
 
International Journal of Operational Research
 
ISSN online: 1745-7653 - ISSN print: 1745-7645
https://www.inderscience.com/ijor

 
Distribution of occupied resources on a fractional resource
sharing in a queueing system
 
T.B. Ravaliminoarimalalason, M. Rakotomalala, F. Randimbindrainibe
 
DOI: 10.1504/IJOR.2021.10039107
 
Article History:
Received: 04 March 2021
Accepted: 11 May 2021
Published online: 12 January 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijor
https://dx.doi.org/10.1504/IJOR.2021.10039107
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   Int. J. Operational Research, Vol. 49, No. 1, 2024 131    
 

   Copyright © 2024 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Distribution of occupied resources on a fractional 
resource sharing in a queueing system 

T.B. Ravaliminoarimalalason*,  
M. Rakotomalala and F. Randimbindrainibe 
Ecole Doctorale en Sciences et Techniques de  
l’Ingénierie et de l’Innovation, 
Ecole Supérieure Polytechnique d’Antananarivo, 
University of Antananarivo, 
Madagascar, East Africa 
Email: tokybaz@gmail.com 
Email: mrakotom_diego@yahoo.fr 
Email: falimanana@mail.ru 
*Corresponding author 

Abstract: Many server systems can share their resources by fractional way not 
discrete. It can be found in major cases of communication systems sharing 
power, spectrum or bandwidth resources for example. The objective of this 
work is to build analytical expressions of the amount of occupied resources in a 
structure modelled as queueing system. The queue server shares its resources to 
customers that request services to him. Both infinite and finite capacity are 
highlighted and the requested resources can be fractional. The amount of 
occupied resources as real-valued random variable is characterised by its 
distribution functions that we proposed in this paper. They are validated by 
simulations, and then can be used to predict the performances of such system or 
to dimension the appropriate needed capacity. Impacts of system load factor 
and system capacity has been also analysed. 
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1 Introduction 

Many systems share their resources to their users. They can be modelled as queueing 
systems having a single server and multiple resources, or multiple servers each having 
their own resources. Romm and Skitovich (1971) started from a generalisation of Erlang 
theorem by studying the allocation of a random resource to each arrival to a queue. He is 
focused on the stationary distribution of the queueing system operating in a discrete time. 
Green (1980) studied a queueing system in which the customers can ask to be served by 
random number of servers. If the queue has more than one server, or the server has more 
one resource, they can be shared to the customers. It is called a processor-sharing queue 
that Yashkov (1987) reviewed and proposed techniques to analyse it. Tikhonenko (2010) 
studied the processor-sharing queue with limited resources, exponential time distribution. 
Sopin and Vikhrova (1995) evaluated the probability characteristics in a queueing system 
with random requirements, and Lisovskaya et al. (2017) analysed the customer capacity 
in the case of multi-server queue. Pagano (2020) extended the work on non-Poisson 
arrivals and non-exponential service time. He considered a parallel service with double 
customer and a renewal arrival process. Vikhrova (2017) combined a study of queueing 
system with random requirements and limited resources. Analytical model of the 
distribution of the amount of occupied resources in a discrete resource sharing is already 
built (Ravaliminoarimalalason and Randimbindrainibe, 2021). It corresponds to a 
Mx/M/m. The current work is an extension on a continuous domain: We consider a 
fractional resource sharing where the requested quantities from customers are not discrete 
but continuous, distributed as real positive random variables. The main objective is to 
find analytical models that can be used to predict the behaviour of the system and also to 
dimension it. 

We called by fractional resources the resources in continuous domain, in opposite of 
discrete one. This case can be found in many communication systems (Vishnevski and 
Dudin, 2017) such as bandwidths resources (Massoulie and Roberts, 2010; Krishnan  
et al., 2011), spectrums (Ye et al., 2016), powers (Zhang et al., 2019) for example, even 
in the latest standard of mobile communication (Yang et al., 2016). 

2 Analytical expressions 

2.1 Description 

We recall the results we obtained in the case of discrete resource sharing. Given an 
M/M/1 queue with discrete resources C, C ∈  ∪ {+∞} to allocate to its customers. Each 
customer asks to be served by a random amount r of resources. The queue server can 
allocate this amount of resources to this customer if they are available, otherwise the 
customer must wait until they become available. Thus, as described in Figure 1, the 
server can serve simultaneously several customers depending on the availability of 
resources it has. The classic notion of an M/M/1 queue that can only receive one customer 
at a time is no longer relevant. It is a sharing of the resources available at the queue 
server level through the customers that come there according to their needs. 

The following theorems can be cited. We denote by: 
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• P(R = r) the probability distribution of random variable R that indicates the quantity 
of occupied resources in the server. It can have a general distribution. 

• P(Rk = r) the probability that k customers are using r resources. 

Figure 1 System description (see online version for colours) 

 

Theorem 1: For the case of infinite resources in the queue server, the probability 
distribution P(R = r) is: 
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where ρ = λ/μ is the queue load factor, λ the customer arrival process intensity, and 1/μ 
the average service time requested by the customers. 

Theorem 2: For the case of finite resources C, *,C ∈  in the queue server, the 
probability distribution P(R = r) is: 
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where 1
1

( ) ( )
C

s s
r

P P R r P R C r
=

= = ⋅ > −  is the probability that the queue cannot receive 

more than s customers at the same time. 
Proofs of these Theorems 1 and 2 are explicitly described in our paper 

(Ravaliminoarimalalason and Randimbindrainibe, 2021). 

2.2 Continuous infinite resource sharing 

This time, we are going to look at the case of resources whose customer needs are 
positive real numbers, with values in   or part of .  The amount of available resources 
in the queue server is no longer a natural number, but can be also any positive real 
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number. We therefore use a real-valued random variable for the amount of occupied 
resources. 

2.2.1 General case 
Theorem 3: We can extend Theorem 1 in the case of a real-valued random variable. The 
probability P(R ≤ r) that the quantity R of occupied resources in the server is less or equal 
than r is then: 

( )
1

( ) exp( )
!

k

k
k

ρP R r ρ P R r
k

+∞

=

≤ = − ⋅ ≤  (3) 

In other words, the cumulative distribution function F(x) of the quantity of occupied 
resources is: 

1

( ) exp( ) ( )
!

k

k
k

ρF x ρ F x
k

+∞

=

= − ⋅   (4) 

where Fk(x) is the cumulative distribution function of the quantity of resources occupied 
by k customers. The quantity of resources occupied by k customers is obtained by the 
sum of k independent and identically distributed random variables of the occupation by 
one customer. 

Proof: The demonstration is done by analogy to that of discrete resources. If the queue 
has N = k customers, they are all served simultaneously. By denoting ri the quantity of 
resources used by the ith customer, we can write: 

( )1
1

( ) ( ) k
k

P R r P N k P r r r
+∞

=

≤ = = ⋅ + + ≤   

P(N = k) is the kth element πk of the stationary distribution π of the queueing system: 

( ) exp( ).
!

kρP N k ρ
k

= = −  And P(r1 + … + rk ≤ r) is the probability that the sum of used 

resources by k customers is less or equal to r, it can be denoted P(Rk ≤ r). 
This probability P(R ≤ r) is the cumulative distribution function of the real-valued 

random variable R, which will be noted F(r). 

□ 

Theorem 4: The probability density function of the quantity of occupied resources is: 

1

( ) exp( ) ( )
!

k

k
k

ρf x ρ f x
k

+∞

=

= − ⋅  (5) 

where fk(x) denotes the probability density function of the quantity of resources occupied 
by k customers. It should be noted that the density function fk(x) is obtained by the 
convolution product of s probability density functions f1(x) of the quantity of resources 
occupied by a single customer: 1 1( ) ( ).kf x f f x= ∗ ∗  Indeed, it is due to the sum of real-
valued random variable of the amount of resources occupied by each customer. 
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Proof: Theorem 4 is deduced by derivation of the distribution function in equation (4). 

□ 

2.2.2 Exponential distribution probability of single usage 
We will take the particular case of exponential distribution probability of single usage 
with parameter μR, i.e., a customer uses an amount R1 = r of resources following the 
exponential distribution (μR). An elementary property of exponential distribution 
(Asmussen, 2003; Kleinrock, 1975) is given in the following Lemma 1 that we will be 
used in below theorem. 

Lemma 1: The sum of k independent exponential random variables with the same rate 
parameters μR is following the gamma distribution probability with parameters k and μR 
which we denote Γ(k, μR). 

Theorem 5: The density probability function of the amount of occupied resources is: 
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Its cumulative distribution function is: 
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where 1
0

( , ) exp( )
x

kγ k x t t dt−= −  is the incomplete gamma function. 

Proof: By virtue of Lemma 1 and that the gamma Γ(k, μR) probability density function is 
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And the cumulative distribution function of Γ(k, μR) is ( , )( ) , 0
( 1)!

R
k
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= ≥
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 where 

γ(k, x) is the incomplete gamma function 1
0

( , ) exp( ) ,
x

kγ k x t t dt−= −  then: 
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□ 

2.3 Continuous finite resource sharing 

Now, let’s put a finite amount of available resources in the queue server. 

2.3.1 General case 
Theorem 6: The cumulative distribution function F(x) of occupied resources is: 
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where Ps is the probability that the capacity of the server in terms of number of customers 
is equal to s. The load factor ρ is ρ = λ/μ in this expression. 

Proof: We use the nomenclature πh,s used to denote the element of the stationary 
distribution of the queueing system (Gaver et al., 1984) indicating the probability that the 
system with capacity s in terms of customers is hosting h customers (whether served or 
awaiting). We denote by h = k + w the hosted customers where k is the number of served 
customers and w the number of customers awaiting service. 
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If the server’s customer capacity is s = 1, the use of resources less than r at this server is 
limited to that single customer. Then we have the probability: 
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If the server’s customer capacity is s = 2, the use of resources less than r at this server is 
limited to those two customers at most. Then we have also the probability: 
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And so on… The probability of use of less than r resources is obtained for all possible 
values of s from 1 to +∞ *( ).s ∈  So: 
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We deduce the cumulative distribution function: 
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□ 

Remark: Till now, we based the calculation on the resources Rk requested by k customers. 
It is possible that Rk > C, and in this case, all those k customers cannot be served 
simultaneously, then we are talking about a blocked system. Anyway, we can consider 
fictive occupation: an occupation of resources if the k customers’ requests were accepted 
by the server. F(x) mentions this fictive occupation, and the probability of blocking is 
Fc(C) = 1 – P(R ≤ C) = P(R > C). 

Real occupation is related to the real amount of resources occupied by the customers. It 
can be obtained by considering F(x) between x = 0 and x = C. In this case, a 
normalisation factor should be used to have F(C) = 1. 

It remains to determine the expression of Ps, the probability that the system has a 
capacity s in terms of number of customers. 

Theorem 7: The probability distribution Ps of the server capacity in terms of number of 
customers is: 

1
0

( ) ( )
C

s s
C x

P f x f t dtdx
+∞

−
=    (9) 

where fs(x) is the density probability function of the amount of resources used by s 
customers: 1 1( ) ( ),sf x f f x= ∗ ∗  s consecutive convolution product of f1(x). 

Proof: For the case of discrete resources of step 1, ( ) ( )1
1

.
C

s s
r

P P R r P R C r
=

= = ⋅ > −  In 

fact, the current use by s customers is r and if another one wants to use more than C – r 
resources, the used resources would exceed the finite capacity C. The queueing system 
cannot therefore serve more than s customers in this case, and this, for all the possible 
values of r from 1 to C and in steps of 1. 

Now, let’s consider a step of ε > 0. 1( ) ( )
C

s s
r ε

P P R r P R C r
=

= = ⋅ > −  with r = ε, 2ε, 

3ε, …, nε = C. 
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However, for any continuous random variable X, the density function is the derivate of 
the cumulative distribution function: 
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+ − =  

So, for ε infinitely small, we can write that FX(t + ε) – FX(t) = fX(t)ε + o(ε) where o(ε) is 
the little-o function of ε. 

Then we have: FX(t + ε) – FX(t) = fX(t)ε + o(ε) = P(t ≤ X ≤ t + ε)  for ε infinitely small. 
The continuous case is obtained from the discrete one when the step ε of used 

resources tends to 0+, and 
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For the random variable Rs, P(Rs = t) = fs(t)ε. 
So, we can write Ps as: 
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And by applying the definition of Riemann integral in this expression of Ps, we have: 
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□ 

2.3.2 Exponential distribution probability of single usage 
Let’s take again the particular case of exponential distribution probability of single usage 
with parameter μR. As the amount of available resources in the queue server is finite C, to 
avoid that the system is blocked eternally, we should have P(R1 > C) very small. 

Theorem 8: The server’s capacity in terms of number of customers follows the Poisson 
distribution with parameter μRC. 
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Proof: Using the expression of Ps in equation (9), we have: 
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We obtained the probability distribution of a Poisson random variable with parameter 
μRC. 

□ 

Theorem 9: The cumulative distribution function F(x) of the amount of occupied 
resources is: 
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Proof: Just to replace Fk(x) by its expression ( , )( )
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 for gamma distribution, 

and Ps by its expression from Theorem 8. 
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3 Results and discussions 

3.1 Validation of the analytical expressions 

3.1.1 Infinite resources sharing 
To validate our analytical results, we compare the results of simulations obtained with 
MATLAB and Simulink. Figure 2 shows the Simulink model we used for the 
comparison. We consider a single server queue in the process using resource block with 
an infinite amount of resources. We have carried out several scenarios, but we present 
below one case. Entities arrived in this queue according to a Poisson process of intensity 
λ = 1.2 arrivals per second. They asked to be served by a quantity of resources 
communicated to the resource acquirer block. The amount of requested resources follows 
an exponential distribution of average 1/μR = 5 resources. If the requested amount is 
available, the service starts for a duration following an exponential distribution of 
average 1/μ = 0.8 seconds. Used resources will be released once the service finished. The 
server can host simultaneously more than one entity if resources are available to serve 
them. 

Figure 2 Resource sharing Simulink model 

 

The codes to generate the entities are given below, where entity.durService and 
entity.reqResource are attributes of the created entities indicating respectively the 
required service time and the amount of requested resources. pLambda, pMu and pMuR 
are mask parameters of Entity Generator block representing respectively the arrival 
process intensity, exponential distribution parameter of service time and exponential 
distribution parameter of requested resources (see online version for colours). 

Entity generation: 
arrivalRate = pLambda; 

dt = random(‘exp’, 1/arrivalRate); 

Event action: 
avgDuration = 1/pMu; 

entity.durService = random(‘exp’, avgDuration); 

avgResource = 1/pMuR; 

entity.reqResource = random(‘exp’, avgResource); 
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In Figure 3, red curve indicates the cumulative distribution function of the amount of 
occupied resources that we have just determined the expression. Blue curve indicates the 
increasing cumulative frequency of the number of occupied resources observed on the 
simulation over a period of 5,000 seconds. We note superposition of the two curves 
indicating that the analytical expression of the cumulative distribution function that we 
found coincides well with the increasing cumulative frequency obtained during the 
simulation, and this, with all the simulations that we have carried out. The analytical 
expression could therefore be used to predict the outcome of the system, to dimension the 
amount of required resources, … 

Figure 3 Cdf amount of occupied resources – case infinite resources (see online version  
for colours) 

 

3.1.2 Finite resources sharing 
For the case of finite resources sharing, we consider a queue with a single server in 
Figure 2 but now having C = 30 resources. The customer’s arrivals form a Poisson 
process of intensity λ = 1.2 arrivals per second. The service time requested by customers 
still follows an exponential distribution with average 1/μ = 8 seconds. Customers request 
an amount of resources following an exponential distribution with average 1/μR = 5 
resources. With it, the probability that a customer will need more than 30 resources is 
around 2.5 × 10–3. 

In Figure 4, red curve is from the analytical expression of the distribution function of 
the amount of occupied resources (in the current work) and blue curve indicates the 
increasing cumulative frequency of the amount of occupied resources observed on the 
simulation for a period of 5,000 seconds. 

There is also superposition of the two curves indicating that the analytical expression 
of the distribution function coincides well with the cumulative frequency obtained during 
the simulation. All simulations that we have carried out confirm this result. So, we can 
also use the analytical expression in the current work to predict the outcome of the 
system, to dimension the amount of required resources, … 
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3.2 Impact of the arrival rate and service time on the probability of blocking 

The main objective of this paper is to find analytical model to ease the dimensioning of 
the server resource capacity. Using the validated analytical expressions, we can build the 
following results. We have utilised the exponential distribution of single usage model; 
however, the general case can be used for further practice case. 

For a fixed capacity C = 30 resources, and average usage 1/μR = 5 resources by a 
single customer, we have the impact of arrival rate, or service time in Figure 5. Note that 
the load factor ρ increases if the service time or the arrival rate increase also. 

Figure 4 Cdf amount of occupied resources – case finite resources C = 30 (see online version  
for colours) 

 

Figure 5 Cdf for fixed resources capacity (see online version for colours) 

 

In Figure 5, considering a value of amount of resources, less the load factor is, less the 
probability of certain range of resource occupation is. The system has a high probability 
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to be idle (0 occupied resource) for low value of ρ, i.e., low arrival rate, or low service 
time. 

For small value of ρ, the cdf approaches 1 at a lower amount of resources. It means 
that P(R ≤ 17), P(R ≤ 25) and P(R ≤ 30) are very similar, we do not need to deploy more 
than 17 resources in this example. We have to take an admissible threshold ε to read in 
the figure that P(R > D) ≤ ε, D is the quantity of resources to deploy. It is also applicable 
for large value of ρ and the result will be higher quantity of resources. 

From the value of cdf at C = 30 in Figure 5, we can have the probability of blocking. 
Table 1 lists the values of such probability for each ρ. It increases with the load factor. It 
means that the arrival rate, or the service time impacts on the probability of blocking of 
the system. Higher is ρ, the system has higher probability to be at a blocked state. 
Table 1 Cdf amount of occupied resources at point C for each ρ 

ρ lim ( )R
x C

F x
−→

 Blocking probability 

0.2 0.9992 0.0008 
0.4 0.9979 0.0021 
0.6 0.9958 0.0042 
0.8 0.9929 0.0071 
1 0.9892 0.0108 
1.2 0.9846 0.0154 

3.3 Impact of the server resource capacity versus blocking point 

Let’s vary the capacity C of available resources, and fix the average usage 1/μ = 5 
resources by a single customer, and a load factor ρ = 0.8. Related cumulative distribution 
function of the fictive occupation of resources (cut at the amount C of resources) are 
shown in Figure 6. 

Figure 6 Cdf by varying resources capacity (see online version for colours) 
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We have different probabilities of blocking for each C as listed in Table 2. The 
probability decreases when the capacity increases. So, to have less frequent blocked 
system, we need to add more resources. 
Table 2 Cdf amount of fictive occupied resources at point C for each C 

C lim ( )R
x C

F x
−→

 Blocking probability 

5 0.8148 0.1852 
10 0.8873 0.1127 
15 0.9404 0.0596 
20 0.9699 0.0301 
25 0.9853 0.0146 
30 0.9929 0.0071 

We found that from C = 15, the cumulative distribution functions are similar. They differ 
only on the probability of blocking that should be seen at point C of the amount of 
resources. So, we can use the graph of C = 30 to do the following dimensioning rule 
mentioned in paragraph 3.2: take an admissible threshold ε to read in the figure that P(R 
> D) ≤ ε, D is the quantity of resources to deploy. For example, we can read in Figure 6 
that, with ε = 0.05 (5% of blocking), we should have 17 resources to share. 

Thus, the best way is to use the expression on infinite resources, that is more simple. 

4 Conclusions 

From the above results and conclusion, we conclude that our analytical expressions can 
be used for predict or dimension a resources sharing modelled as a queueing system. 
They are useful to evaluate the performances such amount of occupied resources, amount 
of needed capacity, blocking probability. It is straightforward that the load system factor 
impacts the resource usage by the arrival rate or the service time but from this paper we 
can evaluate how much it effects the number of resources. The adaptation of these results 
with multi-class customers could be a future work. 
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