will connect any other Wi-fi or smart-phone internet
connection (standby server) during the repair period of that broadband Wi-fi connection.
When the transaction completion epoch they would make transaction pdf print or
download it (additional service) on their laptop, personal computer or smart-phones if
their transaction has done by using NEFT platform in internet banking.

1.1 Structure of our manuscript

The remaining structure of the overall manuscript is structured as follows. We elaborate
on the detailed description of our mathematical model in Section 2. In Section 3, we
generated a matrix formulation of our model. In Section 4, we discussed the stability
condition, the steady-state probability vector of our model and the computation of
the R matrix. In Section 5, we have analysed the busy period of the system. The
system performance measures have been discussed in Section 6 and we described
the cost analysis for our model in Section 7. In section 8 we analysed the waiting
time distribution and in Section 9, presented some tabulated numerical and illustrated
graphical representations through exemplifications. The conclusion of our model has
given in Section 10.

2 The mathematical model description

We consider a classical queueing model in which customers arrive based on MAP with
representation (D0, D1) of the square matrix of order is m such that D0 represents
there are no arriving customers in the system, D1 represents the arrival of customers
in the system. The main server (MS) offering the two modes of heterogeneous service
in which arriving customers have an option they can choose either mode I service with
probability c1 or mode II service with probability d1 and the additional service also offer
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when service completion epoch of any one of the modes of service of which all these
services follow the phase-type distribution. The mode I and mode II phase-type service
of the main service with representation (α, T ) and (γ, U) of order n1 and n2 with
T 0 + Te = 0 and U0 + Ue = 0 such that T 0 = −Te and U0 = −Ue. While the main
server offering mode I or mode II service to the customers, if the main server struck
with breakdown immediately standby server will interrupt and carry over the service
process and it follows the PH distribution with representation (α1, θ1T ) and (γ1, θ2U)
of order n1 and n2 where 0<θ1, θ2<1. The vectors α, γ and α1, γ1 are denoting for the
purpose of differentiating the main server and the standby server and we are taking α,
γ and α1, γ1 are the same such that α = α1 and γ = γ1. After receiving service from
the main server the customer who may wish to get an additional service immediately
they will get additional service with probability c2 otherwise, leave the system with
probability d2 such that c2 + d2 = 1 and the additional service follows PH distribution
with representation (β,R) and the same scenario will happen when the standby server in
the system. While offering additional service to the customers if the main server struck
with breakdown then immediately standby server (SS) would interrupt and carry over the
additional service and it follows a phase-type distribution with representation (β1, θ3R)
of order is n3 with R0 +Re = 0 such that R0 = −Re and 0<θ3<1. The vector β and
β1 are denoting for the purpose of differentiating the main server and the standby server
and we are taking β and β1 are the same such that β = β1. Whenever the main server
struck with a breakdown of whether the main server is offering either any one of the
two modes of service or additional service to the customers immediately standby server
would interrupt the main server and carry over the respective service, then the main
server goes for the repair process under phase-type distribution with representation (δ, S)
of order l with S0 + Se = 0 such that S0 = −Se and the breakdown time follows an
exponential distribution with parameter τ .

Figure 1 Schematic representation of our proposed model
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When the main server rejuvenation is over from the phase-type repair process then come
back to the service station and then who will interrupt the standby server and carry
over the service process whether it is any one of the modes of service or additional
service. Meanwhile, when the main server rejuvenated from the repair at that moment
if the standby server is in an idle state then the main server also will be in the idle
state until the customer arrives at the system. After completing service to the customers
the main server can go for a vacation if there is no customer in the system and the
vacation times follow an exponential distribution with parameter η. However, when the
vacation completion whether the customer in the system or there is no one in the system
the main server will make the start-up process for the purpose of giving service to the
customers in which whether the customer in the system the main server will start the
service or else the main server being idle up to the customer’s arrival and the start-up
times follows an exponential distribution with parameter σ. During the vacation period
of the main server, the customers who are waiting in the queueing line who may lose
patience and renege from the system with parameter ζ and it is exponentially distributed
(see Figure 1).

3 The matrix generation – QBD process

In this section, we describe the notation of our model as follows for the purpose of
generating the QBD process.

3.1 Notations for matrix generation

• ⊗ – Kronecker product of two different dimension matrices by using this symbol.

• ⊕ – Kronecker sum of two different dimension matrices by using this symbol.

• Im – it denotes an m-dimensional Identity matrix.

• e – column vector of suitable dimension each of its entry is 1.

• e1 = e3m+lm.

• e2 = e2m+n1m+n2m+n3m+ln1m+ln2m+ln3m.

• e3 = e2+n1+n2+n3+ln1+ln2+ln3 .

• e1(1) – column vector of dimension {(3 + l)m× 1} with first {m} entries as 1
and the rest of the entries are zero.

• e1(2) – column vector of dimension {(3 + l)m× 1} with {m+ 1} to {2m}
entries as 1 and the rest of the entries are zero.

• e1(3) – column vector of dimension {(3 + l)m× 1} with {2m+ 1} to {3m}
entries as 1 and the rest of the entries are zero.

• e1(4) – column vector of dimension {(3 + l)m× 1} with {3m+ 1} to
{(3m+ lm)} entries as 1 and the rest of the entries are zero.

• e2(1) – column vector of dimension
{(2 + n1 + n2 + n3 + ln1 + ln2 + ln3)m× 1} with first {m} entries as 1 and
the rest of the entries are zero.
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• e2(2) – column vector of dimension
{(2 + n1 + n2 + n3 + ln1 + ln2 + ln3)m× 1} with {m+ 1} to {2m} entries as
1 and the rest of the entries are zero.

• e2(3) – column vector of dimension
{(2 + n1 + n2 + n3 + ln1 + ln2 + ln3)m× 1} with {2m+ 1} to {2m+ n1m}
entries as 1 and the rest of the entries are zero.

• e2(4) – column vector of dimension
{(2 + n1 + n2 + n3 + ln1 + ln2 + ln3)m× 1} with {2m+ n1m+ 1} to
{2m+ n1m+ n2m} entries as 1 and the rest of the entries are zero.

• e2(5) – column vector of dimension
{(2 + n1 + n2 + n3 + ln1 + ln2 + ln3)m× 1} with {2m+ n1m+ n2m+ 1} to
{2m+ n1m+ n2m+ n3m} entries as 1 and the rest of the entries are zero.

• e2(6) – column vector of dimension
{(2 + n1 + n2 + n3 + ln1 + ln2 + ln3)m× 1} with
{2m+ n1m+ n2m+ n3m+ 1} to {2m+ n1m+ n2m+ n3m+ ln1m} entries
as 1 and the rest of the entries are zero.

• e2(7) – column vector of dimension
{(2 + n1 + n2 + n3 + ln1 + ln2 + ln3)m× 1} with
{2m+ n1m+ n2m+ n3m+ ln1m+ 1} to
{2m+ n1m+ n2m+ n3m+ ln1m+ ln2m} entries as 1 and the rest of the
entries are zero.

• e2(8) – column vector of dimension
{(2 + n1 + n2 + n3 + ln1 + ln2 + ln3)m× 1} with
{2m+ n1m+ n2m+ n3m+ ln1m+ ln2m+ 1} to
{2m+ n1m+ n2m+ n3m+ ln1m+ ln2m+ ln3m} entries as 1 and the rest of
the entries are zero.

• Let us denote λ be the fundamental arrival rate and it is defined as λ = π1D1em,
where π1 is the probability vector of the generator matrix D = D0 +D1, governs
transitions of the MAP. Let the π1 such that π1D = 0, π1e = 1.

• The mode I service rate of the main server is denoted as δ1 and the mode I
service rate of the standby server is denoted as θ1δ1, where δ1 =
[α(−T )−1en1 ]

−1.

• The mode II service rate of the main server is denoted as δ2 and the mode II
service rate of the standby server is denoted as θ2δ2, where δ2 =
[γ(−U)−1en2 ]

−1.

• Additional service rate of the main server is denoted as δ3 and the additional
service rate of the standby server is denoted as θ3δ3, where δ3 =
[β(−R)−1en3 ]

−1.

• The repair rate of the main server is denoted as Ψ, where Ψ = [δ(−S)−1el]
−1.

• N(t) indicates the number of customers in the system at time t.

• V (t) indicates the status of the server at time t, where
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V (t) =



0, if the main server is on vacation
1, if the main server doing the start-up process
2, if the main server is the idle state
3, if the standby server is the idle state

while the main server is under PH repair process
4, if the main server offering mode I service
5, if the main server offering mode II service
6, if the main server offering additional service
7, if the standby server offering mode I service

while the main server is under PH repair process
8, if the standby server offering mode II service

while the main server is under PH repair process
9, if the standby server offering additional service

while the main server is under PH repair process

• I(t) indicates the repair process considered by phases.

• J1(t) indicates the mode I service considered by phases.

• J2(t) indicates the mode II service considered by phases.

• J3(t) indicates the additional service considered by phases.

• M(t) indicates the arrival process considered by phases.

Let {(N(t), V (t), I(t), J1(t), J2(t), J3(t),M(t)) : t ≥ 0} is the continuous time Markov
chain with state-level independent quasi-birth-and-death process whose state space is as
follows:

Ω = l(0) ∪ l(p).

where

l(0) = {(0, q1, s) : q1 = 0, 1, 2; 1 ≤ s ≤ m}
∪{(0, 3, q2, s) : 1 ≤ q2 ≤ l; 1 ≤ s ≤ m}.

for p ≥ 1,

l(p) = {(p, q1, s) : q1 = 0, 1; 1 ≤ s ≤ m}
∪{(p, 4, r1, s) : 1 ≤ r1 ≤ n1; 1 ≤ s ≤ m}
∪{(p, 5, r2, s) : 1 ≤ r2 ≤ n2; 1 ≤ s ≤ m}
∪{(p, 6, r3, s) : 1 ≤ r3 ≤ n3; 1 ≤ s ≤ m}
∪{(p, 7, q2, r1, s) : 1 ≤ q2 ≤ l; 1 ≤ r1 ≤ n1; 1 ≤ s ≤ m}
∪{(p, 8, q2, r2, s) : 1 ≤ q2 ≤ l; 1 ≤ r2 ≤ n2; 1 ≤ s ≤ m}
∪{(p, 9, q2, r3, s) : 1 ≤ q2 ≤ l; 1 ≤ r3 ≤ n3; 1 ≤ s ≤ m}.
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The infinitesimal matrix generation of the QBD process is given by,

Q =



B00 B01 0 0 0 0 0 · · · · · ·
B10 A1 A0 0 0 0 0 · · · · · ·
0 A2 A1 A0 0 0 0 · · · · · ·
0 0 A2 A1 A0 0 0 · · · · · ·
0 0 0 A2 A1 A0 0 · · · · · ·
...

...
...

...
. . . . . . . . .

...
...

...
...

...
. . . . . . . . .

...



B00 =


D0 − ηIm ηIm 0 0

0 D0 − σIm σIm 0
0 0 D0 0
0 0 S0 ⊗ Im S ⊕D0

,

B01 =


D1 0 0 0 0 0 0 0
0 D1 0 0 0 0 0 0
0 0 c1α⊗D1 d1γ ⊗D1 0 0 0 0
0 0 0 0 0 Il ⊗ c1α1 ⊗D1 Il ⊗ d1γ1 ⊗D1 0

,

B10 =



ζIm 0 0 0
0 0 0 0

d2T
0 ⊗ Im 0 0 0

d2U
0 ⊗ Im 0 0 0

R0 ⊗ Im 0 0 0
0 0 0 Il ⊗ d2θ1T

0 ⊗ Im
0 0 0 Il ⊗ d2θ2U

0 ⊗ Im
0 0 0 Il ⊗ θ3R

0 ⊗ Im


,

A1 =



A11
1 A12

1 0 0 0 0 0 0
0 A22

1 A23
1 A23

1 0 0 0 0
0 0 A33

1 0 A35
1 A36

1 0 0
0 0 0 A44

1 A45
1 0 A47

1 0
0 0 0 0 A55

1 0 0 A58

0 0 A63 0 0 A66 0 A68

0 0 0 A74
1 0 0 A77

1 A78
1

0 0 0 0 A85 0 0 A88


,

where

A11
1 = D0 − (η + ζ)Im; A12

1 = ηIm; A22
1 = D0 − σIm; A23

1 = c1α⊗ σIm;

A24
1 = d1γ ⊗ σIm; A33

1 = T ⊕D0 − τIn1m; A35
1 = c2T

0 ⊗ β ⊗ Im;

A36
1 = τδ ⊗ In1 ⊗ Im; A44

1 = U ⊕D0 − τIn2m; A45
1 = c2U

0 ⊗ β ⊗ Im;

A47
1 = τδ ⊗ In2 ⊗ Im; A55

1 = R⊕D0 − τIn3m; A58
1 = τδ ⊗ In3 ⊗ Im;

A63
1 = S0 ⊗ In1 ⊗ Im; A66

1 = S ⊕ θ1T ⊕D0; A68
1 = Il ⊗ c2θ1T

0 ⊗ β1 ⊗ Im;

A74
1 = S0 ⊗ In2 ⊗ Im; A77

1 = S ⊕ θ2U ⊕D0; A78
1 = Il ⊗ c2θ2U

0 ⊗ β1 ⊗ Im;

A85
1 = S0 ⊗ In3 ⊗ Im; A88

1 = S ⊕ θ3R⊕D0.
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A0 =



D1 0 0 0 0 0 0 0
0 D1 0 0 0 0 0 0
0 0 In1 ⊗D1 0 0 0 0 0
0 0 0 In2 ⊗D1 0 0 0 0
0 0 0 0 In3 ⊗D1 0 0 0
0 0 0 0 0 Il ⊗ In1 ⊗D1 0 0
0 0 0 0 0 0 Il ⊗ In2 ⊗ Im 0
0 0 0 0 0 0 0 Il ⊗ In3 ⊗ Im


,

A2 =



ζIm 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 c1d2T

0α⊗ Im d1d2T
0 ⊗ γ ⊗ Im 0 0 0 0

0 0 c1d2U0 ⊗ α⊗ Im d1d2U
0γ ⊗ Im 0 0 0 0

0 0 c1R
0 ⊗ α⊗ Im d1R

0 ⊗ γ ⊗ Im 0 0 0 0
0 0 0 0 0 Il ⊗ c1d2θ1T

0α1 ⊗ Im Il ⊗ d1d2θ1T
0 ⊗ γ1 ⊗ Im 0

0 0 0 0 0 Il ⊗ c1d2θ2U
0 ⊗ α1 ⊗ Im Il ⊗ d1d2θ2U

0γ1 ⊗ Im 0
0 0 0 0 0 Il ⊗ c1θ3R

0 ⊗ α1 ⊗ Im Il ⊗ d1θ3R
0 ⊗ γ1 ⊗ Im 0


.

4 Stability condition

We analyse our model under some conditions that the system is stable.

4.1 Analysis of stability condition

Let us define the matrix A as A = A0 +A1 +A2. It clearly shows that the arrangement
of the square matrix A of order is (2m+ n1m+ n2m+ n3m+ ln1m+ ln2m+ ln3m)
and this matrix is irreducible infinitesimal generator matrix.

Let ξ be the steady-state probability vector of A satisfying ξA = 0 and ξe = 1. The
vector ξ is partitioned by ξ = (ξ0, ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7), where ξ0 and ξ1 are of
dimension m, ξ2 is of dimension n1m, ξ3 is of dimension n2m, ξ4 is of dimension
n3m, ξ5 is of dimension ln1m, ξ6 is of dimension ln2m and ξ7 is of dimension ln3m.
The Markov process has the quasi-birth-and-death structure, there exits stability of our
model should satisfy the condition ξA0e <<< ξA2e, which is the necessary and sufficient
condition of a QBD process. The vector ξ is calculated by solving the following
equations:

ξ0[D − ηIm] = 0,

ξ0[ηIm] + ξ1[D − σIm] = 0,

ξ1[c1α⊗ σIm] + ξ2[(T + c1d2T
0α)⊕D − τIn1m] + ξ3[c1d2U

0 ⊗ α⊗ Im]

+ξ4[c1R
0 ⊗ α⊗ Im] + ξ5[S

0 ⊗ In1 ⊗ Im] = 0,

ξ1[d1γ ⊗ σIm] + ξ2[d1d2T
0 ⊗ γ ⊗ Im] + ξ3[(U + d1d2U

0γ)⊕D − τIn2m]

+ξ4[d1R
0 ⊗ γ ⊗ Im] + ξ6[S

0 ⊗ In2 ⊗ Im] = 0,

ξ2[c2T
0 ⊗ β ⊗ Im] + ξ3[c2U

0 ⊗ β ⊗ Im] + ξ4[R⊕D − τIn3m]

+ξ7[S
0 ⊗ In3 ⊗ Im] = 0,

ξ2[τδ ⊗ In1 ⊗ Im] + ξ5[S ⊕ (θ1T + c1d2θ1T
0α1)⊕D]

+ξ6[Il ⊗ c1d2θ2U
0 ⊗ α1 ⊗ Im] + ξ7[Il ⊗ c1θ3R

0 ⊗ α1 ⊗ Im] = 0,

ξ3[τδ ⊗ In2 ⊗ Im] + ξ5[Il ⊗ d1d2θ1T
0 ⊗ γ1 ⊗ Im]

+ξ6[S ⊕ (θ2U + d1d2θ2U
0γ1)⊕D] + ξ7[Il ⊗ d1θ3R

0 ⊗ γ1 ⊗ Im] = 0,
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ξ4[τδ ⊗ In3 ⊗ Im] + ξ5[Il ⊗ c2θ1T
0 ⊗ β1 ⊗ Im]

+ξ6[Il ⊗ c2θ2U
0 ⊗ β1 ⊗ Im] + ξ7[S ⊕ θ3R⊕D] = 0.

subject to normalising condition

(ξ0 + ξ1)em + ξ2en1m + ξ3en2m + ξ4en3m + ξ5eln1m + ξ6eln2m + ξ7eln3m = 1.

After some of the algebraical manipulation, the stability condition ξA0e <<< ξA2e which
is turns to be

{(ξ0 + ξ1)[D1em] + ξ2[en1 ⊗D1em] + ξ3[en2 ⊗D1em] + ξ4[en3 ⊗D1em]

+ξ5[el ⊗ en1 ⊗D1em] + ξ6[el ⊗ en2 ⊗D1em] + ξ7[el ⊗ en3 ⊗D1em]}
<<< {ξ0[ζIm] + ξ2[d2T

0 ⊗ em] + ξ3[d2U
0 ⊗ em] + ξ4[R

0 ⊗ Im]

+ξ5[el ⊗ d2θ1T
0 ⊗ em] + ξ6[el ⊗ d2θ2U

0 ⊗ em]

+ξ7[el ⊗ θ3R
0 ⊗ em]}.

4.2 Analysis of steady-state probability vector

Let us take the variable x be the steady-state probability vector of Q and it is partitioned
as x = (x0, x1, x2, ...). Mention that x0 is of dimension (3m+ lm), x1, x2, x3, ... are
of dimension (2m+ n1m+ n2m+ n3m+ ln1m+ ln2m+ ln3m). Then, the vector x
satisfies the condition xQ = 0 and xe = 1.

However, when the stability condition has been satisfied and the subvectors of x
except for x0 and x1 commensurate to the different level states are given by the equation

xj = x1Rj−1, j > 2

where the rate matrix R denotes the minimal non-negative solution of the matrix
quadratic equation as R2A2 +RA1 +A0 = 0. Since our system is stable and the square
matrices A0, A1, A2 whose row sums are equal to zero, then the rate matrix R is
a square matrix of order (2m+ n1m+ n2m+ n3m+ ln1m+ ln2m+ ln3m), it is
obtained from the above quadratic equation and also satisfies the relation RA2e = A0e.

The sub vectors x0 and x1 has been acquired by solving the following equations

x0B00 + x1B10 = 0.

x0B01 + x1(A1 +RA2) = 0.

subject to the normalising condition is

x0e1 + x1(I −R)−1e2 = 1.

Thus, the R matrix could be calculated mathematically using essential steps in the
logarithmic reduction algorithm.

For later use, we could make partition as

x0 = (u00, u01, u02, u03) and xi = (vi0, vi1, vi4, vi5, vi6, vi7, vi8, vi9) i ≥ 1

such that their dimensions are specified in Table 1.
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Table 1 Vector notation vs. dimension

Vector notation Dimension

u0k(k = 0, 1, 2) m

u03 lm

vik(k = 0, 1) m

vi4 n1m

vi5 n2m

vi6 n3m

vi7 ln1m

vi8 ln2m

vi9 ln3m

The interpretation of the vectors in the steady-state is as follows:

u00 the main server is on vacation with there is no customer in the system and the
arrival is considered in any one of m phases

u01 the main server is doing the start-up process with there is no customer in the
system and the arrival is considered in any one of m phases

u02 the main server is being idle with there is no customer in the system and the
arrival is considered in any one of m phases

u03 the standby server is being idle while the main server is under phase-type repair
process with there is no customer in the system and the arrival is considered in
any one of m phases

vi0 the system has precisely i (i ≥1) customers with the main server is on vacation
and the arrival is considered in any one of m phases

vi1 the system has precisely i (i ≥1) customers with the main server is doing
start-up process and the arrival is considered in any one of m phases

vi4 the system has precisely i (i ≥1) customers in which the main server is offering
mode I service with the arrival and service process are considered in various
phases

vi5 the system has precisely i (i ≥1) customers in which the main server is offering
mode II service with the arrival and service process are considered in various
phases

vi6 the system has precisely i (i ≥1) customers in which the main server is offering
additional service with the arrival and service process are considered in various
phases

vi7 the system has precisely i (i ≥1) customers in which the standby server is
offering mode I service during the main server is under phase-type repair
process with the arrival and service process are considered in various phases

vi8 the system has precisely i (i ≥1) customers in which the standby server is
offering mode II service during the main server is under phase-type repair
process with the arrival and service process are considered in various phases
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vi9 the system has precisely i (i ≥1) customers in which the standby server is
offering Additional service during the main server is under phase-type repair
process with the arrival and service process are considered in various phases.

The following equations which are incurred from the quasi-birth-and-death process of
the infinitesimal matrix Q,

u00[D0 − ηIm] + v10[ζIm] + v14[d2T
0 ⊗ Im] + v15[d2U

0 ⊗ Im]

+v16[R
0 ⊗ Im] = 0.

u00[ηIm] + u01[D0 − σIm] = 0.

u01[σIm] + u02[D0] + u03[S
0 ⊗ Im] = 0.

u03[S ⊕D0] + v17[Il ⊗ d2θ1T
0 ⊗ Im] + v18[Il ⊗ d2θ2U

0 ⊗ Im]

+v19[Il ⊗ θ3R
0 ⊗ Im] = 0.

u00[D1] + v10[D0 − (η + ζ)Im] + v20[ζIm] = 0.

u01[D1] + v10[ηIm] + v11[D0 − σIm] = 0.

u02[c1α⊗D1] + v11[c1α⊗ σIm] + v14[T ⊕D0 − τIn1m]

+v17[S
0 ⊗ In1 ⊗ Im] + v24[c1d2T

0α⊗ Im] + v25[c1d2U
0 ⊗ α⊗ Im]

+v26[c1R
0 ⊗ α⊗ Im] = 0.

u02[d1γ ⊗D1] + v11[d1γ ⊗ σIm] + v15[U ⊕D0 − τIn2m]

+v18[S
0 ⊗ In2 ⊗ Im] + v24[d1d2T

0 ⊗ γ ⊗ Im] + v25[d1d2U
0γ ⊗ Im]

+v26[d1R
0 ⊗ γ ⊗ Im] = 0.

v14[c2T
0 ⊗ β ⊗ Im] + v15[c2U

0 ⊗ β ⊗ Im] + v16[R⊕D0 − τIn3m]

+v19[S
0 ⊗ In3 ⊗ Im] = 0.

u03[Il ⊗ c1α1 ⊗D1] + v14[τδ ⊗ In1 ⊗ Im] + v17[S ⊕ θ1T ⊕D0]

+v27[Il ⊗ c1d2θ1T
0α1 ⊗ Im] + v28[Il ⊗ c1d2θ2U

0 ⊗ α1 ⊗ Im]

+v29[Il ⊗ c1θ3R
0 ⊗ α1 ⊗ Im] = 0.

u03[Il ⊗ d1γ1 ⊗D1] + v15[τδ ⊗ In2 ⊗ Im] + v18[S ⊕ θ2U ⊕D0]

+v27[Il ⊗ d1d2θ1T
0 ⊗ γ1 ⊗ Im] + v28[Il ⊗ d1d2θ2U

0γ1 ⊗ Im]

+v29[Il ⊗ d1θ3R
0 ⊗ γ1 ⊗ Im] = 0.

v{(i−1)0}[D1] + v{i0}[D0 − (η + ζ)Im] + v{(i+1)0}[ζIm] = 0, i ≥ 2.

v{(i−1)1}[D1] + v{i0}[ηIm] + v{i1}[D0 − σIm] = 0, i ≥ 2.

v{(i−1)4}[In1 ⊗D1] + v{i1}[c1α⊗ σIm] + v{i4}[T ⊕D0 − τIn1m]

+v{i7}[S
0 ⊗ In1 ⊗ Im] + v{(i+1)4}[c1d2T

0α⊗ Im]

+v{(i+1)5}[c1d2U
0 ⊗ α⊗ Im] + v{(i+1)6}[c1R

0 ⊗ α⊗ Im] = 0, i ≥ 2.

v{(i−1)5}[In2 ⊗D1] + v{i1}[d1γ ⊗ σIm] + v{i5}[U ⊕D0 − τIn2m]

+v{(i8)}[S
0 ⊗ In2 ⊗ Im] + v{(i+1)4}[d1d2T

0 ⊗ γ ⊗ Im]

+v{(i+1)5}[d1d2U
0γ ⊗ Im] + v{(i+1)6}[d1R

0 ⊗ γIm] = 0, i ≥ 2.

v{(i−1)6}[In3 ⊗D1] + v{i4}[c2T
0 ⊗ β ⊗ Im] + v{i5}[c2U

0 ⊗ β ⊗ Im]

+v{i6}[R⊕D0 − τIn3m] + v{i9}[S
0 ⊗ In3 ⊗ Im] = 0, i ≥ 2.
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v{(i−1)7}[Il ⊗ In1 ⊗D1] + v{i4}[τδ ⊗ In1 ⊗ Im] + v{i7}[S ⊕ θ1T ⊕D0]

+v{(i+1)7}[Il ⊗ c1d2θ1T
0α1 ⊗ Im] + v{(i+1)8}[Il ⊗ c1d2θ2U

0 ⊗ α1 ⊗ Im]

+v{(i+1)9}[Il ⊗ c1θ3R
0 ⊗ α1 ⊗ Im] = 0, i ≥ 2.

v{(i−1)8}[Il ⊗ In2 ⊗D1] + v{i5}[τδ ⊗ In2 ⊗ Im] + v{i8}[S ⊕ θ2U ⊕D0]

+v{(i+1)7}[Il ⊗ d1d2θ1T
0 ⊗ γ1 ⊗ Im] + v{(i+1)8}[Il ⊗ d1d2θ2U

0γ1 ⊗ Im]

+v{(i+1)9}[Il ⊗ d1θ3R
0 ⊗ γ1 ⊗ Im] = 0, i ≥ 2.

v{(i−1)9}[Il ⊗ In3 ⊗D1] + v{i6}[τδ ⊗ In3⊗Im ]

+v{i7}[Il ⊗ c2θ1T
0 ⊗ β1 ⊗ Im] + v{i8}[Il ⊗ c2θ2U

0 ⊗ β1 ⊗ Im]

+v{i9}[S ⊕ θ3R⊕D0] = 0, i ≥ 2.

subject to normalising condition

[u00 + u01 + u02]em + [u03]elm +
∞∑
i=1

[vi0 + vi1]em +
∞∑
i=1

[vi4]en1m

+
∞∑
i=1

[vi5]en2m +
∞∑
i=1

[vi6]en3m +
∞∑
i=1

[vi7]eln1m +
∞∑
i=1

[vi8]eln2m

+

∞∑
i=1

[vi9]eln3m = 1.

4.3 Computation of R matrix

There are so many algorithms for finding the rate matrix R. However, here we have
given two algorithms.

4.3.1 Iterative algorithm

One can easily evaluate the rate matrix using the recursive procedure as follows:

• Step 0

R(0) = 0.

• Step 1

R(n+ 1) = A0(A1)
−1 +R2(n)A2(−A1)

−1, n = 0, 1, 2, 3, ...

Continue Step 1 until ||R(n+ 1)−R(n)||∞ < ϵ.

4.3.2 Logarithmic reduction algorithm

Logarithmic reduction algorithm is developed by Latouche and Ramaswami (1993)
which have fast convergence and here we list steps involved in the logarithm reduction
algorithm as follows:
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• Step 0

H ← (−A1)
−1A0, L ← (−A1)

−1A2, G = L, and T = H .

• Step 1

U = HL+ LH

M = H2

H ← (I − U)−1M

M ← L2

L ← (I − U)−1M

G ← G+ TL

T ← TH

Continue Step 1 until ||e−Ge||∞ < ϵ.

• Step 2

R = −A0(A1 +A0G)−1.

5 Analysis of the busy period

• A busy period is nothing but the interval between the customers arrives into the
empty system and afterward the first interval once again the system becomes
empty. So, it is the first passage from level 1 to 0. The busy cycle describes the
first return time to level 0 with at least one visit to a state at any other level.

• Prior to examining the busy period, we introduce an overview of the fundamental
period. Under consideration of the QBD process, it is the first passage time from
level j to level j − 1, j > 2.

• The cases j = 0, 1 corresponding to the boundary states have to be discussed
individually. Note that for each and every level j, j > 1 there corresponds
(2m+ n1m+ n2m+ n3m+ ln1m+ ln2m+ ln3m) states. Thus by the state
(j, k) of level j, we mention that the kth state of level j when the states are
arranged in alphabetical order.

• Let us denote Gkk′(u, x) be the conditional probability that it starts in the state
(j, k) at time t = 0, then the QBD process visits the level j − 1 but not later than
time x, we can make changes to u transitions to the left and also entering the
state (j, k′).

Let us introduce the concept of the joint transform

G̃kk′(z, s) =
∞∑
u=1

zu
∫ ∞

0

e−sxdGkk′(u, x) ; | z |≤ 1, Re(s) ≥ 0.

and the matrix is denoted as G̃(z, s) = G̃kk′(z, s) then the above-defined matrix G̃(z, s)
satisfies the equation
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G̃(z, s) = z(SI −A1)
−1A2 + (SI −A1)

−1A0G̃
2(z, s).

The matrix of G = Gkk′ = G̃(1, 0) would be taken for the first passage times, exclude
for the boundary states. If we already know the matrix R then we could find the matrix
G using the result

G = −(A1 +RA2)
−1A2.

Otherwise, we may use the concept of a logarithmic reduction algorithm method to find
the values of the G matrix.

Notations of boundary level states for busy period

• G
(1,0)
kk′ (u, x) indicates the conditional probability is discussed for the first passage

time from level 1 to level 0 at time t = 0.

• G
(0,0)
kk′ (u, x) indicates the conditional probability is discussed for the return time to

level 0.

• F1j indicates the average first passage time from the level j to level j − 1, given
that the process is in the state (j, k) at time t = 0.

• F⃗1 indicates the column vector with entries F1j .

• F2j indicates the average number of customers to be served during the first
passage time from level j to level j − 1, given that the first passage time begins
in the state (j, k).

• F⃗2 indicates the column vector with entries F2j .

• F⃗(1,0)
1 indicates the average first passage time from level 1 to level 0.

• F⃗(1,0)
2 indicates the average number of service completed during the first passage

time from level 1 to level 0.

• F⃗(0,0)
1 indicates the first return time to level 0.

• F⃗(0,0)
2 indicates the average number of service completion in between first return

time to level 0.

The following equations which are given G̃(1,0)(z, s) and G̃(0,0)(z, s) are for the
boundary levels 1 and 0 respectively.

G̃(1,0)(z, s) = z(SI −A1)
−1B10 + (SI −A1)

−1A0G̃(z, s)G̃(1,0)(z, s)

G̃(0,0)(z, s) = (SI −B00)
−1B01G̃

(1,0)(z, s)

Thus, the following instances are calculated using the matrices as G, G̃(0,0)(1, 0) and
G̃(1,0)(1, 0) are stochastic in nature.

F⃗1 = − ∂

∂s
G̃(z, s)

∣∣∣∣
z=1,s=0

e = −[A1 +A0(I +G)]−1e2 (1)
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F⃗2 =
∂

∂z
G̃(z, s)

∣∣∣∣
z=1,s=0

e = −[A1 +A0(I +G)]−1A2e2 (2)

F⃗(1,0)
1 = − ∂

∂s
G̃(1,0)(z, s)

∣∣∣∣
z=1,s=0

e = −[A1 +A0G]−1(A0F⃗1 + e2) (3)

F⃗(1,0)
2 =

∂

∂z
G̃(1,0)(z, s)

∣∣∣∣
z=1,s=0

e = −[A1 +A0G]−1(A0F⃗2 +B10e1) (4)

F⃗(0,0)
1 = − ∂

∂s
G̃0,0(z, s)

∣∣∣∣
z=1,s=0

e = −B00−1[B01F⃗(1,0)
1 + e1] (5)

F⃗(0,0)
2 =

∂

∂z
G̃(0,0)(z, s)

∣∣∣∣
z=1,s=0

e = −B−1
00 [B01F⃗(1,0)

2 ]. (6)

6 Measures of system performance

We investigate the qualitative behaviour of our model under a steady state. In this
section, we itemised a few performances of the characteristics of system measures along
with their expressions for computation as follows,

• The probability that the main server is on vacation

PV =
m∑
s=1

x00s +
∞∑
p=1

m∑
s=1

xp0se = x0 e1(1) + x1(I −R)−1 e2(1)

• The probability that the main server is doing the start-up process

PS =

m∑
s=1

x01s +
∞∑
p=1

m∑
s=1

xp1s = x0 e1(2) + x1(I −R)−1 e2(2)

• The probability that the main server is being idle

PMI =
m∑
s=1

x02s = x0 e1(3)

• The probability that the standby server is being idle

PSI =

l∑
q2=1

m∑
s=1

x03q2s = x0 e1(4)

• The probability that the main server offering mode I service

PMBI =
∞∑
p=1

n1∑
r1=1

m∑
s=1

xp4r1s = x1(I −R)−1 e2(3)
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• The probability that the main server offering mode II service

PMBII =

∞∑
p=1

n2∑
r2=1

m∑
s=1

xp5r2s = x1(I −R)−1 e2(4)

• The probability that the main server offering additional service

PMBA =
∞∑
p=1

n3∑
r3=1

m∑
s=1

xp6r3s = x1(I −R)−1 e2(5)

• The probability that the standby server offering mode I service

PSBI =
∞∑
p=1

l∑
q2=1

n1∑
r1=1

m∑
s=1

xp7r1s = x1(I −R)−1 e2(6)

• The probability that the standby server offering mode II service

PSBII =

∞∑
p=1

l∑
q2=1

n2∑
r2=1

m∑
s=1

xp8r2s = x1(I −R)−1 e2(7)

• The probability that the standby server offering additional service

PSBA =

∞∑
p=1

l∑
q2=1

n3∑
r3=1

m∑
s=1

xp9r3s = x1(I −R)−1 e2(8)

• The probability that the main server is being busy

PMB = PMBI + PMBII + PMBA

• The probability that the standby server is being busy

PSB = PSBI + PSBII + PSBA

• Expected number of customers in the system

Esystem =
∞∑
p=1

p xp e = x1(I −R)−2 e2

• Average number of customers in the queue

Equeue = x1(I −R)−2 [e2(1) + e2(2)] + x1R(I −R)−2 [e2(3) + e2(4) + e2(5)]

+ x1R(I −R)−2 [e2(6) + e2(7) + e2(8)]

• The rate at which impatient behaviour of reneging customers

B = ζ
[ ∞∑
p=1

m∑
s=1

xp0s
]
= ζ[x1(I −R)−1 e2(1)]
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7 Cost analysis

Now we are imposing a cost associated with few characteristics of performance
measures of the system for our model under study, we construct a cost function TC is
defined by:

TC = CHEsystem + CV PV + CSPS + CMIPMI + CSIPSI + CMBIPMBI

+ CMBIIPMBII + CMBAPMBA + CSBIPSBI + CSBIIPSBII

+ CSBAPSBA + σC1 + τC2 + δ1C3 + δ2C4 + δ3C5 + θ1δ1C6 + θ2δ2C7

+ θ3δ3C8 +ΨC9 + BC10

where

TC total cost of the system per unit time

CH holding customers per unit time for each customer in the system

CV cost incurred during the main server is on vacation

CS cost incurred due to the main server doing start-up process

CMI cost incurred due to the main server being idle

CSI cost incurred due to standby server being idle while the main server under
phase-type repair

CMBI cost incurred during the main server being busy with mode I service

CMBII cost incurred during the main server being busy with mode II service

CMBA cost incurred during the main server being busy with additional service

CSBI cost incurred during standby server being busy with mode I service while
the main server under phase-type repair

CSBII cost incurred during standby server being busy with mode II service while
the main server under phase-type repair

CSBA cost incurred during standby server being busy with additional service while
the main server under phase-type repair

C1 cost incurred for start-up process of the main server

C2 cost incurred for the main server struck with a breakdown during a busy
period

C3 cost incurred by the main server for providing mode I service

C4 cost incurred by the main server for providing mode II service

C5 cost incurred by the main server for providing additional service

C6 cost incurred by the standby server for providing mode I service

C7 cost incurred by the standby server for providing mode II service

C8 cost incurred by the standby server for providing additional service
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C9 cost incurred for the main server rejuvenated from repair

C10 cost incurred due to impatient behaviour of reneging customers.

8 Analysis of waiting time distribution

In this section, we perform an analysis of the distribution of the waiting period of
a customer who arrives in the queueing line using the first passage time analysis.
Let W (t) indicates the distribution function of the waiting time is to consider the
incoming(tagged) customer to the queueing line. If the server is idle when any customer
arrives, then there is no delay in getting the service from the server, or else if the server
is busy or on vacation, they have to wait in the queueing line for the aim of getting
service from the server.

Let us introduce the absorption time in a Markov chain with state space is given by

Ω̃ = (∗) ∪ {0, 1, 2, 3, 4, ...}.

On entering into the absorbing state (∗), which corresponds to the tagged customer will
begin to receive service without waiting and the absorbing state is defined as follows:

(∗) = {(0, 2), (0, 3)}

The level state 0 is as follows,

0 = {(0, 0), (0, 1)}

for p ≥ 1, the level state for p is given by

p = {(p, q1) : q1 = 0, 1} ∪ {(p, 4, r1) : 1 ≤ r1 ≤ n1}
∪{(p, 5, r2) : 1 ≤ r2 ≤ n2}
∪{(p, 6, r3) : 1 ≤ r3 ≤ n3}
∪{(p, 7, q2, r1) : 1 ≤ q2 ≤ l; 1 ≤ r1 ≤ n1}
∪{(p, 8, q2, r2) : 1 ≤ q2 ≤ l; 1 ≤ r2 ≤ n2}
∪{(p, 9, q2, r3) : 1 ≤ q2 ≤ l; 1 ≤ r3 ≤ n3}

The transition matrix Q̃ of the absorbing Markov chain is given by

Q̃ =



0 0 0 0 0 0 · · · · · ·
E0 L0 0 0 0 0 · · · · · ·
E1 L2 L1 0 0 0 · · · · · ·
0 0 L3 L1 0 0 · · · · · ·
0 0 0 L3 L1 0 · · · · · ·
...

...
...

...
. . . . . . . . .

...
...

...
...

. . . . . . . . .


where its entries of Q̃ are as follows:



Analysis of MAP/PH(1), PH(2), PH(3)/1 queueing system 105

E0 =

[
η
σ

]
, L0 =

[
−η 0
0 −σ

]
,

E1 =



0
0
0
0
0

el ⊗ d2θ1T
0

el ⊗ d2θ2T
0

el ⊗ θ3R
0


, L2 =



ζ 0
0 0

d2T
0 0

d2U
0 0

R0 0
0 0
0 0
0 0


,

L1 =



−(ζ + η) η 0 0 0 0 0 0
0 −σ c1σα d1σγ 0 0 0 0
0 0 T − τIn1 0 c2T

0 ⊗ β τδ ⊗ In1 0 0
0 0 0 U − τIn2 c2U

0 ⊗ β 0 τδ ⊗ In2 0
0 0 0 0 R− τIn3 0 0 τδ ⊗ In3

0 0 S0 ⊗ In1 0 0 S ⊕ θ1T 0 Il ⊗ c2θ1T
0 ⊗ β1

0 0 0 S0 ⊗ In2 0 0 S ⊕ θ2U Il ⊗ c2θ2U
0 ⊗ β1

0 0 0 0 S0 ⊗ In3
0 0 S ⊕ θ3R


,

L3 =



ζ 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 c1d2T

0α d1d2T
0 ⊗ γ 0 0 0 0

0 0 c1d2U
0 ⊗ α d1d2U

0γ 0 0 0 0
0 0 c1R

0 ⊗ α d1R
0 ⊗ γ 0 0 0 0

0 0 0 0 0 Il ⊗ c1d2θ1T
0α1 Il ⊗ d1d2θ1T

0 ⊗ γ 0
0 0 0 0 0 Il ⊗ c1d2θ2U

0 ⊗ α1 Il ⊗ d1d2θ2U
0γ1 0

0 0 0 0 0 Il ⊗ c1θ3R
0 ⊗ α1 Il ⊗ d1θ3R

0 ⊗ γ1 0


.

Let us define z(0) = (z0(0), z1(0), z2(0), z3(0), ...) which is the conditional probability
distribution of the state of system defined on the arrival of the tagged customers and
the vector z0(0) can be further partitioned as follows:

z0(0) = (z00, z01)

However, the arrival process follows the Markovian property and it is observed that the
arrival stationary probability distribution of the system size is as follows:

z0k = u0k

[
D1em
λ

]
, k = 0, 1

for i ≥ 1,

zi(0) = xi

[
I2+n1+n2+n3+ln1+ln2+ln3 ⊗

D1em
λ

]

where λ indicates the fundamental arrival rate of the MAP. Now, let us define z(t) =
(z∗(t), z0(t), z1(t), z2(t), z3(t), ...), where zi(t) is a row vector of order {1× (2 +
n1 + n2 + n3 + ln1 + ln2 + ln3)}, where i ≥ 1 and z0(t) is a (1× 2) vector. The
components of zi(t) are the probabilities that at time t, the continuous-time Markov
chain of the respective states of level i with the generator Q̃. Here, z∗(t) is the
probability that the process is in the absorbing state at time t. Clearly, W (t) = z∗(t),
for t ≥ 0.
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The differential equation z′(t) = z(t)Q̃ where t ≥ 0 becomes

z′∗(t) =
1∑

i=0

zi(t)Ei

z′0(t) = z0(t)L0 + z1(t)L2

z′i(t) = zi(t)L1 + zi+1(t)L3, for i ≥ 1

where ′ denotes the derivative with respect to t.
The Laplace-Stieltjes Transform (LST) of the first passage time to level 1 is

specified by the row vector ω(s) is as follows,

ω(s) =

∞∑
i=1

zi(0)[(sI − L1)
−1L3]

i−1 (7)

Let the LST of the absorbing time to the state (∗) commensurate the process begins at
state level i = 0, 1, it would be indicated by ϕ(i, s). Hence, we have

ϕ(0, s) = [sI − L0]
−1E0 (8)

ϕ(1, s) = [sI − L1]
−1L2ϕ(0, s) + [sI − L1]

−1E1 (9)

Thus, we observe that the LST for the distribution of waiting time W̃ (s) is given by

W̃ (s) = z0(0)ϕ(0, s) + ω(s)ϕ(1, s). (10)

8.1 Expected waiting time

The expected waiting time is specified by

E(W ) = −W̃ ′(0) = −z0(0)ϕ′(0, 0)− ω′(0)e3 − ω(0)ϕ′(1, 0). (11)

Suppose if the system is in the level state i = 0, then the average time to enter the
absorbing state (∗) is denoted by the first term of equation (11). Likewise, if the system
is in the level state i ≥ 1, then the average time to enter the absorbing state (∗) is
denoted by the last two terms of equation (11).

On differentiating (8), (9) and substitute s = 0, we get

ϕ′(0, 0) = (−1)[−L0]
−2E0 (12)

ϕ′(1, 0) = (−1)[−L1]
−2L2ϕ(0, 0) + [−L1]

−1L2ϕ
′(0, 0)− [−L1]

−2E1 (13)

By making use of the expression (12) together with the primary condition z(0) =
(z0(0), z1(0), z2(0), z3(0), ...), one can easily determine the first term of (11). Then from
equation (7), we have

ω(0) =

∞∑
i=1

zi(0)Ki−1 (14)
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where K = [−L1]
−1L3. Since K is a stochastic matrix, we have

ω(0)e3 = 1− z0(0)e. (15)

With the help of the expressions (13) and (14) together with the primary condition
z0 = (z0(0), z1(0), z2(0), ...), one can evaluate the last term of (11). On differentiating
(7) and take s = 0, we get

ω′(0) = (−1)
∞∑
i=1

zi+1(0)
i−1∑
j=0

Kj [−L1]
−1Ki−j (16)

Since K is stochastic in nature, we have

(−1)ω′(0)e3 =
∞∑
i=1

zi+1(0)
i−1∑
j=0

Kj [−L1]
−1e3. (17)

We can compute the value of (−1)ω′(0)e3. Now, let us consider the stochastic matrix
K2 such that I −K +K2 is the non-singular and generalised inverse of the form (I −
K) and K is irreducible (see Kemeny and Snell, 1960), then the matrix K2 maybe
chosen as K2 = e3k0, where k0 is the stationary probability vector of K such that
k0K = k0 and k0e3 = 1. Moreover, the following expression has the property that
KK2 = K2K = K2. Then we get,

i−1∑
j=0

Kj(I −K +K2) = I −Ki + iK2, for i ≥ 1. (18)

Substituting (18) in (17) and after doing some of the simplifications we will get as
follows,

(−1)ω′(0)e3 =

{
x1(I −R)−1

[
I2+n1+n2+n3+ln1+ln2+ln3 ⊗

D1em
λ

]
− ω(0)

+ x1R(I −R)−2

[
I2+n1+n2+n3+ln1+ln2+ln3 ⊗

D1em
λ

]
K2

}
× [I −K +K2]

−1[−L1]
−1e3

(19)

Hence, we have calculated all the terms of (11) and therefore we could easily compute
the expected waiting time.

9 Numerical results

In this part, we analyse the model behaviour in the form of numerical and graphical
illustrations. The following five different types of MAP representations have a different
structure of variance and correlation. Consider the first three types of arrival processes,
namely ERLA, EXPA and HYP-EXPA corresponds to renewal processes and therefore
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their correlation is 0. The arrival process of MAP-NC and MAP-PC are correlated
arrivals with the correlation between two successive inter-arrival times are given by
–0.4889 and 0.4889. These five arrival processes have coefficient of variation of
intervals between arrivals of 0.3333, 1, 5.0388, 1.9868, and 1.9861. These five sets of
arrival values are taken as input data and these values are incurred from the works of
Chakravarthy (2010).

• Arrival in Erlang (ERLA):

D0 =

−3 3 0
0 −3 3
0 0 −3

, D1 =

0 0 0
0 0 0
3 0 0


• Arrival in exponential (EXPA):

D0 =
[
−1

]
, D1 =

[
1
]

• Arrival in hyper-exponential (HYP-EXPA):

D0 =

[
−1.90 0

0 −0.19

]
, D1 =

[
1.710 0.190
0.171 0.019

]
• Arrival in MAP-negative correlation (MAP-NC):

D0 =

−1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

, D1 =

 0 0 0
0.01002 0 0.99241
223.539 0 2.258


• Arrival in MAP-positive correlation (MAP-PC):

D0 =

−1.00243 1.00243 0
0 −1.00243 0
0 0 −225.797

, D1 =

 0 0 0
0.99241 0 0.01002
2.258 0 223.539


Let us consider three phase-type distributions for the service process. The normalisation
of these three representations has been made to obtain both the service times and repair
times with representations δ1, δ2, δ3 and Ψ. We will use the notations ERLX, EXPX and
HYP-EXPX respectively for Erlang, exponential and hyper-exponential cases dealing
with X-type distribution where X=S, R depending on whether the services or repairs
are under consideration. Hence, EXPS corresponds to services that are modelled using
exponential, whereas HYP-EXPR corresponds to hyper-exponential repairs. These sets
of service values are taken as input data incurred from the works of Chakravarthy
(2010).

• Erlang (ERLX):

α = γ = β = δ =
(
1, 0

)
, T = U = R = S =

[
−2 2
0 −2

]
• Exponential (EXPX):

α = γ = β = δ =
(
1
)
, T = U = R = S =

[
−1

]
• Hyper-exponential (HYP-EXPX):

α = γ = β = δ =
(
0.8, 0.2

)
, T = U = R = S =

[
−2.80 0

0 −0.28

]
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Illustrative Example 9.1

Consider the effect of breakdown rate of main server (τ ) versus the expected number of
customers in the system (Esystem). We choose λ = 1; δ1 = 3; δ2 = 3; δ3 = 2; θ1 = 0.8;
θ2 = 0.8; θ3 = 0.7; Ψ = 8; η = 2; ζ = 3; c1 = 0.5; d1 = 0.5; σ = 2; c2 = 0.6; d2 =
0.4.

Table 2 Breakdown rate of the main server vs. Esystem – Erlang service

τ
ERLS

ERLA EXPA HYP-EXPA MAP-NC MAP-PC

0.2 1.238200 1.671396 3.575535 1.800199 87.611276
0.6 1.258173 1.709399 3.714660 1.840488 90.429772
1.0 1.277551 1.746354 3.850494 1.879648 93.162437
1.4 1.296365 1.782304 3.983086 1.917724 95.813207
1.8 1.314643 1.817289 4.112495 1.954757 98.385776
2.2 1.332409 1.851344 4.238789 1.990789 100.883614
2.6 1.349687 1.884508 4.362040 2.025857 103.309981
3.0 1.366500 1.916812 4.482325 2.060000 105.667947
3.4 1.382868 1.948291 4.599721 2.093250 107.960405
3.8 1.398808 1.978973 4.714309 2.125643 110.190083
4.2 1.414340 2.008888 4.826168 2.157209 112.359557
4.6 1.429479 2.038064 4.935377 2.187979 114.471261
5.0 1.444242 2.066528 5.042014 2.217982 116.527496
5.4 1.458642 2.094305 5.146156 2.247246 118.530443

Table 3 Breakdown rate of the main server vs. Esystem – exponential service

τ
EXPS

ERLA EXPA HYP-EXPA MAP-NC MAP-PC

0.2 1.387374 1.840607 3.835346 1.958794 87.779613
0.6 1.415465 1.887056 3.983858 2.007192 90.607041
1.0 1.442798 1.932263 4.128756 2.054285 93.348438
1.4 1.469404 1.976272 4.270111 2.100119 96.007739
1.8 1.495311 2.019126 4.408000 2.144738 98.588638
2.2 1.520546 2.060867 4.542507 2.188187 101.094604
2.6 1.545134 2.101533 4.673720 2.230506 103.528901
3.0 1.569099 2.141164 4.801728 2.271735 105.894599
3.4 1.592464 2.179796 4.926622 2.311913 108.194595
3.8 1.615250 2.217463 5.048493 2.351077 110.431620
4.2 1.637478 2.254200 5.167430 2.389263 112.608256
4.6 1.659168 2.290039 5.283521 2.426504 114.726939
5.0 1.680339 2.325010 5.396855 2.462834 116.789977
5.4 1.701008 2.359143 5.507516 2.498283 118.799555
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Table 4 Breakdown rate of the main server vs. Esystem – hyper-exponential service

τ
HYP-EXPS

ERLA EXPA HYP-EXPA MAP-NC MAP-PC

0.2 2.456263 2.958756 5.282026 3.065762 88.931713
0.6 2.538514 3.059664 5.487963 3.168622 91.815290
1.0 2.618850 3.158109 5.688712 3.268922 94.611539
1.4 2.697309 3.254153 5.884408 3.366729 97.324411
1.8 2.773933 3.347859 6.075189 3.462112 99.957615
2.2 2.848765 3.439291 6.261196 3.555140 102.514643
2.6 2.921850 3.528512 6.442571 3.645883 104.998782
3.0 2.993232 3.615587 6.619453 3.734408 107.413129
3.4 3.062956 3.700577 6.791981 3.820783 109.760609
3.8 3.131069 3.783547 6.960291 3.905074 112.043981
4.2 3.197615 3.864555 7.124515 3.987346 114.265854
4.6 3.262637 3.943662 7.284785 4.067661 116.428697
5.0 3.326181 4.020926 7.441225 4.146082 118.534845
5.4 3.388287 4.096403 7.593958 4.222666 120.586514

The observation from Tables 2, 3 and 4 as follows:

• The observation from the effect of an increase in the breakdown rate of the main
server which leads to the Esystem increases for the precise combinations of
arrival and service times.

• While an increase in breakdown rate of the main server that is breakdown occurs
more often, it gives a detailed account of whenever the main server struck by the
breakdown immediately the standby server would interrupt and take over the
service process at a slower service rate which leads to the Esystem increases
respectively.

• From the viewpoint of arrival times, MAP-PC increases tremendously and the
ERLA increases slowly for both the Esystem. Similarly, the observation from the
viewpoint of service times, the HPY-EXPS increases fastly and the ERLS
increases slowly.

Illustrative Example 9.2

To observe the outcome of the main server’s vacation rate (η) versus the total cost of the
system (TC). We choose λ = 1; δ1 = 5; δ2 = 5; δ3 = 3; θ1 = 0.8; θ2 = 0.8; θ3 = 0.7;
σ = 2; Ψ = 9; τ = 1; ζ = 3; c1 = 0.5; d1 = 0.5; c2 = 0.6; d2 = 0.4.

The overall observation from Tables 5, 6 and 7 are given below:

• When an increase the vacation rate of the main server then the TC decreases for
the precise combinations of service and arrival times.

• While enhancing the vacation rate of the main server, it will convey the detailed
account of the main server could go for a vacation when the service completion
epoch in that vacation times, the waiting customers in the system may renege
from the system which communicates the TC decreases.
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• Observe the results of arrival times, MAP-PC largely decreases and ERLA
decreases at a minimum level. However, consider the service times, the ERLS
decreases at minimum level and the HYP-EXPS decreases much greater level
than the other service times.

Table 5 Vacation rate of the main server vs. TC – Erlang service

η
ERLS

ERLA EXPA HYP-EXPA MAP-NC MAP-PC

2 80.448591 81.370471 84.977615 81.550156 487.247239
3 79.667979 80.706331 84.574041 80.939441 486.711176
4 79.198514 80.318698 84.330171 80.597285 486.403479
5 78.883436 80.063185 84.164664 80.378508 486.205534
6 78.656874 79.881524 84.044155 80.226648 486.068006
7 78.485981 79.745494 83.952125 80.115130 485.967088
8 78.352444 79.639699 83.879365 80.029796 485.889965
9 78.245215 79.555000 83.820296 79.962412 485.829152
10 78.157220 79.485622 83.771331 79.907867 485.779994
11 78.083714 79.427731 83.730046 79.862817 485.739446
12 78.021396 79.378677 83.694745 79.824987 485.705437
13 77.967897 79.336572 83.664199 79.792774 485.676509
14 77.921472 79.300030 83.637499 79.765014 485.651605
15 77.880808 79.268013 83.613955 79.740847 485.629942

Table 6 Vacation rate of the main server vs. TC – exponential service

η
EXPS

ERLA EXPA HYP-EXPA MAP-NC MAP-PC

2 80.787137 81.896856 86.024836 81.962848 487.736869
3 80.020331 81.256603 85.657285 81.366831 487.205481
4 79.556469 80.880247 85.430477 81.032134 486.900266
5 79.244204 80.630955 85.274397 80.817893 486.703917
6 79.019312 80.453081 85.159618 80.669098 486.567523
7 78.849551 80.319519 85.071305 80.559798 486.467461
8 78.716860 80.215413 85.001073 80.476148 486.391012
9 78.610306 80.131918 84.943788 80.410087 486.330745
10 78.522875 80.063423 84.896116 80.356611 486.282039
11 78.449854 80.006196 84.855790 80.312442 486.241872
12 78.387962 79.957653 84.821213 80.275353 486.208190
13 78.334842 79.915946 84.791222 80.243769 486.179543
14 78.288758 79.879720 84.764953 80.216553 486.154886
15 78.248403 79.847956 84.741746 80.192859 486.133441
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Table 7 Vacation rate of the main server vs. TC – hyper-exponential service

η
HYP-EXPS

ERLA EXPA HYP-EXPA MAP-NC MAP-PC

2 83.713786 85.309313 91.590150 85.065686 491.155637
3 83.098817 84.833300 91.444015 84.562095 490.661927
4 82.703138 84.535864 91.324691 84.269593 490.374044
5 82.426874 84.330833 91.229269 84.078862 490.187433
6 82.223269 84.180333 91.152106 83.944878 490.057228
7 82.067207 84.064891 91.088688 83.845712 489.961437
8 81.943928 83.973399 91.035739 83.769414 489.888114
9 81.844184 83.899030 90.990903 83.708927 489.830235
10 81.761890 83.837347 90.952464 83.659819 489.783414
11 81.692876 83.785333 90.919150 83.619167 489.744776
12 81.634197 83.740863 90.890003 83.584968 489.712357
13 81.583713 83.702397 90.864288 83.555804 489.684775
14 81.539832 83.668787 90.841433 83.530643 489.661027
15 81.501348 83.639165 90.820985 83.508716 489.640367

Illustrative Example 9.3

To examine the impact of start-up rate of main server (σ) versus the Total cost of the
system (TC). We fix λ = 1; δ1 = 5; δ2 = 5; δ3 = 4; θ1 = 0.6; θ2 = 0.6; θ3 = 0.5; η =
4; Ψ = 10; τ = 2; ζ = 5; c1 = 0.5; d1 = 0.5; c2 = 0.4; d2 = 0.6.

A quick observation from Figure 2 as follows:
While increasing the start-up rate which is handled by the main server then the TC

also increases. Whenever the main server return from vacation who starts the start-up
process and when the start-up completion epoch, the main server will start service if
anyone in the system otherwise would be in the idle state up to customers arrival. In
this investigation, the combination of service times with different arrival times explicit
the HYP-EXPS increases fastly and the ERLS increases slowly. Likewise, in the same
manner, arrangements of arrival with service times the ERLA increases slowly and the
MAP-PC increases tremendously.

Illustrative Example 9.4

To test the fundamental arrival rate of customers (λ) versus the expected waiting time
(E(W )). To choose δ1 = 20; δ2 = 20; δ3 = 19; θ1 = 0.7; θ2 = 0.7; θ3 = 0.6; η = 5;
Ψ = 10; τ = 1; ζ = 6; σ = 4; c1 = 0.5; d1 = 0.5; c2 = 0.7; d2 = 0.3.

The observation from Figure 3 is given.
If the fundamental arrival rate increases which deliberate the E(W ) also increases

for the different combinations of arrival and service times. The queueing line increases
due to customer’s arrival increases which leads to the customer have to wait more time
to receive service from the server. However, consider the arrival times, the expected
waiting time increases highly in HYP-EXPA and slowly in ERLA except for the
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MAP-PC. In the same manner, consider the service times ERLS increases slowly and
HYP-EXPS increases much faster compared to other service times except the MAP-PC.
Now consider the MAP-PC arrival, the expected waiting time increases but all service
times collide in the same line.

Figure 2 Start-up rate vs. total cost of the system, (a) ERLA (b) EXPA (c) HYP-EXPA
(d) MAP-NC (e) MAP-PC (see online version for colours)
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Figure 3 Fundamental arrival rate vs. expected waiting time, (a) ERLA (b) EXPA
(c) HYP-EXPA (d) MAP-NC (e) MAP-PC (see online version for colours)
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Illustrative Example 9.5

To see the features of the main server’s vacation rate (η) and additional service rate (δ3)
versus the expected number of customers in the system (Esystem). We prefer λ = 1;
δ1 = 4; δ2 = 4; θ1 = 0.8; θ2 = 0.8; θ3 = 0.7; Ψ = 7; ζ = 7; τ = 2; σ = 3; c1 = 0.5;
d1 = 0.5; c2 = 0.6; d2 = 0.4.
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The overall observation from Figures 4, 5 and 6.
We increase the values of both the main server’s additional service rate and

vacation rate, the Esystem decreases with various groupings of arrival and service times.
Whenever the main server completes the additional service to the customer, the main
server checks if there is any customer in the system suppose if there is no customer
in the system the main server immediately goes on vacation. Due to the main server
increase the additional service rate the Esystem decreases likewise increase the vacation
rate of the main server in that situations reneging may happen so that is also the reason
for the decrease in the Esystem. Let look at the service times, the HYP-EXPS decreases
quickly and the ERLS slowly decreases. Similarly, in the arrival times, the ERLA
decreases slowly and MAP-PC decreases fastly.

Illustrative Example 9.6

We determine the comparison of the mode I service rate of main server (δ1) and start-up
rate of main server(σ) versus the expected waiting time (E(W )). We fix λ = 1; δ2 = 7;
δ3 = 6; θ1 = 0.7; θ2 = 0.7; θ3 = 0.6; Ψ = 10; η = 8; ζ = 6; τ = 2; c1 = 0.5; d1 = 0.5;
c2 = 0.6; d2 = 0.4.

The overall observation from Figures 7, 8 and 9.
While maximising the values of both the main server’s start-up rate and mode I

service rate simultaneously then the expected waiting time decreases with the distinct
combinations of service and arrival times. When the vacation completion epoch, the
main server does the start-up process and then offers any one of the modes of service
to the customers which deliberates the expected waiting time decreases. From the
viewpoint of arrival times, MAP-PC decreases tremendously and the ERLA decreases
slowly likewise consider the service times, the ERLS decreases slowly compared to the
other service times and the HYP-EXPS highly decreases. An increase in the mode I
service rate and start-up rate which is handled by the main server leads to a decrease in
the expected waiting time.

Illustrative Example 9.7

We probe the consequence of the mode II service rate of standby server (θ2δ2) and repair
rate of the main server (Ψ) versus the Total cost of the system (TC). To choose λ = 1;
δ1 = 10; δ2 = 10; δ3 = 9; θ1 = 0.6; θ3 = 0.5; η = 2; σ = 3; ζ = 6; τ = 1; c1 = 0.5;
d1 = 0.5; c2 = 0.5; d2 = 0.5.

The observation from Figures 10, 11 and 12.
While maximising both the values of the main server’s repair rate and the standby

server’s mode II service rate which leads to the increase in the TC for the different
groupings of service and arrival times. When the repair completion epoch the main
server would interrupt the standby server and carry over the service process whatever
the service it is. But here, when the standby does mode II service to the customers
at that epoch the main server completes the repair then immediately service process
switchover to the main server such that it deliberates the TC also increases. Let us
consider the service times, the ERLS increases slowly and HYP-EXPS fastly increases.
However, now consider the arrival times, the MAP-PC increases tremendously and the
EXPA increases slowly in comparison to all other arrival times.
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Figure 4 Additional service rate and the vacation rate of the main server vs. Esystem –
Erlang service (see online version for colours)
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Figure 5 Additional service rate and the vacation rate of the main server vs. Esystem –
exponential service (see online version for colours)
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Figure 6 Additional service rate and the vacation rate of the main server vs. Esystem –
hyper-exponential service (see online version for colours)
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Figure 7 Mode I service rate and the start-up rate of the main server vs. E(W ) – Erlang
service (see online version for colours)
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Figure 8 Mode I service rate and the start-up rate of the main server vs. E(W ) –
exponential service (see online version for colours)
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Figure 9 Mode I service rate and the start-up rate of the main server vs. E(W ) –
hyper-exponential service (see online version for colours)
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Figure 10 Mode II service rate of the standby server and the repair rate of the main server
vs. TC – Erlang service (see online version for colours)
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Figure 11 Mode II service rate of the standby server and the repair rate of the main server
vs. TC – exponential service (see online version for colours)
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Figure 12 Mode II service rate of the standby server and the repair rate of the main server
vs. TC – hyper-exponential service (see online version for colours)
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Comparing the mode I service scenarios of main server and standby server

Figure 13 Esystem vs. mode I service rate of main server and standby server – ERLA
(see online version for colours)
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Figure 14 Esystem vs. mode I service rate of main server and standby server of EXPA
(see online version for colours)
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Figure 15 Esystem vs. mode I service rate of main server and standby server of HYP-EXPA
(see online version for colours)
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Figure 16 Esystem vs. mode I service rate of main server and standby server of MAP-NC
(see online version for colours)
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Figure 17 Esystem vs. mode I service rate of main server and standby server of MAP-PC
(see online version for colours)
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Comparing the mode II service scenarios of main server and standby server

Figure 18 E(W ) vs. mode II service rate of main server and standby server of ERLA
(see online version for colours)
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Figure 19 E(W ) vs. mode II service rate of main server and standby server of EXPA
(see online version for colours)
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Figure 20 E(W ) vs. mode II service rate of main server and standby server of HYP-ERLA
(see online version for colours)
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Figure 21 E(W ) vs. mode II service rate of main server and standby server of MAP-NC
(see online version for colours)
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Figure 22 E(W ) vs. mode II service rate of main server and standby server of MAP-PC
(see online version for colours)
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For comparing the mode I service scenarios of the MS and the SS. For the main server’s
mode I service, we fix λ = 2; δ2 = 5; δ3 = 4; θ1 = 0.7; θ2 = 0.7; θ3 = 0.6; Ψ = 6; η =
3; ζ = 8; τ = 1; c1 = 0.5; d1 = 0.5; c2 = 0.4; d2 = 0.6; σ = 4. For the standby server’s
mode I service, we prefer λ = 2; δ1 = 6; δ2 = 6; δ3 = 5; θ2 = 0.7; θ3 = 0.6; Ψ =
5; η = 3; ζ = 8; τ = 1; c1 = 0.5; d1 = 0.5; σ = 4; c2 = 0.4; d2 = 0.6. From Figures
13–17, we observe that the Esystem decreases while increasing the main server and
standby server service rate of mode I service. Consider the distinct arrangements of
arrival and service times, the expected number of customers in the system decreases
fastly during main server service and slowly during standby server service except for
MAP-PC. In the case of MAP-PC, Esystem decreases rapidly and the results of all
service times converge during main server service and decrease slowly during standby
server service compared to the main server service. Next, comparing the mode II service
scenarios of the MS and the SS. For the main server’s mode II service, we consider λ =
2; δ1 = 8; δ3 = 7; θ1 = 0.5; θ2 = 0.5; θ3 = 0.4; Ψ = 12; η = 9; ζ = 7; τ = 2; σ = 8;
c1 = 0.5; d1 = 0.5; c2 = 0.6; d2 = 0.4. For the standby server’s mode II service, we
fix λ = 2; δ1 = 8; δ2 = 8; δ3 = 7; θ1 = 0.5; θ3 = 0.4; Ψ = 12; η = 9; ζ = 7; τ = 2;
σ = 8; c1 = 0.5; d1 = 0.5; c2 = 0.6; d2 = 0.4. From Figures 18–22, we observe that
the E(W ) decreases when increasing the main server and standby server service rate of
mode II service with the different groupings of service and arrival times. In Figure 22,
consider the service times, the expected waiting time decrease rapidly during main
server service and it also converges but while service offering by standby server, the
expected waiting time decreases slower than the main server service. In Figures 18–21,
the E(W ) decreases gradually during the main server service than the standby server
service. Therefore, while the MS or SS rendering service to the customers, the Esystem

and E(W ) decreases due to server availability in the system.

10 Conclusions

We consider the customers whose arrival based on the Markovian arrival process
with two types of heterogeneous service, additional service in which service follows
a phase-type distribution with start-up time, standby server, impatient behaviour of
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customers, server vacation, breakdown and phase-type repair are considered in this
manuscript. We have analysed the cost analysis for optimisation of our model, waiting
time distribution and the busy period of the system for our model. By using the
numerical values of arrival and service times, we obtained tabulation of numerical values
and examined the pictorial representations of 2D and 3D graphs. However, it precisely
and clearly communicated the consequence of distinct parameters related to our model
on the performance characteristics of the system measures and optimisation of cost
analysis. The overall motivation of our model is that we have studied the situations
faced by the customers who choose their day-to-day lifestyle in the banking sector as
well as the internet banking system who are wishing to deposit or withdrawal their
transactions and the someone seek additional service. It is an interesting viewpoint and
much helpful to understand the phase-type service from the involvement of customers
either go to bank directing for using banking sector or use internet banking wherever
they are at the time of transaction service whether the main server or standby server is
available in the system.
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