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Abstract: The secant equation traditionally constitutes the basis of  
quasi-Newton methods, as the updated Hessian approximations satisfy the 
equation on each iteration. Modified versions of the secant relation have 
recently been the focus of several papers with encouraging outcomes. This 
paper continues with that idea where a secant-like modification that utilises 
nonlinear quantities in constructing the Hessian (or its inverse) approximation 
updates is derived. The technique takes advantage of data readily computed 
from the two most recent steps. Thus, it offers a substitute to the secant 
equation to produce better Hessian approximations that result in accelerated 
convergence to the objective function minimiser. The reported results provide 
adequate evidence to suggest that the proposed method is promising and 
deserves attention. 
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1 Introduction 

The techniques considered in this paper are those used for solving unconstrained 
optimisation problems of the form: 

min ( ), where : .nf x f R R  

quasi-Newton methods iteratively solve the above problem. For the current iteration i, the 
gradient of f at xi is denoted as gi, and the matrix Bi is intended to approximate G(xi), the 
actual Hessian of f. The next approximation of the Hessian matrix is required to satisfy 
the so-called secant equation 
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1 ,+ =i i iB s y  (1) 

for 

1 1and .+ += − = −i i i i i iy g g s x x  

The new iterate is defined as 

1 ,+ = +i i i ix x pα  (2) 

where pi the direction vector, obtained through solving 

or .= − = −i i i i i iB p g p H g  (3) 

The matrix 1−=i iH B  is the inverse Hessian approximation that many prefer to maintain 
and update in order to avoid solving the system of equations resulting from using Bi 
instead. 

The step length αi in equation (2) is computed to solve 

( )min ,
+∈

= +i i i
R

f x p
α

α α  

employing some line search technique so as certain conditions are satisfied to guarantee 
convergence. The step length is generally measured in such a way that the following 
Powell-Wolfe conditions are met (Fletcher, 1970) 

( ) ( ) 4
1 10−

+ ≤ + T
i i u if x f x s g  (4) 

and 

1 0.9 .+ ≥T T
i ii is g s g  (5) 

The quasi-Newton methods’ basic concept is to copy Newton’s method while requiring 
only the first partial derivatives of the function to be available. The derivation and then 
coding of the actual Hessian matrix is not required due to its susceptibility to human error 
and the demanding storage and evaluation requirements. The initial approximation to the 
Hessian is usually chosen as the identity matrix (or some scaled form) that is updated on 
a step-wise basis using the latest available step and gradient data. It has been proven that 
such methods display superlinear convergence given reasonable assumptions that need to 
hold on the objective functions (Dennis and Schnabel, 1979; Fletcher, 1970). The 
methods converge in at most n iterations on quadratic problems when the exact line 
searches are accurate (Broyden, 1970). 

A well-known class of quasi-Newton methods is the Broyden family of updating 
formulae (Broyden, 1970; Fletcher, 1970). The most well-known members of the 
Broyden family of updates are the DFP, SR1, and the BFGS formulae. When compared 
numerically, the winner method of the three is the BFGS formula (Broyden, 1970; 
Fletcher, 1987). The BFGS update is given as 

1 .+ = + −
T T

i i i ii i
i i T T

i i ii i

y y B s s BB B
w r s B s

 

The global convergence of the BFGS update formula for convex objective functions has 
been established by several authors (see for example, Dai et al., 2002; Dennis and 
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Schnabel, 1979; Fletcher, 1987; Shanno and Phua, 1978; Shanno, 1978; Xiao et al., 2006; 
Yuan et al., 2017, 2018). Dai et al. (2002) show that when the line searches are 
inaccurate, the standard BFGS approach may not converge on non-convex functions (Wei 
et al., 2004). 

The interestingness of the BFGS has been explored in a variety of applications and 
domains by many authors. The method has proven its viability as a serious contender in 
solving a variety of optimisation problems. BFGS has been regarded as an option in 
simulation optimisation studies (Yoon and Becker, 2020) to solve multi-objective 
simulation optimisation problems. The feasibility of using the BFGS formula to build a 
new local search heuristic rule useful in finding the nearest insert into the convex hull to 
solve the travelling salesman problem was proposed by Alipour and Razavi (2019). 
Another application where the method may prove useful in solving the unconstrained 
multiple-factor optimisation model (Cao et al., 2019). Woldu et al. (2020) utilise the 
BFGS in the development of a hybrid scaled conjugate gradient method that computes a 
search direction on which the step size is determined using a new modified non-
monotone line search technique. Gondzio and Sobral (2019) research the effect of using 
quasi-Newton techniques in solving systems of nonlinear equations arising in interior 
point methods problems and applied to general quadratic programming. The cost of each 
iteration can be compared with the expense of calculating correctors in a conventional 
interior point iteration. Numerical studies stemming from applying the BFGS method 
show that the total number of matrix factorisations can be decreased. Mahdavi-Amiri and 
Sadaghiani (2020) propose and evaluate a quasi-Newton non-monotonous algorithm for 
highly convex multi-objective unconstrained optimisation. The algorithm enables a 
convex combination of recent function values to be reduced, all implemented within the 
BFGS quasi-Newton method of solving unconstrained problems of multi-objective 
optimisation. The numerical results mentioned indicate that fewer function evaluations 
are used by the quasi-Newton non-monotone algorithm than by the quasi-Newton 
monotone algorithm and other approaches. 

2 Variants of the secant equation 

This paper focuses on developing new quasi-Newton-like methods that derive from a 
variant of the secant equation (1). Much research has been developed to derive methods 
that numerically outperform the classical BFGS update and are globally convergent under 
reasonable assumptions. Such methods have proven, numerically, to be serious 
contenders to the traditional secant methods evaluated in terms of function/gradient 
evaluations in addition to the iteration count. There have been several approaches to 
deriving such methods originating from different perspectives, thus ending with different 
formulations (see Table 1). The success of these methods constitutes enough motivation 
for further pursuit on the derivation of similar techniques. Our approach relies on utilising 
more of the readily computed quantities into the updated matrix in the hope of developing 
the quality of the Hessian (or its inverse) approximation on each iteration. 

This section gives a brief account of some of the methods that have introduced 
performance gains over the standard BFGS. The derivations of these algorithms are 
mainly based on motivating modifications of the secant equation (1). One particularly 
successful class of methods published in the literature is motivated by the idea of 
incorporating more of the data available at each iteration in the update of the Hessian 
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approximation that would otherwise be discarded. Such data include, but are not limited 
to, the step vectors and the gradient difference vectors in (1) collected from the m recent 
iterations (m > 1) rather than just the most recent step. An example of such methods is the 
multi-step methods (Ford and Moghrabi, 1993, 1994, 1996). Those are introduced next. 

If X = {x(τ)} represents a differentiable path in Rn, for τ ∈ R, then, if the chain rule is 
applied to g(x(τ)) to differentiate it with respect to τ, one gets 

( ) ( ) ( )( )1 .+ ′ ′=i m mG x x τ g x τ  (6) 

In particular, if the path X is chosen to encompass the most recent point xi+1 [so that x(τm) 
= xi+1, say], then equation (6) defines a relationship (referred to as the ‘Newton equation’) 
that the Hessian matrix G(xi+1) satisfies (see Al-Baali, 1985; Broyden, 1970; Dennis and 
Schnabel, 1979). The secant equation can be obtained from the so-called Newton 
Equation as a special case (Broyden, 1970). In Ford and Moghrabi (1994), X is taken to 
be the polynomial that interpolates the m + 1 newest points 01{ } .=− + +

m
kj m kx  The vector 

g′(x(τm)) is approximated by the vector polynomial differentiation ( ˆ( ),g τ  say) which 
interpolates the corresponding available gradient points 1 0{ ( )} .− + + =

m
i m k kg x  

The scalar values 0{ } =
m

k kτ  have an association with the points 1 0{ }− + + =
m

i m k kx  on the 
curve X = {x(τ)}: 

( ) 1, for 0, 1, , .− + += = k i m kx τ x k m  

Thus, if Bi+1 denotes some approximation to G(xi+1) in equation (5) and 

( ) ( ){ }def 1

0
;

− ′
−= = −

′= = m m
i m k mi jj k m j

r x τ s τ  (7) 

( ) ( ){ } ( )( )
def 1

0
ˆ

− ′
−= = −

′ ′= = ≈ m m
i m i j k m mj k m j

w g τ y τ g x τ  (8) 

where si and yi are as in equation (1) and wi provides an estimate to g′(x(τm)). It is thus 
reasonable [by equation (6)] to require that the matrix Bi+1 satisfy a condition similar to 
the one in equation (6) as follows 

1 .+ =i i iB r w  (9) 

One choice that was considered for the τ parameters [for m = 2 in equations (7) and (8)] is 
(Ford and Moghrabi, 1993) 

( )0 1 2 12 2 2, 0, and .−= − + = = −i i iτ s s τ τ s  (10) 

This choice is sensitive to the distances among the iterates in the space of the variables. 
The multi-step BFGS Hessian update is given by 

1 .+ = + −
T T

i i i ii iMS
ii T T

i i ii i

w w B r r BB B
w r r B r

 (11) 

The main merit of equation (11) is in its utilisation of several past step and gradient 
vectors rather than just using the latest single latest iteration vectors. 
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Some of the recent and well-known secant-like methods are motivated by the need to 
derive accelerated convergence variants of the classical quasi-Newton methods. Other 
modified secant equation methods are motivated by the concept that the classical secant 
relation uses only the most recent single gradient and step vectors in the updating process 
of the Hessian (or its inverse) approximation. In contrast, other readily computed data, 
such as function values, remain unexploited and that might, otherwise, prove valuable. In 
an attempt to better the ‘quality’ of the Hessian approximation matrix, several papers 
have considered variants of the classical secant relation (1) to utilise computed gradient, 
iteration difference vectors as well as the readily available function evaluations (see for 
instance, Ford and Moghrabi, 1996; Wei et al., 2004; Ortiz et al., 2019; Yuan et al., 2010, 
2017, 2018; Yuan and Wei, 2010; Zhang et al., 1999). For example, Wei et al. (2006), 
through using Taylor’s series, have introduced a modification to equation (1) as follows: 

*
1 ,+ =i i iB s y  

where *
2= + i

i i
i

θy y
s

 and θi = 2(fi – fi+1) + (gi+1 + gi)Tsi. 

In a similar venue, Yuan and Wei (2010) derive an alternative replacement to *
iy  

given as: 

( )*
2

max 0,
.= + i

i i
i

θ
y y

s
 

Although, in addition to the function values obtained from the latest iterate, such  
secant-like relationships use step and gradient vectors, the methods derived in Moghrabi 
(2017) use nonlinear interpolating polynomials and implement an entirely different 
secant-like equation. That secant relation utilises function values and other available data 
from the three most recent steps. To satisfy several secant-like conditions, they introduce 
the concept of making many updates on each iteration (see Al-Baali, 1985; Moghrabi, 
2017). The updates are carried out in such a way that the first update observes (1) while 
subsequent updates satisfy 

( 1)
1 , 1, 2, 1 ( 1)+

+ = = − >t t t
iB u v t m m  

where ut = ri–m+t and vt = wi–m+t, for r and w as in equations (6) and (7). 
Woldu et al. (2020) have developed a Hessian matrix that satisfies a modified secant 

condition of the type 

1 ,+ =i i iB s w  

where 

( )max 0,= +i i i iw y t s  

for 

( ) ( ) ( )( )16 3 , ,+− + + +
=

T
i i i i i i i

i iT
ii

f f g x d ε g x ε s
t s

s s
α
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and for some chosen extra line search parameter ε and integrated that matrix in the 
computation of scaled conjugate gradient search directions. The method has interesting 
convergence properties but with moderate practical impact. 

Another secant-like equation is due to Deghani and Hosseini (2019), which they 
exploit to derive a modified BFGS update. The method is obtained using the Taylor 
series for the objective function f(x) and utilises both the available function and gradient 
values. The method possesses better theoretical convergence features than the classical 
secant equation. The modified secant update is given by 

( ) ( ) ( )( )1
1

6 3
.+

+
− + + +

= +
T

i i i i i i i
i i i T

ii

f f g x d g x s
B s y

s s
α

 

Nakayama et al. (2019) propose a spectral-scaling secant condition used to develop a new 
memory less quasi-Newton method. The new method is based on the Broyden family. 
Both convex and pre-convex members of the family are taken into account. The new 
method is shown to satisfy sufficient descent conditions and possesses global 
convergence. The modified secant takes the form 

1 ,+ =i i i iB s γ y  

where γi > 0 is some scaling parameter. 
Similarly, Waziri et al. (2020) propose the following modified secant relation 

( ) ( )1 1
1

6 3+ +
+

 − + +
= +  

 

T
i i i ii

i i i iT
ii

f f s g g
B s y u

s u
 

where ui is a vector chosen such that 0.≠T
iis u  This relationship is used as a basis to 

establish a new conjugate gradient methodology for solving nonlinear equation systems. 
Deghani et al. (2019) employ Taylor’s series to develop an updated secant 

relationship to get a more detailed estimate of the objective function’s second curvature. 
The modified secant equation is incorporated in building a new BFGS form employed in 
solving unconstrained optimisation problems. Both gradient and function values are used 
in the proposed process while noting that the classical secant relationship uses only 
gradient values. Global convergence is established under suitable conditions and without 
requiring convexity of the function to be minimised. The proposed secant-like relation 
takes the form 

( ) ( ) 2
1 1

1
12 5 7

,+ +
+

 − + + −
= +  

 

T T
i i i i ii i i

i i i i iT
ii

f f s g g s g
B s y δ s

s s
α

 

for some chosen integer such that δi ≥ 0. 
Faramarzi and Amini (2020) developed a modified conjugate gradient technique 

derived from a suggested modified secant relation. The new algorithm satisfies, 
independent of line search, the sufficient descent property. For both uniformly convex 
and general functions, the convergence properties of the proposed algorithm were 
studied. Numerical experiments demonstrate the suggested approach’s superiority 
compared to several such methods in the same class. The secant-like relationship utilised 
is as follows: 
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( ) ( )( )1 1
1

max 0, 6 3+ +
+

 − + +
= +   

 

T
i i i ii

i i i iT
ii

f f s g g
B s y u

s u
 

where ui is a vector chosen such that 0.≠T
iis u  

Table 1 Some modifications of the secant equation 

Author(s) The derived secant variant Ref. 
Powell Bi+1si = ϑiyi + (1 – ϑi)Bisi Fletcher (1987) 
Zhang  
et al. 

1 1
1

6( ) 3( )+ +
+

− + += +
T

i i i i i
i i i iT

i i

f f g g sB s y s
s s

 
Zhang et al. 

(1999) 

Wei et al. 1 1
1

2( ) ( )+ +
+

− + += +
T

i i i i i
i i i iT

i i

f f g g sB s y s
s s

 
Wei et al. (2006) 

Li and 
Fukushima 

Bi+1si = yi + σisi, σi < 10–6 Li and Fukushima 
(2001) 

Waziri  
et al. 

1 1
1

6( ) 3 ( )+ +
+

− + + = +  
 

T
i i i i i

i i i iT
i i

f f s g gB s y u
s u

 
Waziri et al. 

(2020) 

where ui is a vector chosen such that 0.≠T
i is u  

Yuan et al. 1 1
1

max(0, 2( ) ( ) )+ +
+

− + += +
T

i i i i i
i i i iT

i i

f f g g sB s y s
s s

 
Yuan et al. (2017) 

Deghani and 
Hosseini 

1
1

6( ) 3( ( ) ( ))+
+

− + + += +
T

i i i i i i i
i i i T

i i

f f g x d g x sB s y
s s

α  
Deghani and 

Hosseini (2019) 

Woldu  
et al. 

Bi+1si = yi + max(0, ti)si, Woldu et al. 
(2020) for 

16( ) 3( ( , ) ( , ))+− + + +=
T

i i i i i i i
i T

i i

f f g x d ε g x ε st
s s

α  

for some chosen extra line search parameter ε. 
Deghani  
et al. 

2
1 1

1
12( ) (5 7 ) ,+ +

+
− + + − = +  

 

T T
i i i i i i i i

i i i i iT
i i

f f s g g s gB s y δ s
s s

α  
Deghani et al. 

(2019) 

for some chosen integer such that δi ≥ 0. 
Caliciotti  
et al. 1

0, for ,
with

1, for .+
> < 

=  = = 

j
i j j j

j

ρ j i
H y ρ s

ρ j i
 

Caliciotti et al. 
(2018) 

Caliciotti et al. (2018) have developed a novel preconditioned conjugate gradient method 
that utilises a symmetric rank one update that satisfies a weaker notion of the secant 
equation. They argue that the quasi-Newton update Hi+1, which in some way attempts to 
approximate the inverse Hessian matrix G(x)–1, satisfies the following modified secant 
equation in all previous directions; that is, it results in the following modified secant 
equation; 

1
0, for ,

with
1, for .+

> < 
=  = = 

j
i j j j

j

ρ j i
H y ρ s

ρ j i
 



   

 

   

   
 

   

   

 

   

   72 I.A.R. Moghrabi    
 

    
 
 

   

   
 

   

   

 

   

       
 

Although Table 1 provides a brief account of the work done on developing modified 
secant equations, the discussion above provides more detail on the topic. Many other 
similar methods can be found in the literature for interested readers (Wei et al., 2006; 
Xiao et al., 2006; Yuan and Wei, 2010; Yuan et al., 2017, 2018, 2010; Zhang et al., 1999; 
Deghani et al., 2019; Das et al., 2019; Yoon and Bekker, 2020; Alipour and Razavi, 
2019; Bolouri et al., 2020). The convergence properties for several of the methods cited 
here have been studied. For example, Yuan et al. (2018) prove global convergence under 
a less strict version of the Powell-Wolfe line search conditions (4) and (5). 

A summary of selected methods is listed in Table 1. 
We next examine a new method that is motivated by the same concept of 

incorporating data available from several of the latest iterations for deriving a new variant 
to the secant equation (1). 

3 A new non-secant equation 

This section focuses on the development of a new version of the secant equation (1) of 
the quasi-Newton type, hoping that this results in further numerical merits that methods 
in this class achieve over the classical BFGS update. We then need to prove that the new 
method is globally convergent under rational assumptions. It is believed that the success 
of such methods lies in the improved quality of the Hessian approximations they achieve 
at each step of the algorithm. There have been many ways to deriving these techniques 
from multiple viewpoints, thereby concluding with various formulations (see Table 1). 
Similar to what has been done in the above discussion on the nonlinear multi-step  
quasi-Newton methods [equations (5)–(10)], our derivation of the new non-secant 
relationship will also make use of the data computed during the three most recent cycles, 
thus choosing m = 2 in equation (6). The new secant equation will define the new 
condition that the updated Hessian (or its inverse) must satisfy. In particular, the iterates 
xi–1, xi and xi+1 are interpolated by a differentiable curve in Rn, namely x(τ), such that  
x(τ0) = xi–1, x(τ1) = xi and x(τ2) = xi+1. The corresponding objective function is given as 
φ(τ) ≡ f(x(τ)) and is modelled here using Taylor’s expansion relation around the point τ2, 
corresponding to the most recent iterate xi+1 as follows 

21( ) (0) (0) (0),
2

′ ′′≅ + +φ τ φ τφ τ φ  (12) 

for τ-values as in equation (10). 
Using φ(τ) ≡ f(x(τ)), then the quantities in equation (12) are expressed as 

1

1 1

(0) (0) ,
(0) (0) (0) (0) ,

+

+ +

′ ′≡
′′ ′ ′ ′′≡ +

T
i

T T
i i

φ x g
φ x B x x g

 (13) 

where ( )′ ≡ dxx τ
dτ

 and 
2

2
( ) .′′ ≡ d xx τ

dτ
 

Using the Lagrange representation to interpolate the iterates available from the 
previous three iterations, we have [obtained by setting m = 2 in equation (7)] 

( )2 1( ) ( )′
−′ = −i ix τ τ s s ϑ  (14) 
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and 

( )2 1( ) ( ) ,″
−′′ = −i ix τ τ s δs  (15) 

for 
2

2 1

1 0
, ,

1 2
−= =

+ −
δ τ τδ
δ τ τ

ϑ  

and, for all τ, the following quantities hold 

( )( ) ( )( )
0 1 1 2

2 0
2 1 2 0 0 1 0 2

2 2( ) , ( ) ,′ ′− − − − −= =
− − − −
τ τ τ τ τ ττ τ

τ τ τ τ τ τ τ τ
   (16) 

( )( ) ( )( )2 0
2 1 2 0 0 1 0 2

2 2( ) , ( ) .″ ″= =
− − − −

τ τ
τ τ τ τ τ τ τ τ

   (17) 

For the chosen τ-values in equation (10), we obtain 
1

,
−

= i

i

sδ
s

 It is reasonable then that 

expression for δ is generalised by plugging in a scaling factor, γ ≥0 (see Moghrabi, 2017) 
that gives a more straightforward, more convenient mechanism to switch to the standard 
one-step secant update method by setting γ = 0. Therefore, 

1
.

−
= i

i

sδ γ
s

 

If τ in equation (12) is chosen to be τ0 and if the actual Hessian at xi+1 is replaced by its 
approximation Bi+1, as is normally done in the standard quasi-Newton methods, one may 
require that 

[ ]2
1 1 00 (0) 2 (0) ,− +′′ ′≅ − −i iτ φ f f τ φ  (18) 

or equivalently, 

[ ]2
1 1 0 1 1 10

1(0) (0) (0) (0) ,
2− + + + +′ ′ ′ ′′= + + +T T T

i i i i if f τ x g τ x B x x g  (19) 

for x′(0) and x″(0) as defined in equations (14) and (15), respectively. This gives 

( )

( )( )

0 1 1
1 1 0 1

1 0 0 1 0

2
1 1 10

1 0 0 1 0

1 2 2(0) (0) .
2

− + +

+ − +

− − = + + − 
  ′ ′+ + −  −   

T
i i ii

T
T

i i i i

τ τ τf f τ s g
τ τ τ τ τ

τ x B x s s g
τ τ τ τ τ

 

Now, from equations (13) and (19), we obtain 

( ) ( ) ( ) ( )

( )

2
0 12

1 1 1 1 10
1 0 1 0

0 1
1 1 1 1

1

2

2 ,

− + − − +

− + − +

  − −
 − − + −    

− − = − − − 
 

T T
i i i i i i i i

T
i i i i i

τ ττ s s B s s s δs g
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for ϑ and δ are as defined in equations (14) and (15), respectively. 
If we define 

0 1
1 1

1
and ,− −

+≡ − ≡ − ≡i i i i i i
τ τr s s r s δs ρ
τ

ϑ  

then from equation (19) we have 

02
1 1 1 1 1

1
2 .+ − + + +
 = − + −  

T T T
i i i i i ii i i

τρ r B r f f ρr g g r
τ

 (21) 

Equation (21) may be expressed as 

1+ = +T T
i i u i iiu B u u w μ  (22) 

for 

1, −≡ ≡ −i i i i iu ρr w y yϑ  

and 

0
1 1 1 1

1
2 .− + + +
 = − + − − 
 

T T T
i i i i i ii ii

τμ f f u g g r u w
τ

 

The relationship in equation (22) lends itself to proposing a new secant-variant equation 
of the form 

1+ =i i iB u v  (23) 

for ui as in equation (21) and 2 .≡ + i
i i i

i

μv w u
u

 

The computed search direction is downhill if Bi+1 is positive definite. By analogy with 
the standard secant equation (1), Bi+1 is positive definite if and only if Bi is already so and 

0.>T
iiu v  As this cannot be guaranteed in this new formulation, equation (23) is replaced 

with 

1+ =i i iB u v  (24) 

where 

2
2, max , 0 , = + = + − 

 

T
ii

i i i i i i
i

u vv v ε u ε γ g
u

 

for some positive constant γ. It is easy to show that relation (24) is an appropriate 
replacement since 

2 2 0,≥ >T
i i iiv u γ g u  (25) 

provides a guarantee to the positive definiteness of Bi+1. 
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The new BFGS algorithmic outline goes as follows: 

Algorithm NBFGS 

Input: x0 ∈ Rn, and set Ho = I. Let iteration count i = 0. 
Output: optimal solution 
1 Stop if ||gi|| ≤ ε (convergence threshold). 
2 Compute di = −Higi. 
3 Minimise f(xi + αpi), to compute αi such that conditions (5) are α ∈ R satisfied. 
4 Let xi+1 = xi + αipi. If equation (25) is satisfied, update Hi using equation (10) with wi 

replaced by iv  and ri replaced by ui in equation (25), else let set ui = si and =i iv y  in 
equation (25) and update such that equation (1) is satisfied. 

5 Set i = i + 1 and go to 1. 

4 Convergence properties 

The analysis carried out here relies on the assumptions below: 

1 The level set D = {x|f(x) < f(x0)} is bounded, for a starting point x0. 

2 The objective function f is twice continuously differentiable on D and in an open set 
M containing D, there exists a constant z > 0 such that 

( ) ( ) , for all , .− ≤ − ∈g x g y x y x y Mz  (26) 

Since {fi} is a diminishing sequence, the iterate sequence {xi} computed by the new 
algorithm is found in D, and there exists a constant f*such that: 

*lim .
→∞

=i
i

f f  (27) 

3 The objective function f is uniformly convex, in that there are positive constants m1 
and m2 such that 

2 22
1 2( )≤ ∇ ≤Tm p d f x d m p  

holds for all x ∈ D and p ∈ Rn. 

Theorem 1: Let {xi} be generated by the algorithm NBFGS. Then we have 
2 2

1 2 ,≤ ≤T
i i iim s s v m s  

( )2≤ +i iu m sz  

and 

2
1

.
∞

=
− = T

i iii
g p πrα  

Proof: Similar to the proof done in Hassan (2019). 
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Theorem 2: Let f satisfy Assumptions 1 and 2 and {xi} be computed by algorithm 
NBFGS. Also, there are constants k1 and k2 such that 

2
1 2and , .≤ ≥ ∀T

i i i i i iiB s k s s B s k s i  (27) 

Then the following holds 

lim inf 0.
→∞

=i
i

g  (28) 

Proof: By contradiction, assume that for small, non-negative constant ε, ||gi|| ≥ ε. Then, 
since Bisi = –αigi, ||gi||2 = 2−

iα ||Bisi||. Thus, from Theorem 1 it follows that 

( )

( )

( )

1

1

2
2 2

2 12 ,

∞
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−

∀

−

∀ ∀

∞ > −
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= ≥ = +∞




  

T
ii

i

T
i ii i

i

i T
i i i ii

i ii i

p g

s B s

g
s B s ε k k

B s

α

α α

 

where (1 ) ,−=i
σ m
L

α  for σ as in Assumption 3 and z as in Assumption 2. The following 

inequality follows from assumption two and the Powell-Wolfe condition (5) 

( ) 2
1(1 ) +− − ≤ − ≤TT

i i i i i iiσ g p g g p pzα  

2 2
(1 ) (1 ) (1 ) .− − − − − −≥ = ≥ = 

T T
i i ii i

i i
i i

σ g p σ p B p σ m
LL p L p

α α  

We now proceed to prove that algorithm NBFGS has global convergence. 

Theorem 3: Let f satisfy Assumptions 1 and 2 above and {xi} generated by algorithm 
NBFGS. Then, the following holds 

lim inf 0.
→∞

=i
i

g  (29) 

Proof: As per Theorem 2, it suffices to prove that equation (29) holds for all i. By 
contradiction, assume this is not the case. Thus, there exists a positive constant z such that 

, .> ∀ig iz  

It is easy to show that 

, for some positive constant .≤i iv θ s θ  (30) 

From equation (25) and the fact that 

( )1
1 ,
2−≥ − ≥i i i iu σ s ε s σ s  

it follows that 
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2 2 .
2

≥ ≥T T T
i i ii i i

γu v γ u u σ s sz z  (31) 

Thus, from equation (30) and (31), we obtain 

,≤
T

ii
T

ii

v v ρ
u v

 

for 
2

2
.

/ 2
≡ θρ
γ σz

 

By Theorem 2, for the sequence {Bi}, there exist constants k1 and k2 such that 
equation (29) holds for all i. The proof is complete, based on the following [see  
Theorem 2.1 in Dai et al. (2002)]. 

If there are two positive constants k1 and k2 such that for all i 

1 2and ,≥ ≥
T T

i ii i
T T

i ii i

u v v vk k
u u u v

 

such that for all positive integers j (28) holds for no less than ⌈j/2⌉ iterations of i ∈ {1, …, 
j}. 

5 Numerical tests and results 

In this section, summaries of the numerical outcomes are tabulated. The test problems list 
is listed in Table 2. The chosen test set is for problems of variable dimensions, so that 
different test problem sizes are examined. The tested functions, and hence the presented 
results, correspond to problems classified based on the size/dimension category. Those 
are grouped into four categories, low (2 ≤ n ≤ 20), medium (21 ≤ n ≤ 40), moderately 
high (41 ≤ n ≤ 1,000), and high (n > 1,000). The results constitute the outcome of 
experiments conducted on 17 different test problems with dimensions varying from 2 to 
100,000. Each listed problem has been tested using four distinct starting points. The total 
number of test problems obtained is 900. The test problems are extracted from Moré et al. 
(1981), Fletcher (1987), Tajadod et al. (2016) and Xiao et al. (2006). 

The new algorithm NMBFGS is tested against that of Yuan et al. (2017) (see Table 1) 
and the multi-step BFGS (MSBFGS) in equation (8) (see Ford and Moghrabi, 1993, 
1994, 1996). Yuan’s method is used as the benchmark for the tests since it is, as per our 
tests, the most competitive of the techniques presented in Table 1. The summary of the 
overall results is reported in Table 3. Tables 4 to 7 present the scores obtained for small, 
medium, moderately large, and very large problems, respectively. As space precludes a 
detailed presentation of the figures obtained for each category separately, the results are 
summarised per dimension category. The scores reported indicate iteration, function/ 
gradient evaluations count as well as the total execution times. The coding is done using 
C++ on a 64-bit machine with i7-3770, 3.4 GHz CPU. 
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Table 2 Test problems and dimensions 

ID Problem Dimension range 
1 Watson function 3 ≤ n ≤ 31 
2 Extended Rosenbrock 2 ≤ n ≤ 10,000, n even 
3 Extended Powell 2 ≤ n ≤ 100,000, n mod 4 = 0 
4 Penalty function I 2 ≤ n ≤ 1,000 
5 Variably dimensioned function 2 ≤ n ≤ 10,000 
6 Trigonometric function 2 ≤ n ≤ 10,000 
7 Modified trigonometric function 2 ≤ n ≤ 100,000 
8 Broyden tridiagonal function 2 ≤ n ≤ 1,000 
9 Discrete boundary value function 2 ≤ n ≤ 1,000 
10 Oren and Spedicato power function 2 ≤ n ≤ 10,000 
11 Full set of distinct eigenvalues problem 2 ≤ n ≤ 10,000 
12 Tridiagonal function 2 ≤ n ≤ 10,000 
13 Wolfe function 2 ≤ n ≤ 1,000 
14 Diagonal Rosenbrock’s function 2 ≤ n ≤ 1,000, n even 
15 Generalised shallow function 2 ≤ n ≤ 1,000, n even 
16 Powell singular n = 10,000 
17 Helical valley n = 1,000 

Table 3 Overall iteration, function evaluations count, and timing 

Method Evaluations Iterations Time (sec.) Scores 
Yuan et al. 50,456 40,492 24,026.44 187 

100% 100% 100% 20.8% 
MSBFGS 45,084 34,294 23,212.543 316 

89.35% 84.69% 96.61% 35.1% 
NMBFGS 41,313 30,419 21,434.622 397 

81.88% 75.12% 89.21% 44.1% 

Table 4 Iteration, function evaluations count, and timing-large problems 

Method Evaluations Iterations Time (sec.) Scores 
Yuan et al. 21,773 18,812 370.8 32 

100% 100% 100% 23.6% 
MSBFGS 17,944 14,101 246.703 51 

82.41% 74.96% 66.53% 33.9% 
NMBFGS 16,211 13,237 229.412 71 

74.45% 70.36% 61.87% 42.5% 

For all the methods tested here, the computed iterate xi+1 is computed from xi by 
employing a line search algorithm that applies safeguarded cubic interpolation with  
step-doubling (Yoon and Bekker, 2020). Once the conditions in equations (4) and (5) are 
satisfied, a new point, xi+1, is accepted. 
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Table 5 Iteration, function evaluations count and timing-moderately large problems 

Method Evaluations Iterations Time (sec.) Scores 
Yuan et al. 11,166 8,411 2,911.78 90 

100% 100% 100% 23.6% 
MSBFGS 9,757 7,007 2,431.59 129 

87.38% 83.31% 83.51% 33.9% 
NMBFGS 9,213 6,891 2,277 162 

82.51% 81.93% 78.20% 42.5% 

Table 6 Iteration, function evaluations count and timing-medium problems 

Method Evaluations Iterations Time (sec.) Scores 
Yuan et al. 10,213 9,618 16,213.66 31 

100% 100% 100% 12% 
MSBFGS 9,172 8,879 11,401.19 99 

89.81% 92.32% 70.32% 39% 
NMBFGS 7,811 6,001 10,001.13 124 

76.48% 62.39% 61.68% 49% 

Table 7 Iteration, function evaluations count and timing-small problems 

Method Evaluations Iterations Time (sec.) Scores 
Yuan et al. 8,345 4,390 9,342.67 34 

100% 100% 100% 30.6% 
MSBFGS 8,211 4,307 9,133.06 37 

98.39% 98.11% 97.76% 33.3 
NMBFGS 8,078 4,290 8,927.08 40 

96.80% 97.72% 95.55% 36% 

Figure 1 Overall evaluations (see online version for colours) 
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Figure 2 Overall iterations (see online version for colours) 

 

Figure 3 Overall timings (see online version for colours) 

 

For the standard BFGS method, it is well known that a necessary and sufficient condition 
for ensuring that the generated updated matrices {Hi} are positive definite and hence, the 
computed search direction is downhill, is that 0>T

iis y  (Broyden, 1970). By analogy, for 
the new method MSBFGS, condition (25) is imposed in order to guarantee that T

iiv u  is 
‘sufficiently’ positive to circumvent any potential numerical instability in the 
construction of Hi+1. Should condition (25) fail to hold, the algorithm reverts to using an 
MSBFGS iteration on that particular instance. An initial scaling is applied to the start 
inverse Hessian matrix estimate using the techniques introduced in Shanno and Phua 
(1978). 

The preliminary investigation of the new method’s numerical performance 
demonstrates its efficiency on the three evaluation criteria, namely, function and gradient 
evaluations, as well as the timings. The tabulated results reveal the overall performance 
merits of the new method as a winner over the other two algorithms on the tested problem 
of all sizes with a good percentage. The overall savings on the iteration count, function 
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and gradient evaluations, and timings are about 25%, 19%, and 11%, respectively, 
compared with the benchmarked method (Yuan et al., 2017). The advantages of the new 
method are best observed as the dimension of the problem increases. On small problems, 
the gain is marginal (around 3% average on the three criteria), while on large problems, 
the gain is remarkable. The improvement is around 25% for evaluations and 30% for 
iteration count, and almost 40% for the timings. Overall, the new algorithm scored best 
on 44.1% of the 900 problems tested. The MSBFGS method scored best on 35.1% of 
those. Thus, the new method appears to be a serious contender to some of the well-known 
algorithms in the same class. 

6 Conclusions 

Secant-like methods built on modifications introduced to the classical secant relation (1) 
have been examined, and a new non-secant method is derived in this paper. The method 
utilises nonlinear quantities that incorporate data readily available from the latest three 
iterations in order to improve the quality of the computed step-wise Hessian 
approximations and consequently accelerate the convergence to a solution for a given 
problem. The new method’s development is encouraged by several published approaches 
that motivate and reveal the viability of considering non-secant-based methods. Each of 
the derivations presented in this research line presents a logical justification for the 
modified secant equation they adopt (Ford and Moghrabi, 1993; Hassan, 2019; Li and 
Fukushima, 2001; Yoon and Bekker, 2020; Lewis et al., 2019). A base technique has 
been established in this work that encourages similar future research to continue. 
Stemming from the noticeable numerical performance as benchmarked against other 
similar methods, the new method further promises that the utilisation of data accumulated 
over the past iterations provides gains. This success constitutes a motivation for further 
future research that explores alternative techniques for deriving such methods. 

The convergence behaviour of the new algorithm has been examined. The numerical 
scores reported above have shown promising outcomes that turn attention to the 
potentials of such methods. The scores provide evidence that data accumulated from 
previous iterations, such as function values, gradient points, and step vectors, pay off 
numerically and thus provide a motivation to exploit them further. 

The performance gains reported play to the advantage of giving more attention to 
such type of methods that rely on tweaking the secant relation in equation (1). Future 
research ought to focus on modified secant methods for different choices of the 
parameters τ to assess the sensitivity of these methods’ numerical behaviour to such 
choices. It is also worth studying these methods’ capability to introduce comparable 
improvements when utilised in solving systems of nonlinear equations and an 
examination of the convergence characteristics in that domain. One limitation of this 
research worth mentioning is testing the new method on constrained problems applied to 
different managerial or engineering domains. This application constitutes a future venue 
that is worth exploring. The tests conducted so far on the derived algorithm have been 
benchmarked against two successful, well-known methods. Future work needs to 
consider testing more methods to compare the new algorithm’s relative success on a 
broader spectrum. 

Also, under investigation are similar methods for which the computed search 
direction di is modified before carrying out the line search (see for example, Faramarzi 
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and Amini, 2020). This idea appears to be rewarding. Also under consideration is a 
variant of the algorithm where, on every other iteration (or more frequently), the Hessian 
approximation update is skipped. 
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