

 Int. J. System of Systems Engineering, Vol. 14, No. 1, 2024 83

 Copyright © 2024 Inderscience Enterprises Ltd.

Code smells and refactoring: a tertiary systematic
literature review

Abhishilpa Nandini* and Randeep Singh
Department of Computer Science and Engineering,
IEC University,
Baddi Solan HP, 173205, India
Email: abhishilpa05@gmail.com
Email: randeeppoonia@gmail.com
*Corresponding author

Amit Rathee
Department of Computer Science,
Government College,
Barota, 131301, Sonipat (HR), India
Email: amit1983_rathee@rediffmail.com

Abstract: Software systems with code smells are difficult to maintain and
evolve, and this impaired quality raises question marks on their future
sustainability. Researchers have spent decades studying refactoring and code
smells, which are key factors behind this problem. In lieu of the fact that the
literature contains a huge collection of research publications that keeps
evolving with time, dealing with code smell and refactoring activities is a
challenge. Therefore, this paper targets a tertiary systematic literature survey. It
aims at defining code smell and refactoring in general, identifying and
analysing various tools and techniques available for code smell along with
refactoring, identifying standard datasets available in the literature for the
research community, and determining actively tackled code smells. This review
paper considers 280 primary research publications collected from leading
databases. The presented observations and recommendations are crucial for
academic researchers as well as industry professionals.

Keywords: software quality; code smells; refactoring; refactoring tools;
tertiary study; systematic literature survey; review; maintenance; quality decay;
software sustainability.

Reference to this paper should be made as follows: Nandini, A., Singh, R. and
Rathee, A. (2024) ‘Code smells and refactoring: a tertiary systematic literature
review’, Int. J. System of Systems Engineering, Vol. 14, No. 1, pp.83–143.

Biographical notes: Abhishilpa Nandini is a Research Scholar in the
Department of Computer Science and Engineering, IEC University Baddi
Solan, HP, India. She received her BTech from Himachal Pradesh University
(in the year 2014) and MTech from IEC University (in year 2018). She has four
year working experience in teaching. Her current research interests are in
software engineering.

 84 A. Nandini et al.

Randeep Singh working as a Professor in the Department of Computer Science
and Engineering at IEC University, Baddi, Solan, HP. He received his MTech
from Kurukshetra University and PhD from Maharishi Markandeshwar
(Deemed to be University), Mullana, NAAC Accredited highest Grade A++
University. He is in teaching profession for more than 15+ years. He has
published about 30 research papers in international, national journals and
refereed international conferences. He is having 7 patents and 2 books. His
current research interests are in software engineering, IOT and data science.

Amit Rathee is currently an Assistant Professor at Government College, Barota,
Haryana. He had a consistent and good academic record throughout his career.
He did his PhD in the year 2020 from NIT Kurukshetra with 15 publications
and 1 copyright out of his thesis in reputed international and national journals
and conferences from IEEE, ACM, Elsevier, and Springer, etc., which are SCI
and Scopus indexed. He has 10+ years of teaching and research experience.
He is a Reviewer of Elsevier and Springer Journals. His areas of interest are
software engineering, software security, soft computing, and artificial
intelligence.

1 Introduction and motivation
In software development terminologies, software maintenance is an inevitable activity
and generally incurs 50–80% of software cost. During this process time constraints,
market pressure, negligence at the end of the developer, lack of knowledge about
appropriate design principles, etc. are some of the factors that result in the degraded
quality of the software and the reason behind the introduction of bad smells (termed as
code smells) (Tufano, 2015; Singh et al., 2019, 2022; Michele et al., 2015; Kaur and
Kaur, 2015). Fowler and Beck (2018) define code smells as the symptoms of design
flaws (due to violation of design principles) that affect the architectural design of a
software system negatively and they generally give rise to various problems such as
technical debt, enhanced maintenance cost, evolution and understandability issues. They
informally defined 22 types of code smell that denote design flaws at various levels and
such symptoms must be controlled as soon as possible to curb future negative
consequences. However, it is important to note here that efficient identification of code
smell is much more challenging as opposed to what is advertised in the literature.

Bad smells in code can be eliminated by the process termed refactoring (Fowler and
Beck, 2018; Roberts et al., 1997; Singh et al., 2020). A refactoring procedure involves
transforming the source code of a software system so as to maintain its observable
behaviour while improving quality by mitigating smells. Identifying which refactoring to
use and when to use it is a major challenge in software engineering research. The terms
‘code smell’ and ‘refactoring’ are first coined in 1999 (Fowler and Beck, 2018). Software
engineers and researchers have explored various dimensions associated with the
metaphor since its inception. Among these are identifying smells using various
techniques, exploring the relationships between smells, exploring their causes, and
exploring their effects. As a result of a large number of resources available, it is difficult
for researchers and practitioners alike to understand the status quo when it comes to tools,

 Code smells and refactoring: a tertiary systematic literature review 85

methods, and techniques for determining software smells. It is possible, through the
analysis and synthesis of available information, to not only improve the software
engineering community’s understanding of existing knowledge but also identify
challenges in the present methods and opportunities for improvement.

In literature, few researchers carries out systematic literature surveys in the recent
past (Lacerda et al., 2020; Agnihotri and Chug, 2020; Al-Shaaby et al., 2020; Sabir et al.,
2019; Singh and Kaur, 2018; Baqais and Alshayeb, 2020; Kaur and Dhiman, 2019; Kaur,
2020; Kaur et al., 2021a, 2021b; AlOmar et al., 2021; Caram et al., 2019; Abid et al.,
2020; de Paulo Sobrinho et al., 2018). However, such works either needs improvement
and/or are not useful for academician and research professional because of many reasons,
namely,

1 the small size of considered secondary studies for evaluation (Lacerda et al., 2020;
Agnihotri and Chug, 2020; Al-Shaaby et al., 2020; Sabir et al., 2019)

2 lack of in-depth analysis of the inter-relationship between code smell and refactoring
(Agnihotri and Chug, 2020)

3 inability to deal with code smell and refactoring together and exploring only single
aspect such of code smell and refactoring opportunities (Singh et al., 2018; Baqais
and Alshayeb, 2020; Kaur et al., 2021a, 2021b; AlOmar et al., 2021; Caram et al.,
2019; Kaur and Dhiman, 2019; Kaur, 2020).

de Paulo Sobrinho et al.(2018) and Abid et al. (2020) carry out an in-depth systematic
literature survey in the recent past, however, such analysis needs reinvestigation with
time due to evolving nature of code smell and refactoring research field. Based on the
study of existing literature, the following are the main motivation that guides carrying out
a systematic literature survey in this paper:

1 A smell detection system can enhance software maintenance activities that are
needed for quality assurance.

2 To facilitate software developers’ understanding of code smells, which is one of the
least known software issues.

3 Code smell and refactoring is an active research area in software engineering, so,
there is a huge collection of literature available that keeps on evolving at regular
intervals. A systematic literature survey in this case helps academicians as well as
industry professionals by consolidating the vast literature in a single place. Thus, it is
mandatory to carry out at regular intervals for an active research field.

4 To the best of the author’s knowledge based on the current literature position, it is
strongly believed that there is a need of carrying out a systematic literature survey
that is based on a large-sized dataset in order to reduce the current research gap.

The rest of this paper is organised as follows: Section 2 mentions the background of
current related works on the topic of systematic literature survey, Section 3 discusses the
considered research methodology of this paper, Section 4 elaborates on obtained results
and provides their interpretation, Section 5 summarises threats to validity of this research
and finally, Section 6 provides the conclusion and future work remarks.

 86 A. Nandini et al.

2 Background of related works
In literature, there is a huge amount of research on how refactoring and code smell affects
the performance of a software system. In spite of this, only a few systematic literature
reviews have been conducted in the field of code smell detection and refactoring.
Arass et al. (2019) proposed a System of Systems (SoS) framework for efficiently
handling big data by organising this data at different levels. However, in order to keep
this paper focused and short, this section of the paper summarises only recent literature
work related to systematic surveys instead of discussing each and every piece of paper
related to code smell and refactoring. However, it is our strong belief that such
knowledge can be easily gathered by studying the below-mentioned papers.

Lacerda et al. (2020) carry out a tertiary systematic literature survey to identify
observations and challenges in the field of code smell and refactoring. They carries out an
investigation on only 40 primary studies selected during the period 1992 to, 2018. The
investigation is carried around five research questions related to code smell and
refactoring definition, code smell detection and refactoring approaches, and the most
commonly used refactoring techniques and tools.

Agnihotri and Chug (2020) carry out a survey on the issues related to software
metrics, code smell, and refactoring by selecting a total of 68 publications between, 2001
and, 2019. The investigation is based on three criteria namely types of code smells
identified, the type of refactoring action used, and the relationship between their impacts
on software metrics.

Singh et al. (2018) carry out a systematic literature survey by selecting 238 research
papers up to 2015. They carry out an in-depth general investigation of code smells and
the role of antipatterns in reference to refactoring. However, the study mainly focuses on
refactoring with respect to code smells belonging to object-oriented software systems
only. The paper is helpful in enhancing the attentiveness of the readers related to code
smells and antipatterns.

Kaur and Dhiman (2019) carry out a survey to investigate search-based approaches
used to identify code smells from object-oriented software systems. The authors conclude
that many of the code smells are not properly formally defined, most of the used
techniques are not publically available to reproduce obtained results, commercial/industry
standard projects should be used for evaluation purposes, and threshold values used are
subjective to the expert’s knowledge.

Menshawy et al. (2021) carry out an investigation to identify different challenges
related to code smells, detection, and refactoring techniques and tools. The main
challenge identified by the authors relates to the fact that different tools need calibration
using the same benchmarked datasets along with the fact that threshold values used are
subjective in nature and often arise inconsistencies in obtained results.

Kaur et al. (2021a) carry out a literature survey on the issue of prioritising different
code smells belonging to an object-oriented software system. The survey is based on 23
papers collected till May 2020. They conclude that the literature missed out on sufficient
automated tool support for automatically prioritising code smells and literature focuses
only on a small subset of code smells.

Baqais and Alshayeb (2020) carry out a systematic literature survey by selecting
41 papers obtained after various rigorous analysis steps and snowballing techniques.

 Code smells and refactoring: a tertiary systematic literature review 87

The aim is to determine the current status and possibilities in the field of automated
refactoring. They conclude that only a few research papers discuss the automatic process
of refactoring and search-based refactoring is gaining popularity among researchers due
to reduced time and effort at the end of developers.

AlOmar et al. (2021) carry out a systematic literature survey to determine the current
situation of the behavioural preservation approach adopted during the process of
refactoring. They conclude that behavioural preservation during refactoring is an active
open research area and many of the refactoring techniques are still under-researched in
reference to behaviour preservation.

Al-Shaaby et al. (2020) carry out a systematic literature survey to identify the
feasibility of machine learning algorithms in the field of code smell detection. They
concluded that a total of 27 different code smells were targeted using 16 different
machine-learning algorithms in the literature.

Mumtaz et al. (2019) carry out a systematic literature survey to identify various bad
smells detection techniques related to the UML model. They also propose a framework
for evaluating and comparing such bad smell detection approaches. The proposed
framework works in two phases. In the first phase, different techniques are evaluated
based on factors such as investigated UML model, used detection mechanism, and set of
identified bad smells. The second phase deals with exploring experimental designs
adopted by different researchers. They conclude that class diagrams are the most
explored and validated UML models in the literature.

Caram et al. (2019) carry out another in-depth systematic literature survey to
determine the role of machine learning techniques in respect of identifying different code
smells. The study identifies:

1 various code smells that are targeted using machine learning approaches

2 a set of machine learning techniques suitable for code smell detection

3 the most suitable machine learning approach for enhancing accuracy during code
smell detection.

They conclude that different machine learning techniques used for code smell detection
are difficult to compare with ease because of heterogeneity in used datasets and presented
results. The authors further recommend empirical investigation on standard datasets in
order to improve the reliability and replicability of the studies. Similarly, the authors in
(Azeem et al., 2019) give an overview and provides possible usage of machine learning
techniques for code smell identification by carrying out a systematic literature survey on
15 papers selected from 2000 to 2017 duration. They conclude that machine learning
techniques require ample performance improvements when applied to code smell
detection.

The authors in (Sobrinho, 2018) carry out an extensive in-depth extensive systematic
literature survey on bad smells from 1990 to 2017 period. They carryout investigation on
five aspects (5 W’s), namely

1 which- of the bad smells are studied more than others and the nature of inter-
relatedness between them (if any)

2 when- a perspective of different researchers towards various bad smells with
reference to time

 88 A. Nandini et al.

3 what- techniques and experimental setups used in literature for bad smells

4 who- the list of researchers who actively and regularly worked on the problem of
code bad smells

5 where-deals with the geographical location of the researcher and/or community
engaged with bad smell.

Pereira et al. (2021) carryout a systematic literature survey on 102 publications selected
during 2002–2019 that aims twofold. Firstly, they identified the main tools and
techniques presented for code smell. Secondly, visual support to handle code smells is
analysed. They conclude that literature has diversity in terms of detected code smells and
used programming languages for evaluation; subjectivity exists for code smells in terms
of their definition and detection approaches, and lack of visual techniques for validation
and oracles to facilitate replication of the studies.

AbuHassan et al. (2021) carry out another systematic literature survey on 145 primary
studies. This study aims at analysing existing code smell detection techniques in terms of
used metrics, their implementation style, and used validation approaches.

Mariani and Vergilio (2017) carry out a systematic literature survey using 71 primary
studies aiming at presenting search-based refactoring approaches proposed in literature
along with identifying common characteristics and research trends.

Dwivedi and Satapathy (2020) utilised software metrics to recover reusable
documents using neural network models and mining pattern retrieval approaches.

Kaur and Sikka (2022) proposed an approach to create enriched MDG (Module
Dependency Graph) by using various weighted code dependencies.

Sehgal et al. (2022) carried out an investigation on 20 projects taken from a public
repository (GitHub) to study refactoring using JDeodorant. They conclude that applying
one kind of refactoring sometimes results in the introduction of another kind of code
smell.

3 Research methodology
The systematic literature review process consists of various key steps that are carried out
sequentially, namely constructing goals and identifying Research Questions (RQs),
defining which databases will be used during searching, collecting data along with
information used for the inclusion and exclusion of the data, and analysing the data along
with providing conclusion of the study.

Figure 1 diagrammatically represents these steps carried out during the systematic
literature review process. This systematic literature review seeks to identify the gaps left
by prior studies. This section of the paper gives details about these key steps. The
methodology adopted in this paper is inspired by an evidence-based systematic literature
review reporting approach known as Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) (Liberati, 2009). PRISMA consists of 27 items checklist
that helps in planning carefully and consists of four main phases as shown in Figure 2
that together ensures transparent and complete reporting of systematic literature review.
Research papers that fulfil the inclusion criteria of PRISMA are only considered in this
systematic literature review. The total number of research papers at different stages of

 Code smells and refactoring: a tertiary systematic literature review 89

analysis is also depicted in Figure 2. Further, using systematic and explicit methods,
this systematic review inspects clearly defined questions, selecting, critically evaluating,
and collecting data from the studies included in their analysis.

Figure 1 Systematic literature review steps

Setting Goals and
Identifying
Research

Questions (RQ’s)

Identifying
Sources of

Information

Determining
Vital Search
Keywords

Determining
Inclusion and

Exclusion
Criteria

Quality
Assessment

and
Interpretation

Figure 2 Information flow through different phases of PRISMA for the current study

Total research articles identified through:

Springer (290), Science Direct (326),
ACM (273), IEEE Xplore (323), Taylor &
Francis (165), Wiley (205)

Additional articles identified
from other sources (google

scholar) (43)

Total articles after removal of duplicate articles (1445)

Total articles screened based
on title and abstract (719)

Total articles excluded
based on initial screening

Total full-text articles
assessed for eligibility (285)

Total full- text articles
excluded (434)
Reasons: not related to
software domain, language
other than English, results
not accurately presented.

Total articles selected for
qualitative analysis (165)

Total articles selected for
quantitative analysis (meta-

analysis) (120)

Identification

Screening

Eligibility

Included

3.1 Setting goals and identifying research questions
The systematic literature review carried out in this paper related to the topics of code
smell and refactoring is designed to uncover the existing vast literature already available
on various aspects, namely refactoring, code smells, datasets used and/or available,
object-oriented design and refactoring, detection of code smells or antipatterns, as well as
analysing different techniques that are used to detect code smells. To conduct a
systematic review in this paper, the following research questions are framed and
answered in this paper in order to elaborate literature analysis:

 90 A. Nandini et al.

RQ1: What are the different techniques adopted by researchers for identifying code
smells?

The goal is to present a comprehensive list of the main code smell detection techniques.
This list enables researchers and practitioners to select the one that is most appropriate for
their daily activities while highlighting those that need to be investigated further in the
future.

RQ2: What are different refactoring techniques used by researchers to mitigate code
smells?

The goal is to present a comprehensive list of the main refactoring techniques. This list
enables researchers and practitioners to select the one that is most appropriate for their
daily activities while highlighting those that need to be investigated further in the future.

RQ3: What are various tools proposed to handle code smell and refactoring support?

The goal is to identify semi-/fully- automated tools and/or frameworks that can provide
support during code smell and refactoring.

RQ4: What types of code smells are mainly tackled in literature?

The aim is to compare different techniques and to identify bad smells that affect most
during the degradation of software quality.

RQ5: What are different standard code smell datasets available?

The aim is to identify any standard dataset that can promote reproducibility and/or
validation in future research.

RQ6: Which software systems are mainly used during the empirical evaluation?

The aim is to identify a set of software systems that are mostly used by the majority of
researchers for the empirical evaluation of the proposed approach. This will help the
researchers in standardising their future techniques related to code smell and refactoring.

3.2 Identifying sources of information
Systematic reviews must have a broader perspective in order to be implemented. To
begin the systematic literature review, suitable databases must be selected that can
produce appropriate results based on pertinent keywords. The considered databases in
this paper are Springer,1 ScienceDirect,2 ACM Digital Library,3 IEEE Xplore,4 Wiley
Online Library,5 Google Scholar,6 and Taylor & Francis.7 The reason behind considering
these digital databases is that they all together cover leading journals and conferences
publication related to software engineering, and the evolution, development, quality, and
maintenance of a software system. On these digital platforms, the following types of
documents are considered for review:

a review papers

b conference proceedings

 Code smells and refactoring: a tertiary systematic literature review 91

c published technical reports

d thesis

e bookchapters.

3.3 Vital keywords for search
Keywords play an important role while searching for research papers. They help in
reducing efforts devoted by a researcher along with saving considerable time devoted
during research paper’s searching by restricting output produced. Therefore, in searching
the databases, we looked for the specific set of keywords in all primary and
supplementary databases. Below is a list of the keywords used across the various
database sources including Code Smell, Refactoring, Software Maintenance,
Antipatterns, Machine Learning, Software Quality Improvement, Object Oriented
Design, Meta-Heuristic, and Software Metrics. Further, different logical operators like
AND, OR, and NOT are applied to these different independent keywords in order to
further enhance and explore search results. The search string used to retrieve various
research papers from different digital database platforms is as follows:

(Software Refactoring OR Code Refactoring OR Smell Refactoring) OR (Bad
Smell OR Code Smell) OR (Anti-pattern OR Design Patterns OR Object
Oriented Design) OR (Machine Learning OR Meta Heuristic) AND (Software
Metrics OR Metric Suites OR Maintainability OR Software Maintenance OR
Software Quality) AND (Tool OR Approach OR Method OR Technique OR
Practice OR Problem OR Survey OR Systematic Literature Survey OR Review)

3.4 Inclusion and exclusion criteria
In this paper, we applied three levels of exclusion criteria to eliminate unrelated papers
from the search and analysis criteria adopted. First of all, only papers that are related to
computer science and engineering field are included in the search. This is because a few
keywords like ‘pattern’ is multidisciplinary and are commonly found in other branches
like biomechanics, medical, nanotechnology, material science, etc. Further, in order to
have easy understandability, the papers written in only the English language are
considered for evaluation. Moreover, we reviewed research papers available in digital
libraries from January 2002 to January 2022 in order to have an extensive literature
survey. The papers that cover and explain at least one of the research questions
considered here are included. Moreover, to make the search stable and more accurate, we
discard duplicate research papers from different libraries as part of PRISMA guidelines
(indicated in Figure 2). It is also taken into account that the number of subsequent
research papers published by the same authors with some changes and/or extensions is
considered for evaluation. Likewise, a paper that has been published in a premier journal
after being presented as part of conference proceedings is also considered. The
considered exclusion criteria in this paper are

 92 A. Nandini et al.

1 studies not directly related to code smell and refactoring

2 papers not fully explored such as short papers, editorial papers, and poster
presentations

3 papers presented and published outside the considered time scale.

3.5 Research quality evaluation approach

Once the inclusion-exclusion criteria are set, the quality of the systematic literature
survey is assessed. In order to evaluate the quality of considered research papers, an
expert team of 10 professionals is constituted. The expert team is comprised of domain
experts at the professor level, research scholars, and post-graduate level students.
Moreover, standard guidelines as proposed by Kitchenham et al.(2009) and Brereton
et al. (2007) are followed in order to carry out a quality-centric systematic literature
survey. During a systematic literature survey, in the first instance, the expert team carries
out scrutiny of downloaded research papers’ using a three-stage approach. In the first
stage, all research papers are filtered based on the relevancy and appropriateness of the
title with the domain considered for evaluation in this paper. During this process, domain
experts help the research scholars and students to carry out quality-centric filtering of
papers. This stage results in filtering about 60% of total downloaded papers and the
remaining 40% are further considered for evaluation in the next phase. During the second
phase, the abstract of all the remaining papers is carefully examined in order to further
discard the irrelevant papers. This phase results in 17% of total downloaded papers being
considered for evaluation. Finally, in the third stage, the remaining 17% of research
papers are fully explored in order to carry out a systematic literature survey.

Table 1 summarises papers collected after rigorous analysis of the three-step process
divided according to considered keywords and finally, these papers are considered for
carrying out the formulated investigation (in terms of different RQs) in this paper.
Figure 3 depicts a detailed description of the share of different publications by their
venue considered as primary studies to carry out a systematic literature survey in this
paper. A detailed description of all these considered primary studies is provided in
Appendix1 in this paper and provided details include the unique number assigned to the
paper (ID), corresponding title (TITLE), authors’ list (AUTHORS), publication year
(YEAR), paper type (Journal/Conference), and source of publication (SOURCE).
Figure 4 depicts the year-wise distribution of different research papers considered to
carry out a systematic literature survey in this paper.

4 Results and discussions
This section of the paper gives details about obtained results acquired after systematically
analysing selected key research papers. As a researcher, it is important to know key
Journals and/or Conferences related to the field of code smell and refactoring.

 Code smells and refactoring: a tertiary systematic literature review 93

Table 1 Summary of research papers considered for systematic literature survey

S. No. E-resource library Search keyword
Search
duration

No. of
research
papers

Research
category

1 Code Smell 43
2 Refactoring 26
3 Software Quality

Improvement and
Refactoring

10

4 Antipatterns 9
5 Machine Learning 14
6 Software

Maintenance and
Refactoring

17

7 Meta Heuristics and
CodeSmell

13

8 Software Metric and
Code Smell

24

9 Object-Oriented
Design and
Refactoring

8

10 Code Smell and
Refactoring

55

11 Code Smell and
Machine Learning

17

12 Code Smell and
Refactoring and
Machine Learning

13

13 Software Quality
and Code Smell

24

14

Springer,
ScienceDirect,
ACM, IEEE Xplore,
Taylor and Francis,
Wiley Online Library,
Google
Scholar

Software
Maintenance and
Refactoring

January200
2 to
January202
2

7

Research
Papers, Review
Papers, Book
Chapters,
Conferences

Total Research Papers Considered for Systematic Literature
Survey

280

Figure5provides details of Top-5 Journals that are actively involved with publishing
research work related to code smell and refactoring. IEEE Transaction on Software
Engineering (abbreviated IEEE Trans. Softw. Eng.), Journal of Systems and Software
(abbreviated J. Syst. Softw.), Information and Software Technology (abbreviated Inf.
Softw. Technol.), Journal of Software: Evolution and Process (abbreviated J. Softw.:
Evol. Process), and Empirical Software Engineering (abbreviated Empir. Softw. Eng.) are
among Top-5 leading journal’s list selected by researchers in past. Similarly, Figure 6
shows details about reputed conferences that are regularly engaged with handling code
smell and refactoring problems. The reputed conferences/workshops in the field of code
smell and refactoring include ICSM (IEEE International Conference on Software

 94 A. Nandini et al.

Maintenance), ICSE (ACM/IEEE International Conference on Software Engineering),
CSMR (IEEE European Conference on Software Maintenance and Reengineering), ICPC
(IEEE/ACM International Conference on Program Comprehension), ESEM (ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement), WRT
(ACMWorkshop on Refactoring Tools), and SANER (IEEE International Conference on
Software Analysis, Evolution, and Reengineering). It is our strong belief that this
knowledge is helpful in systematically guiding different researchers working in the
direction of code smell and refactoring. Moreover, a thorough discussion and
interpretation of acquired results are also provided in this section. The acquired results
are presented as the answers to different research questions formulated earlier in this
paper.

Figure 3 Different types of publications selected to perform systematic literature survey
(see online version for colours)

Figure 4 Year-wise distribution of different research papers considered for evaluation (see online
version for colours)

 Code smells and refactoring: a tertiary systematic literature review 95

Figure 5 Top-5 journals related to code smell and refactoring (see online version for colours)

Figure 6 Leading conferences/Workshops engaged with code smell and refactoring (see online
version for colours)

RQ1:What are different techniques adopted by researchers for identifying code smells?

A code smell is an active research area considered by various researchers, and different
techniques/approaches are proposed and/or tested by researchers in the literature. Table 2
depicts the classification of different code smell detection techniques adopted by different
researchers in the literature. The third column in the table depicts the total number of
reference papers available that utilise the corresponding code smell detection technique
mentioned in column two. Finally, the last column gives references to different
programming languages that are used by different researchers to validate their approaches
using the technique depicted in column two. Typically, Metric-Based (MB) approaches
are used by researchers in the literature that utilises different source code metrics to
capture different types of code smells based on the unique characteristics measured using

 96 A. Nandini et al.

code metrics. This method generally involves utilising various third-party tools that
convert the underlying source code of the software into an Abstract Syntax Tree (AST)
representation. This AST is later utilised to measure different characteristics of a code
smell based using a code metric and a threshold value. As clearly noticeable from
Table 2,the MB approach is widely and openly adopted by different researchers to
discover different types of code smells. The machine learning based (MLB) approaches
typically involves preparing a mathematical model that represents the code smell
detection problem followed by the application of a supervised or unsupervised machine
learning algorithm on the prepared mathematical model to identify the underlying set of
code smells. Preparing the mathematical model step is dependent on identifying two
types of variables for the studied system, namely, dependent and independent variables.
The machine-learning algorithm explores various independent variables to predict the
corresponding value of the dependent variable of the system. Moreover, the MLB
approach’s success is highly dependent on the availability of a quality large amount of
data, which is derived from the underlying software system and is used to train the
prepared mathematical model. The MLB approach is a recent trend that is gaining
popularity among the research community and is clearly observed in Table 2. The change
history based (CHB) approach is dependent on evolutionary information available for a
software system that denotes how software undergoes modifications over a period of
time. The evolutionary information is utilised using association-based rule mining to
identify various sets of code smells present in a software system. In literature, this field is
least elaborated on as compared to the rest of the other alternatives as depicted in Table 2.
The Heuristics Based (HB) code smell detection techniques are based on formulating
heuristics to target a particular code smell. The heuristics include the use of different
code metrics and combining them under special detection rules which are specific to a
particular type of code smell (here, rules are generally in the form of threshold values that
are computed through empirical means). Sharma and Spinellis, 2018) are of the opinion
that not every code smell can be detected alone by using code metrics. However, they are
of the strong opinion that different metrics need to be combined under special
circumstances (termed heuristics) in order to improve the detection accuracy of the code
smell detection approach. Various approaches in the optimisation based (OB) category
focus on the use of various optimisation algorithms to identify a set of code smells.
In literature, various optimisation algorithms belong to the categories of genetic
algorithm (GA), Harmony Search (HS), particle swarm optimisation (PSO), artificial
bees colony (ABC), ant colony optimisation (ACO), simulated annealing (SA), etc.
Moreover, these optimisation algorithms are applied to two categories of data in literature
namely, computed software metrics, and/or existing code smells examples belonging to a
software system.

RQ2: What are different refactoring techniques used by researchers to mitigate code
smells?

The process of refactoring involves changing the design of a system without changing its
behaviour and is aimed at improving the underlying quality of the software product. In
the field of refactoring, significant work has emerged since 2001 with regard to code
smells. It involves reorganising variables, classes, and methods of software so that it
enables easy future adaptations and comprehensions. In literature, refactoring is applied
to two types of software artefacts namely model and source code. Most of the refactoring
is applied and proposed for source code artefacts (85.76%) and only 14.24% of the

 Code smells and refactoring: a tertiary systematic literature review 97

selected studies target model-based refactoring. Out of various refactoring operations
applied to source code artefacts, mainly targets object-oriented programming languages
(mainly Java, maybe due to its wide popularity and major market share in software
development). Programming languages like C++ (Tsantalisand Chatzigeorgiou, 2009),
Fortran, AspectJ (Noguera et al., 2012; Mongiovi et al., 2014), Erlang (Horpácsi et al.,
2017), Smalltalk (Gómez, 2012) and XML (Noguera et al., 2012) are targeted by only a
few researchers in the past decade. Model-based refactoring is primarily proposed for
UML and Alloy specification language is targeted only (Massoni et al., 2008). There are
three most common criteria adopted to find various refactoring capabilities in a software
system, namely

1 quality metrics-based

2 pre-conditions-based

3 clustering-based.

Quality metrics-based refactoring opportunities aim at applying various cohesion,
distance (similarity) among software elements, and coupling code metrics. Code smells
such as feature envy and code clones utilise pre-conditions-based refactoring
opportunities that involve testing a condition before applying the corresponding
refactoring. Finally, clustering-based refactoring opportunities are based on grouping
different code elements such as lines, methods, fields, classes, etc. in order to identify
extract, and/or move refactoring actions.

Table 2 Classification of code smell detection methods/techniques

S. no
Code smell detection
method

No. of papers
(percentage) Languages/artefacts references

1 Metric-Based (MB) 38 (8.68%) Java (Vidal et al., 2016), C++ (Marinescu,
2005, September), UML Diagrams (Fourati
et al., 2011), Aspect-oriented Systems
(Macia Bertran et al., 2011), JavaScript
(Vidal et al., 2015), C (Fenske et al., 2015)

2 Machine learning based
(MLB)

22 (5.02%) Java (Fu and Shen, 2015)

3 Change History Based
(CHB)

9 (2.05%) Java (Palomba et al., 2014), C (Rama, 2010,
February), C++ (Abebe et al., 2011), UML
Models (Arcelli, 2015), REST APIs (Palma
et al., 2014)

4 Rule/Heuristics Based
(HB)

29 (6.62%) C# (Sharmaand Spinellis, 2018)

5 Optimisation-Based (OB) 12 (2.74%) Java (Ghannem, 2016), XML (Ouni et al.,
2015)

Almost all of the refactoring that is described in the literature mirrors the definitions
provided by Fowler and Beck (2018). However, extract and move refactoring are the
most cited/used refactoring techniques in literature and it is evident from Figure 7which
depicts the top 10 refactoring techniques targeted by different researchers. In the software
industry, these techniques are likely to play a significant role due to their high interest.

 98 A. Nandini et al.

Developers often find it difficult to know what kind of refactoring technique must be
applied in the underlying software system in order to fix a problem by identifying
refactoring opportunities (Marianiand Vergilio, 2017). There is no one-to-one
relationship between identified code smells and the corresponding refactoring applied in
order to mitigate code smells. In general, it is possible to use more than one refactoring
technique on the same smell. Thus, refactoring is an open research area that needs further
investigation for the benefit of researchers and industries.

Figure 7 Top-10 targeted refactoring techniques in literature (see online version for colours)

RQ3:What are various tools proposed to handle code smell and refactoring support?

Tool support is always handy for developers and research experts and helps in reducing
maintenance efforts, cost, devoted time, and chances of manual errors. This RQ aims at
investigating which semi-/automatic tool support is available to perform code smell
detection and mitigation using refactoring techniques. Moreover, we also investigated the
platforms/languages for which different tools are proposed by various researchers in the
literature.

There are different automated/semi-automated tools available in the literature that can
be used to reveal code smells and perform corresponding refactoring operations. All these
tools differ from each other in several respects including language supported, number and
type of code smells supported, and no/partial/full refactoring support. Table 3
summarises different tools proposed by various researchers in the literature that are
capable of code smell detection and/or refactoring. The tool’s summary includes
information namely its name, availability nature of the tool, language supported,
refactoring capability, download link/reference, and list of code smell that are supported
by the corresponding tool. Out of these different tools, CCFinder (Hermans et al., 2016;
Lacerda et al., 2020; Liu et al.,2015; Gupta and Suri, 2018; Geiger et al., 2006; Bavota
et al., 2012; Liu et al., 2018), DÉCOR (Pecorelli et al., 2019; De Stefano et al., 2020;
Fontana et al., 2011; Zhang et al., 2022; Kaur and Dhiman, 2019; Zhu et al., 2018;
Boutaib et al., 2021; Zhang et al., 2022; Santos and Petronilo, 2022), inCode (Hamid
et al., 2013; Saranya et al., 2018; Kaur and Dhiman, 2019; Fontana et al., 2015;
Yamashita and Moonen, 2013), PMD (Rasool and Arshad, 2015; Paiva et al., 2017; Rani

 Code smells and refactoring: a tertiary systematic literature review 99

and Chhabra, 2017; Fontana et al., 2012; Lenhard et al., 2017; Elkhail and Cerny, 2019;
Soomlek et al., 2021; Rahad et al., 2021) and InFusion (Masmali and Badreddin, 2021;
Cairo et al., 2018; Caram et al., 2019; Paiva et al., 2017; Fontana et al., 2012; Fernandes
et al., 2016; Mannan et al., 2016) are the most quoted and cited tools available in the
literature. Different detection tools for code smells use metrics or ad-hoc rules for
identifying patterns in the underlying source code of a software system, at the price of
some loss in accuracy. Moreover, according to information available in the literature,
authors of these tools have conducted their tool’s experimentation/validation on a
generally distinct set of datasets. Thus, in the case of the unavailability of these tools,
comparisons between their results cannot be made in general. Hence, the accuracy of
different code smell tools is a key and open research question for researchers.

RQ4: What types of code smells are mainly tackled in literature?

Categorising smells based on possible relationships between them is an interesting
approach to understanding smells and it aims at improving understandability. In
literature, different types of code smell and their different taxonomies are proposed by
(Wake, 2004; Becker et al., 1999; Mantyla et al., 2003; Kerievsky, 2005; Brown, 1998).
Brown et al.(1998) propose 40 antipatterns for 7 types of common problems (code
smells) that result in negative consequences in the future. These code smells are a blob,
poltergeist, lava flow, cut and paste programming, functional decomposition, Swiss army
knife, and spaghetti code. The blob problem is a situation where one object is given too
many responsibilities while other objects are doing only simple activities in the system.
Poltergeist is a situation where a class is having very small functionality and a short life
cycle with respect to the whole software system. The lava flow is related to the design
that has been frozen with dead code and forgotten information. Cut and paste
programming is the coding style where the developers extensively use copies of a code
fragment. Functional decomposition is related to the object-oriented programming style
and is a situation where experts break the responsibilities of a single class into the form of
several classes. Fowler and Beck (2018) propose 26 types of code smells, namely
divergent change, long method, long parameter list, duplicated code, large class, data
clumps, shotgun surgery, feature envy, switch statements, primitive obsession,
speculative generality, lazy class, parallel inheritance hierarchy, middle man, temporary
field, message chains, data class, an alternative class with different interfaces,
inappropriate intimacy, incomplete class library, mysterious names, comments, global
data, refused bequest, lazy element, insider trading, and mutable data. The author in
(Wake, 2004) proposes 8 different code smells that directly affect the understandability
and maintainability of the software, namely magic numbers, type embedded in the name,
inconsistent names, null check, uncommunicative names, dead code, special case, and
complicated Boolean expression. Further, they categorise different code smells as

1 smells within classes

2 smells between classes based on the number of classes involved in the degraded
quality of the software system.

 100 A. Nandini et al.

Table 3 Code smells detection and refactoring tools

S.
no. Tool name Availability

Language
supports Refactoring Tool link/reference

Supported code
smells

1 Stench
Blossom

Open
Source
(Eclipse
Plug-in)

Java No http://multiview.cs.
pdx.edu/refactoring/
smells/OR
https://github.com/
DeveloperLiberation
Front/refactoring tools

Feature Envy, Long
Method, Data
Clumps, Large
Class

2 Weka Nose Open
Source

Java No https://github.com/
uazadi/WekaNose

Data Class, Feature
Envy, and God
Class using
Machine Learning
Algorithms

3 SACSEA – Java No Peters and Zaidman
(2012)

God Class, Feature
Envy, Data Class,
Message Chain
Class, Long
Parameter List

4 LBS
Detectors

– Java No Abebe et al.(2011) Produces lexicon
bad smells

5 JCode
Canine

– Java No Maruyamaand
Tokoda (2008)

Duplicated Code,
Data Class, Switch
Statement, and
Feature Envy

6 BSDT – Java No Danphitsanuphanand
Suwantada (2012)

Large Class, Data
Class, Lazy Class,
Parallel Inheritance
Hierarchies

7 JDEv – Java No Lakshmanan
and Manikandan
(2014)

Duplicated Code,
Long Method,
Large Class, Long
Parameter List

8 iplasma Research
Prototype

Java,
C++

No http://loose.cs.upt.
ro/index.php?
n = Main. IPlasma

God class, Data
class, Refused
parent bequest,
Feature envy

9 FindBug – Java No Mittal et al.(2011) Error Collection in
source code

10 PMD Open
Source

Java No https://pmd.github.io/ Identify primary
problems in code
like Dead Code,
God Class, Long
Parameter List, etc.

11 JDeodorant Open
Source
(Eclipse
Plug-in)

Java Yes https://github.com/
tsantalis/JDeodorant

God Class, Type
Check, Feature
Envy, Long Method

 Code smells and refactoring: a tertiary systematic literature review 101

Table 3 Code smells detection and refactoring tools (continued)

S.
no. Tool name Availability

Language
supports Refactoring Tool link/reference

Supported code
smells

12 DÉCOR Commercial Java No http://www.ptidej.net/
research/designsmells/

Refused Bequest,
Large Class, Lazy
Class, Long
Parameter List,
Long Method,
Feature envy,
Message Chains,
Shotgun Surgery,
Duplicated Code,
Data Class,
Divergent change,
and Speculative
Generality

13 PRODEOOS Research
Prototype

Java,
C++

No

14 InFusion Commercial Java, C,
C++

No http://www.
intooitus.com/
inFusion.html

Duplicated Code,
Feature Envy, God
Class

15 InCode Commercial Java, C,
C++

No https://marketplace.
eclipse.org/
content/incode-
helium

Large Class,
Refused Bequest,
Data Clumps,
Shotgun Surgery,
Duplicated Code,
Divergent Change,
Feature Envy,
Refused Bequest,
Long Method

16 CheckStyle Open
Source

Java No https://github.com/
checkstyle

Long Method,
Large Class, Long
Parameter List,
Duplicated Code

17 JSNOSE Open
Source

Java
Script

No https://github.com/
crystalwm/jsnose

Switch Statement,
Dead Code,
Excessive Global
Variables, Message
Chain, Long
Method, Empty
Catch

18 CCFinder Open
Source

Java, VB,
C#,

C/C++,
COBOL

No http://www.
ccfinder.net/
index.html

Duplicated Code

 102 A. Nandini et al.

Mantyla et al. (2003) provide a taxonomy and classify different code smells proposed by
Becker et al. (2018) into the following categories:

1 bloaters

2 object-oriented abusers

3 change preventers

4 couplers

5 dispensable.

Table 4 explains this taxonomy in detail. Kerievsky (2005) proposes five types of new
code smells that affect quality, namely, oddball solution, solution sprawl, conditional
complexity, combinatorial explosion, and indecent exposure. An oddball solution is a
situation where two or more solutions are provided in the source code for the same given
problem. Solution sprawl is a situation where changes to one part of the system cause
progressive changes to several other parts of the software. Conditional complexity is
associated with the exaggerated use of conditional structures within the software system.
Combinatorial explosion is another situation where the same functionality is being called
many times through code snippets but with different types of objects involved in a
software system. Indecent exposure is related to the increased complexity of the system
and is identified with the high degree of access made by clients to various classes of the
software system.

Table 4 Code smells taxonomy by Mantyla (2003)

S. no.
Code smell
taxonomy Explanation Code smells examples

1 Bloaters Affects understandability as well as
modifiability and is generally
identified as large-sized software
elements which are difficult to handle

Data clamps, large class, long
parameter list, long method,
primitive obsession

2 Object-
oriented
Abusers

Situations where object-oriented
design principles as proposed in Martin
(2005) are compromised by providing
workaround solutions in the code

Switch statement, parallel
inheritance hierarchies, refused
bequest, temporary field, classes
with different interfaces

3 Change
preventers

Software elements with a complicated
structure that prevents a future
modification

Shotgun surgery, divergent
change

4 Couplers Software elements with a high degree
of interdependencies with each other

Inappropriate intimacy and
feature envy

5 Dispensable Smells that should not be present and,
therefore, can be removed

Lazy class, speculative
generality, duplicated code, data
class

After discussing various code smells and their classification, it is necessary to determine
key code smells that are actively targeted in literature by different researchers during
their study. Based on the literature survey, it is determined that code smells as suggested
by authors in Fowler and Beck (2018) are mainly targeted whereas the rest of the other

 Code smells and refactoring: a tertiary systematic literature review 103

code smells are given very little attention. Figure 8 shows Top-15 code smells that are
majorly targeted in the literature using pie chart representation.

Figure 8 List of top-15 code smells that are actively targeted in literature (see online version
for colours)

RQ5: What are different standard code smell datasets available?

Based on the literature review, we found that the literature lacks large datasets of code
smell detection and refactoring. Thus, hindering the experimental validation of the
approaches and/or tools available in the literature. However, only a few of the researchers
tried in this direction to fill this research gap by providing a standard set of datasets for
code smells available for experimental purposes. Guggulothu (2020) provided a standard
multilabel dataset8 that provides method-level code smells namely long method and
feature envy and it contains tested code smell information of 74 software systems. The
dataset is carefully prepared and tested using machine learning approaches. Further, the
authors in Arcelli Fontana (2016) provided a dataset9 of four code smells namely data
class, feature envy, god class, and long method. This dataset is divided into two
categories, namely class- and method-level. The proposed dataset is tested using 32
different machine learning classifiers including J48, Naïve Bayes, JRip, and Random
Forest.

RQ6: Which software systems are mainly used during the empirical evaluation?

This research question aims to identify various software systems that are used by the
majority of researchers for their study. Moreover, it guides and provides symmetry to
future researchers during the empirical evaluation of their proposed code smell detection
and mitigation approach. A number of experiments were conducted on different subject
systems for the purpose of detecting code smells, and Table 5 depicts such Top-10

 104 A. Nandini et al.

subject systems that are most commonly used by different researchers in past for their
evaluation and testing purposes.

Table 5 Top-10 subject systems used most commonly for empirical evaluation purposes

S.
no

Subject
system name

No. of
references Description Link

1 JUnit 15 A testing framework for Java
Language

https://github.com/
junit-team

2 JHotDraw 18 A two-dimensional graphics
framework

https://sourceforge.net/
projects/jhotdraw/

3 WEKA 10 A data mining tool that
provides machine learning
capabilities

https://github.com/
Waikato/weka-trunk

4 Azureus 8 A BitTorrent client capable of
transferring data via the
BitTorrent protocol

http://qualitascorpus.com/docs/
catalogue/20130901/corpus_
catalogue.html

5 Apache
Tomcat

21 An open-source
implementation ofthe Jakarta
EE platform

https://tomcat.apache.org/

6 ArgoUML 23 An open-source UML
modelling tool

https://github.com/argouml-
tigris-org/argouml

7 Eclipse 6 An IDE used for computer
programming

https://github.com/eclipse

8 Xerces 15 An XML parser https://xerces.apache.org/
mirrors.cgi

9 Apache Ant 19 A Java library and command-
line tool that helps build
software

https://ant.apache.org/
srcdownload.cgi

10 JEdit 22 A mature programmer’s text
editor

https://github.com/albfan/jEdit

The majority of authors detected code smells in Java-based open-source software
applications and projects. Few of them have used in-house small software systems for
experimental evaluation. Moreover, only four references (Sahin et al., 2014; Marinescu,
2005; Janckeand Speicher, 2010; Munro, 2005) utilised commercial and industry-
standard software systems for their experimental evaluation. The datasets listed in
Table 5cannot be found commonly in any of the studied publications that carry out their
experimentation on exactly the same system as the one mentioned in Table 5. However,
for evaluating various code smell and/or refactoring techniques and tools, it is necessary
to have common case studies so as to generalise their published results.

5 Threats to validity

An attempt to mitigate some of the threats to validity is discussed in this section of the
paper. Firstly, the search string is the key to carrying out a systematic literature survey,
therefore, we used different synonyms of search strings so as to include every possible

 Code smells and refactoring: a tertiary systematic literature review 105

relevant literature in this study. Secondly, the choice of considered electronic databases is
another key factor in the accuracy of the results presented in this paper. In order to reduce
this threat, we carry out a snowballing process to find more studies that may be relevant.
We then review references in the selected papers to identify other studies that may be
relevant that were not initially included in our search. Thirdly, the selection of considered
primary studies is another threat to the validity of the results presented in this paper.
Therefore, in order to reduce any biasing during inclusion and exclusion criteria, different
studies are reviewed multiple times by different experienced authors who have well-
knowledge in the field of software engineering, code smell, and refactoring. Lastly, the
language choice of different considered primary studies is another threat to validity.
However, studies written in the English language are preferred in this study in order to
cover a larger audience due to the wider popularity of this language.

6 Conclusion and future work

As a tertiary systematic literature study carried out in this paper, we focused on
refactoring and code smells. Code smells and refactoring challenges and observations
were systematically evaluated by systematically analysing 280 primary studies selected
between January 2002 to January 2022 after rigorous analysis. Six RQs are formulated
and answered in this paper that reflect the main challenges and observations needed
necessarily for the research community engaged with code smell and refactoring.
Our study revealed that both code smell and refactoring are directly affected by the
same quality attributes and they have a direct relationship with the functionality,
understandability, complexity, and maintainability of the software system. As a part of
the investigation, we identified the top 5 journals (Figure 5) that represent the quality-
centric source for research knowledge and future publications. Similarly, leading
conferences and workshops are also identified (Figure 6) for the same purpose. Further, a
taxonomy for techniques available in the literature for code smell identification is also
presented. Metric-based and Heuristic-based approaches dominate the literature. Extract
method and move field/method are among the top refactoring techniques recommended
in the literature. Furthermore, state-of-art code smell detection and refactoring tools are
identified in this paper. A taxonomy of code smells along with a list of top-15 code
smells are also presented in this paper. We identified that feature envy and god class are
among the top code smells that are mostly studied in the literature. Finally, a set of
datasets available in the literature are identified along with a list of top-10 software
systems is also presented that are mostly used in literature for validating proposed
approaches. We still have several open questions about the relationship between code
smell and refactoring. For instance, the choice of a refactoring action for a specific code
smell is still an open issue and needs further investigation. It is hoped that this study can
inspire researchers to investigate a deeper level of mitigation of code smells and the tools
used to mitigate them as well as evaluate their impact on quality. Research in the future
should address a number of open issues identified in our analysis. The first open issue is
related to code smell nomenclature and a more effective approach to deal with code smell
identification and refactoring. Secondly, researchers should explore opportunities related
to code smell detection and refactoring tool support. Thirdly, developers’ knowledge
should be explored further to minimise refactoring efforts. Fourthly, the relationship
between different applied refactoring operations underlying quality metrics such as

 106 A. Nandini et al.

complexity, coupling, etc. needs to be investigated further. Finally, but not least, the
literature seriously lacks reliable datasets that are necessary to fast-track validation and
reproducibility. The available datasets lack large-scale academic and industry-standard
projects.

It is hoped that this study can inspire researchers to investigate a deeper level of
mitigation of code smells and the tools used to mitigate them as well as evaluate their
impact on quality. Research in the future should address a number of open issues
identified in our analysis. The results of our study will provide a basis for future research
and will guide researchers to produce more high quality research in this area, as a result
of the recommendations provided in this report.

References
Abebe, S.L., Haiduc, S., Tonella, P. and Marcus, A. (2011) ‘The effect of lexicon bad smells on

concept location in source code’, 11th International Working Conference on Source Code
Analysis and Manipulation, IEEE, September, Williamsburg, VA, USA, pp.125–134.

Abid, C., Alizadeh, V., Kessentini, M., Ferreira, T.D.N. and Dig, D. (2020) 30 Years of Software
Refactoring Research: A Systematic Literature Review, arXiv preprint arXiv: 2007.02194.

AbuHassan, A., Alshayeb, M. and Ghouti, L. (2021) ‘Software smell detection techniques: a
systematic literature review’, Journal of Software: Evolution and Process, Vol. 33, No. 3,
pp.2320.

Agnihotri, M. and Chug, A. (2020) ‘A systematic literature survey of software metrics, code smells
and refactoring techniques’, Journal of Information Processing Systems, Vol. 16, No. 4,
pp.915–934.

AlOmar, E.A., Mkaouer, M.W., Newman, C. and Ouni, A. (2021) ‘On preserving the behavior in
software refactoring: a systematic mapping study’, Information and Software Technology,
Vol. 140, pp.106675.

Al-Shaaby, A., Aljamaan, H. and Alshayeb, M. (2020) ‘Bad smell detection using machine learning
techniques: a systematic literature review’, Arabian Journal for Science and Engineering,
Vol. 45, No. 4, pp.2341–2369.

Arass, M.E., Ouazzani-touhami, K. and Souissi, N. (2019) ‘The system of systems paradigm to
reduce the complexity of data lifecycle management. Case of the security information and
event management’, International Journal of System of Systems Engineering, Vol. 9, No. 4,
pp.331–361.

Arcelli Fontana, F., Mäntylä, M.V., Zanoni, M. and Marino, A. (2016) ‘Comparing and
experimenting machine learning techniques for code smell detection’, Empirical Software
Engineering, Vol. 21, No. 3, pp.1143–1191.

Arcelli, D., Berardinelli, L. and Trubiani, C. (2015) ‘Performance antipattern detection through
fuml model library’, Proceedings of the 2015 Workshop on Challenges in Performance
Methods for Software Development, January, New York, NY, USA, pp.23–28.

Azeem, M.I., Palomba, F., Shi, L. and Wang, Q. (2019) ‘Machine learning techniques for code
smell detection: a systematic literature review and meta-analysis’, Information and Software
Technology, Vol. 108, pp.115–138.

Baqais, A.A.B. and Alshayeb, M. (2020) ‘Automatic software refactoring: a systematic literature
review’, Software Quality Journal, Vol. 28, No. 2, pp.459–502.

 Code smells and refactoring: a tertiary systematic literature review 107

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A. and Binkley, D. (2012) ‘An empirical analysis of
the distribution of unit test smells and their impact on software maintenance’, 2012 28th IEEE
International Conference on Software Maintenance (ICSM,), September, IEEE, Trento, Italy,
pp.56–65.

Becker, P., Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D. (1999) Refactoring:
Improving the Design of Existing Code, Addison-Wesley Professional, ISBN: 978-
0201485677, p.333.

Boutaib, S., Bechikh, S., Palomba, F., Elarbi, M., Makhlouf, M. and Said, L.B. (2021) ‘Code smell
detection and identification in imbalanced environments’, Expert Systems with Applications,
Vol. 166, p.114076.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M. and Khalil, M. (2007) ‘Lessons from
applying the systematic literature review process within the software engineering domain’,
Journal of Systems and Software, Vol. 80, No. 4, pp.571–583.

Brown, W.H., Malveau, R.C., McCormick, H.W.S. and Mowbray, T.J. (1998) AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis, p.336, ISBN: 978-0-471-19713-3.

Cairo, A.S., Carneiro, G.D.F. and Monteiro, M.P. (2018) ‘The impact of code smells on software
bugs: a systematic literature review’, Information, Vol. 9, No. 11, p.273.

Caram, F.L., Rodrigues, B.R.D.O., Campanelli, A.S. and Parreiras, F.S. (2019) ‘Machine learning
techniques for code smells detection: a systematic mapping study’, International Journal of
Software Engineering and Knowledge Engineering (IJSEKE), Vol. 29, No. 02, pp.285–316.

Danphitsanuphan, P. and Suwantada, T. (2012) ‘Code smell detecting tool and code smell-structure
bug relationship’, 2012 Spring Congress on Engineering and Technology, May, IEEE, Xi’an,
China, pp.1–5.

de Paulo Sobrinho, E.V., De Lucia, A. and de Almeida Maia, M. (2018) ‘A systematic literature
review on bad smells–5 w’s: which, when, what, who, where’, IEEE Transactions on Software
Engineering, Vol. 47, No. 1, pp.17–66.

De Stefano, M., Gambardella, M.S., Pecorelli, F., Palomba, F. and De Lucia, A. (2020) ‘cASpER:
a plug-in for automated code smell detection and refactoring’, Proceedings of the
International Conference on Advanced Visual Interfaces, September, New York, NY, USA,
pp.1–3.

Dexun, J., Peijun, M., Xiaohong, S. and Tiantian, W. (2013) ‘Detection and refactoring of bad
smell caused by large scale’, International Journal of Software Engineering and Applications,
Vol. 4, No. 5, p.1.

Dwivedi, A.K. and Satapathy, S.M. (2020) ‘Mining patterns in open source software using software
metrics and neural network models’, International Journal of System of Systems Engineering,
Vol. 10, No. 4, pp.397–409.

Elkhail, A.A. and Cerny, T. (2019) ‘On relating code smells to security vulnerabilities’, 2019 IEEE
5th Intl Conference on Big Data Security on Cloud (BigDataSecurity),IEEE Intl Conference
on High Performance and Smart Computing (HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS), May, IEEE, Washington, DC, USA, pp.7–12.

Fenske, W., Schulze, S., Meyer, D. and Saake, G. (2015) ‘When code smells twice as much:
metric-based detection of variability-aware code smells’, 2015 IEEE 15th International
Working Conference on Source Code Analysis and Manipulation (SCAM), September, IEEE,
Bremen, Germany, pp.171–180.

Fernandes (2016, E.O. and) ‘A review-based comparative study of bad smell detection tools’,
Proceedings of the 20th International Conference on Evaluation and Assessment in Software
Engineering June, New York, NY, USA, pp.1–12.

Fontana, F.A., Braione, P. and Zanoni, M. (2012) ‘Automatic detection of bad smells in code: an
experimental assessment’, J. Object Technol, Vol. 11, No. 2, pp.5–1.

 108 A. Nandini et al.

Fontana, F.A., Mariani, E., Mornioli, A., Sormani, R. and Tonello, A. (2011) ‘An experience report
on using code smells detection tools’, 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops, March, IEEE, Berlin, Germany,
pp.450–457.

Fourati, R., Bouassida, N. and Abdallah, H.B. (2011) ‘A metric-based approach for anti-pattern
detection in UML designs’, Computer and Information Science, Springer, Berlin, Heidelberg,
pp.17–33.

Fowler, M. and Beck, K. (2018) Refactoring: Improving the Design of Existing Code, 2nd ed.,
Addison-Wesley.

Fu, S. and Shen, B. (2015) ‘Code bad smell detection through evolutionary data mining’, 2015
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), October, IEEE, Beijing, China, pp.1–9.

Ghannem, A.E. (2016) ‘On the use of design defect examples to detect model refactoring
opportunities’, Software Quality Journal, Vol. 24, No. 4, pp.947–965.

Geiger, R., Fluri, B., Gall, H.C. and Pinzger, M. (2006) ‘Relation of code clones and change
couplings’, International Conference on Fundamental Approaches to Software Engineering,
March, Springer, Berlin, Heidelberg, pp.411–425.

Gómez et al., V.U., Ducasse, S. and d’Hondt, T. (2012) ‘Ring: A unifying meta-model and
infrastructure for smalltalk source code analysis tools’, Computer Languages, Systems and
Structures, Vol. 38, No. 1, pp.44–60.

Guggulothu, T. and Moiz, S.A. (2020) ‘Code smell detection using multi-label classification
approach’, Software Quality Journal, Vol. 28, No. 3, pp.1063–1086.

Gupta, A. and Suri, B. (2018) ‘A survey on code clone, its behavior and applications’, Networking
Communication and Data Knowledge Engineering, Springer, Singapore, pp.27–39.

Hamid, A., Ilyas, M., Hummayun, M. and Nawaz, A. (2013) ‘A comparative study on code smell
detection tools’, International Journal of Advanced Science and Technology, Vol. 60,
pp.25–32.

Hermans, F. and Aivaloglou, E. (2016) ‘Do code smells hamper novice programming? A controlled
experiment on scratch programs’, 2016 IEEE 24th International Conference on Program
Comprehension (ICPC), May, IEEE, Austin, TX, USA, pp.1–10.

Horpácsi, D., Kőszegi, J. and Horváth, Z. (2017) Trustworthy Refactoring Via Decomposition and
Schemes: A Complex Case Study, arXiv preprint arXiv: 1708.07225, pp.92–108.

Jancke, S. and Speicher, D. (2010) Smell Detection in Context, University of Bonn, p.113.
Kaur, A. (2020) ‘A systematic literature review on empirical analysis of the relationship between

code smells and software quality attributes’, Archives of Computational Methods in
Engineering, Vol. 27, No. 4, pp.1267–1296.

Kaur, A. and Dhiman, G. (2019) ‘A review on search-based tools and techniques to identify bad
code smells in object-oriented systems’, Harmony Search and Nature Inspired Optimization
Algorithms, pp.909–921.

Kaur, A., Jain, S., Goel, S. and Dhiman, G. (2021a) ‘Prioritization of code smells in object-oriented
software: a review’, Materials Today: Proceedings, Vol. 14, No. 3, pp.290–303.

Kaur, H. and Sikka, G. (2022) ‘Enriching module dependency graphs for improved
software clustering’, International Journal of System of Systems Engineering, Vol. 12, No. 1,
pp.30–50.

Kaur, S. and Kaur, H. (2015) ‘Identification and refactoring of bad smells to improve code quality’,
International Journal of Scientific Engineering and Research, Vol. 3, No. 8, pp.99–102.

 Code smells and refactoring: a tertiary systematic literature review 109

Kaur, S., Awasthi, L.K. and Sangal, A.L. (2021b) ‘A brief review on multi-objective software
refactoring and a new method for its recommendation’, Archives of Computational Methods in
Engineering, Vol. 28, No. 4, pp.3087–3111.

Kerievsky, J. (2005) Refactoring to Patterns, Pearson Deutschland GmbH, ISBN: 0321213351,
p.367.

Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J. and Linkman, S. (2009)
‘Systematic literature reviews in software engineering–a systematic literature review’,
Information and Software Technology, Vol. 51, No. 1, pp.7–15.

Lacerda, G., Petrillo, F., Pimenta, M. and Guéhéneuc, Y.G. (2020) ‘Code smells and refactoring: a
tertiary systematic review of challenges and observations’, Journal of Systems and Software,
Vol. 167, p.110610.

Lakshmanan, M. and Manikandan, S. (2014) ‘Multi-step automated refactoring for code smell’,
International Journal of Research in Engineering and Technology (IJRET), Vol. 3,
No. 03, pp.278–282.

Liu, H., Li, B., Yang, Y., Ma, W. and Jia, R. (2018) ‘Exploring the impact of code smells on fine-
grained structural change-proneness’, International Journal of Software Engineering and
Knowledge Engineering, Vol. 28, No. 10, pp.1487–1516.

Liu, H., Liu, Q., Niu, Z. and Liu, Y. (2015) ‘Dynamic and automatic feedback-based threshold
adaptation for code smell detection’, Transactions on Software Engineering (IEEE), Vol. 42,
No. 6, pp.544–558.

Macia Bertran, I., Garcia, A. and von Staa, A. (2011) ‘An exploratory study of code smells in
evolving aspect-oriented systems’, Proceedings of the Tenth International Conference on
Aspect-Oriented Software Development, March, Porto de Galinhas Brazil, pp.203–214.

Mannan, U.A., Ahmed, I., Almurshed, R.A.M., Dig, D. and Jensen, C. (2016) ‘Understanding code
smells in android applications’, 2016 IEEE/ACM International Conference on Mobile
Software Engineering and Systems (MOBILESoft), May, IEEE, Austin, TX, USA,
pp.225–236.

Mantyla, M., Vanhanen, J. and Lassenius, C. (2003) ‘A taxonomy and an initial empirical study of
bad smells in code’, International Conference on Software Maintenance 2003, ICSM 2003
Proceedings, September, IEEE, Amsterdam, Netherlands, pp.381–384.

Mariani, T. and Vergilio, S.R. (2017) ‘A systematic review on search-based refactoring’,
Information and Software Technology, Vol. 83, pp.14–34.

Marinescu, R. (2005) ‘Measurement and quality in object-oriented design’, 21st IEEE International
Conference on Software Maintenance (ICSM’05), September, IEEE, pp.701–704.

Marinescu, R. and Ratiu, D. (2004) ‘Quantifying the quality of object-oriented design: the factor-
strategy model’, 11th Working Conference on Reverse Engineering, November IEEE,
NW Washington, DC United States, pp.192–201.

Martin, R.C. (2005) ‘Agile software development: principles, patterns, and practices’, Computing
Reviews, Vol. 46, No. 2, p.91.

Maruyama, K. and Tokoda, K. (2008) ‘Security-aware refactoring alerting its impact on code
vulnerabilities’, 2008 15th Asia-Pacific Software Engineering Conference, December, IEEE,
Beijing, China, pp.445–452.

Masmali, O. and Badreddin, O. (2021) ‘Metrics to measure code complexity based on software
design: practical evaluation’, Future of Information and Communication Conference, April,
Springer, Cham, pp.142–157.

Massoni, T., Gheyi, R. and Borba, P. (2008) ‘Formal model-driven program refactoring’,
International Conference on Fundamental Approaches to Software Engineering, March,
Springer, Berlin, Heidelberg, pp.362–376.

 110 A. Nandini et al.

Menshawy, R.S., Yousef, A.H. and Salem, A. (2021) ‘Code smells and detection techniques: a
survey’, 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference
(MIUCC), May, IEEE, Cairo, Egypt, pp.78–83.

Michele, T., Fabio, P., Gabriele, B., Rocco, O., Di Penta, M., De Lucia, A. and Denys, P. (2015)
‘When and why your code starts to smell bad’, 37th IEEE/ACM International Conference
on Software Engineering, ICSE2015, IEEE Computer Society Press, Florence, Italy,
pp.403–414.

Mittal, P., Singh, S. and Kahlon, K.S. (2011) ‘Identification of error prone classes for fault
prediction using object oriented metrics’, International Conference on Advances in Computing
and Communications, July, Springer, Berlin, Heidelberg, pp.58–68.

Mongiovi, M., Gheyi, R., Soares, G., Teixeira, L. and Borba, P. (2014) ‘Making refactoring safer
through impact analysis’, Science of Computer Programming, Vol. 93, pp.39–64.

Mumtaz, H., Alshayeb, M., Mahmood, S. and Niazi, M. (2019) ‘A survey on UML model smells
detection techniques for software refactoring’, Journal of Software: Evolution and Process,
Vol. 31, No. 3, pp.2154.

Munro, M.J. (2005) ‘Product metrics for automatic identification of “bad smell”design problems in
java source-code’, 11th IEEE International Software Metrics Symposium (METRICS’05),
September, IEEE, Como, Italy, pp.15–15.

Noguera, C., Kellens, A., De Roover, C. and Jonckers, V. (2012) ‘Refactoring in the presence of
annotations’, 2012 28th IEEE International Conference on Software Maintenance (ICSM),
September, IEEE, Trento, Italy, pp.337–346.

Ouni, A., Gaikovina Kula, R., Kessentini, M. and Inoue, K. (2015) ‘Web service antipatterns
detection using genetic programming’, Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, July, Madrid, Spain, pp.1351–1358.

Paiva, T., Damasceno, A., Figueiredo, E. and Sant’Anna, C. (2017) ‘On the evaluation of code
smells and detection tools’, Journal of Software Engineering Research and Development,
Vol. 5, No. 1, pp.1–28.

Palma, F., Dubois, J., Moha, N. and Guéhéneuc, Y.G. (2014) ‘Detection of REST patterns and
antipatterns: a heuristics-based approach’, International Conference on Service-Oriented
Computing, November, Springer, Berlin, Heidelberg, pp.230–244.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., Poshyvanyk, D. and De Lucia, A. (2014)
‘Mining version histories for detecting code smells’, Transactions on Software Engineering,
IEEE, Vol.41, No. 5, pp.462–489.

Pecorelli, F., Palomba, F., Di Nucci, D. and De Lucia, A. (2019) ‘Comparing heuristic and machine
learning approaches for metric-based code smell detection’, 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), May, IEEE, Montreal, QC,
Canada, pp.93–104.

Pérez, J. (2013) ‘Refactoring planning for design smell correction: summary, opportunities and
lessons learned’, 2013 IEEE International Conference on Software Maintenance, September,
IEEE, Eindhoven, Netherlands, pp.572–577.

Peters, R. and Zaidman, A. (2012) ‘Evaluating the lifespan of code smells using software repository
mining’, 16th European Conference on Software Maintenance and Reengineering March,
IEEE, Szeged, Hungary, pp.411–416.

Rahad, K., Badreddin, O. and Mohsin Reza, S. (2021) ‘The human in model-driven engineering
loop: a case study on integrating handwritten code in model-driven engineering repositories’,
Software: Practice and Experience, Vol. 51, No. 6, pp.1308–1321.

 Code smells and refactoring: a tertiary systematic literature review 111

Rama, G.M. (2010) ‘A desiderata for refactoring-based software modularity improvement’,
Proceedings of the 3rd India Software Engineering Conference, February, Mysore India,
pp.93–102.

Rani, A. and Chhabra, J.K. (2017) ‘Evolution of code smells over multiple versions of softwares:
an empirical investigation’, 2017 2nd International Conference for Convergence in
Technology (I2CT), April, IEEE, Mumbai, India, pp.1093–1098.

Rasool, G. and Arshad, Z. (2015) ‘A review of code smell mining techniques’, Journal of Software:
Evolution and Process, Vol. 27, No. 11, pp.867–895.

Roberts, D., Brant, J. and Johnson, R. (1997) ‘A refactoring tool for small talk’, Theory and
Practice of Object Systems, Vol. 3, No. 4, pp.253–263.

Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y.G. and Moha, N. (2019) ‘A systematic literature
review on the detection of smells and their evolution in object-oriented and service-oriented
systems’, Software: Practice and Experience, Vol. 49, No. 1, pp.3–39.

Sahin, D., Kessentini, M., Bechikh, S. and Deb, K. (2014) ‘Code-smell detection as a bilevel
problem’, Transactions on Software Engineering and Methodology (TOSEM), ACM, Vol. 24,
No. 1, pp.1–44.

Santos, J.A.M. and Petronilo, G.X.A. (2022) ‘Building empirical knowledge on the relationship
between code smells and design patterns: an exploratory study’, Journal of Software:
Evolution and Process, Vol. 34, No. 9, pp.e2487.

Saranya, G., Nehemiah, H.K., Kannan, A. and Nithya, V. (2018) ‘Model level code smell detection
using Egapso based on similarity measures’, Alexandria Engineering Journal, Vol. 57, No. 3,
pp.1631–1642.

Sehgal, R., Mehrotra, D. and Nagpal, R. (2022) ‘Is refactoring a solution to resolve code smell?’,
International Journal of System of Systems Engineering, Vol. 12, No 0.4, pp.371–385.

Sharma, T. and Spinellis, D. (2018) ‘A survey on software smells’, Journal of Systems and
Software, Vol. 138, pp.158–173.

Sharma, T., Mishra, P. and Tiwari, R. (2016) ‘Designite: A software design quality assessment
tool’, Proceedings of the 1st International Workshop on Bringing Architectural Design
Thinking into Developers’ Daily Activities, May, Austin, Texas, pp.1–4.

Singh, R., Bindal, A. and Kumar, A. (2019) ‘A user feedback centric approach for detecting and
mitigating god class code smell using frequent usage patterns’, Journal of Communications
Software and Systems, Vol. 15, No. 3, pp.245–253.

Singh, R., Bindal, A. and Kumar, A. (2020) ‘A framework to improve quality of a java system by
performing refactoring’, International Journal of System of Systems Engineering (IJSSE),
Vol. 10, No. 4, pp.324–336.

Singh, R., Bindal, A.K. and Kumar, A. (2022) ‘Improving software design by mitigating code
smells’, International Journal of Software Innovation (IJSI), Vol. 10, No. 1, pp.1–21.

Singh, S. and Kaur, S. (2018) ‘A systematic literature review: refactoring for disclosing code
smells in object oriented software’, Ain Shams Engineering Journal, Vol. 9, No. 4,
pp.2129–2151.

Soomlek, C., Rijn, J.N.V. and Bonsangue, M.M. (2021) ‘Automatic human-like detection of code
smells’, International Conference on Discovery Science, October, Springer, Cham, pp.19–28.

Tsantalis, N. and Chatzigeorgiou, A. (2009) ‘Identification of move method refactoring
opportunities’, Transactions on Software Engineering, IEEE, Vol.35, No. 3, pp.347–367.

 112 A. Nandini et al.

Vidal, S., Vazquez, H., Diaz-Pace, J.A., Marcos, C., Garcia, A. and Oizumi, W. (2015) ‘JSpIRIT: a
flexible tool for the analysis of code smells’, 2015 34th International Conference of the
Chilean Computer Science Society (SCCC), November, IEEE, Santiago, Chile, pp.1–6.

Vidal, S.A., Marcos, C. and Díaz-Pace, J.A. (2016) ‘An approach to prioritize code smells for
refactoring’, Automated Software Engineering, Vol. 23, No. 3, pp.501–532.

Wake, W.C. (2004) Refactoring Workbook, Addison-Wesley Professional.
Yamashita, A. and Moonen, L. (2013) ‘To what extent can maintenance problems be predicted by

code smell detection?–an empirical study’, Information and Software Technology, Vol. 55,
No. 12, pp.2223–2242.

Zhang, Y., Ge, C., Hong, S., Tian, R., Dong, C. and Liu, J. (2022) ‘DeleSmell: Code smell
detection based on deep learning and latent semantic analysis’, Knowledge-Based Systems,
Vol. 255, pp.109737.

Zhu, C., Zhang, X., Feng, Y. and Chen, L. (2018) ‘An empirical study of the impact of code smell
on file changes’, 2018 IEEE International Conference on Software Quality, Reliability and
Security (QRS), July, IEEE, Lisbon, Portugal, pp.238–248.

Notes
1http://www.springer.com/in/
2http://www.sciencedirect.com/
3http://dl.acm.org/
4http://ieeexplore.ieee.org/
5https://onlinelibrary.wiley.com/
6https://scholar.google.com/
7https://www.tandfonline.com/
8https://github.com/thiru578/Multilabel-Dataset
9http://essere.disco.unimib.it/reverse/MLCSD.html

Appendix 1: List of primary studies included for systematic literature
review

ID Title Authors Year Category Source

S1 A quantitative
evaluation of
maintainability
enhancement by
refactoring

Kataoka, Y., Imai, T.,
Andou, H. and
Fukaya, T.

2002 Conference International
Conference on
Software
Maintenance, IEEE

S2 Supporting software
development through
declaratively
codified
programming
patterns

Mens, K., Michiels, I.
and Wuyts, R.

2002 Journal Expert Systems with
Applications

 Code smells and refactoring: a tertiary systematic literature review 113

ID Title Authors Year Category Source

S3 Tools and
Environments A
Survey of
Refactoring Tools

Adam, M.J. and
Slifka, R.D.

2002 Report CMPT 487-SE

S4 Object-oriented
reengineering
patterns

Demeyer, S.,
Ducasse, S. and
Nierstrasz, O.

2002 Book Elsevier

S5 Extreme
Programming and
Database
Administration:
Problems, Solutions,
and Issues

Hassan, A.M. and
Elssamadisy, A.

2002 Journal Proceedings XP

S6 Software design
quality: Style and
substance

Bieman, J.M.,
Alexander, R.,
Munger III, P.W. and
Meunier, E.

2002 Conference ICSE 2002 Workshop
on Software Quality

S7 Recognizing and
responding to “bad
smells” in extreme
programming

Elssamadisy, A. and
Schalliol, G.

2002 Conference Proceedings of the
24th International
conference on
Software
Engineering

S8 Refactoring: Current
research and future
trends

Mens, T., Demeyer,
S., Du Bois, B.,
Stenten, H. and
Van Gorp, P.

2003 Journal Electronic Notes in
Theoretical
Computer Science

S9 A taxonomy and an
initial empirical
study of bad smells
in code

Mantyla, M.,
Vanhanen, J. and
Lassenius, C.

2003 Conference International
Conference on
Software
Maintenance

S10 Refactoring in Large
Software Projects

Roock, S. and
Lippert, M.

2003 Book John Wiley and Sons

S11 Graph theoretical
indicators and
refactoring

Zimmer, J.A. 2003 Conference Conference on
Extreme
Programming and
Agile Methods

S12 Automated Code
Smell Detection and
Refactoring by
Source
Transformation

Grant, S. 2003 Workshop n WCRE Workshop
on REFactoring:
Achievements,
Challanges, Effects

S13 A stochastic
approach to
automated design
improvement

O’Keeffe, M. and
Cinnéide, M.O.

2003 Conference ACM International
Conference
Proceeding Series

 114 A. Nandini et al.

ID Title Authors Year Category Source

S14 Quality-driven
object-oriented code
restructuring

Tahvildari, L. and
Kontogiannis, K.

2003 Conference Proceedings of
Proceedings of ICSE
Workshop on
Software Quality

S15 Towards automating
source-consistent
UML refactorings

Gorp, P.V.,
Stenten, H., Mens, T.
and Demeyer, S.

2003 Conference International
Conference on the
Unified Modeling
Language

S16 Bad smells in
software-a taxonomy
and an empirical
study

Mantyla, M. 2003 Thesis Helsinki University
of Technology

S17 A survey of software
refactoring

Mens, T.
and Tourwé, T.

2004 Journal IEEE Transactions
on Software
Engineering

S18 Applying refactoring
techniques to
UML/OCL models

Correa, A. and
Werner, C.

2004 Conference International
Conference on the
Unified Modeling
Language

S19 Bad smells-humans
as code critics

Mantyla, M.V.,
Vanhanen, J. and
Lassenius, C.

2004 Conference 20th IEEE
International
Conference on
Software
Maintenance

S20 Jiad: a tool to infer
design patterns in
refactoring

Rajesh, J. and
Janakiram, D.

2004 Conference Proceedings of the
6th ACM SIGPLAN
International
Conference on
Principles and
Practice of
Declarative
Programming

S21 Automatic Detection
of Refactoring
Opportunities

Carneiro, G.,
Mendonça, M. and
Maldonado, J.C.

2004 Journal Transactions on
Software
Engineering

S22 Developments trends
in refactoring and
measurement tools

Juhász, I. and
Guta, G.

2004 Conference Proceedings of the
International
Conference on
Applied Computing

S23 Improving
evolvability through
refactoring

Ratzinger, J.,
Fischer, M. and
Gall, H.

2005 Conference Proceedings of the
2005 International
Workshop on Mining
Software repositories

 Code smells and refactoring: a tertiary systematic literature review 115

ID Title Authors Year Category Source

S24 An experiment on
subjective
evolvability
evaluation of object-
oriented software:
explaining factors
and interrater
agreement

Mantyla, M.V. 2005 Conference 2005 International
Symposium on
Empirical Software
Engineering

S25 Diagnosing design
problems in object
oriented systems

Trifu, A. and
Marinescu, R.

2005 Conference 12th Working
Conference on
Reverse Engineering
(WCRE’05)

S26 Refactoring OCL
annotated UML class
diagrams

Marković, S. and
Baar, T.

2005 Conference International
Conference On
Model Driven
Engineering
Languages And
Systems

S27 On refactoring
support based on
code clone
dependency relation

Yoshida, N.,
Higo, Y., Kamiya, T.,
Kusumoto, S. and
Inoue, K.

2005 Conference 11th IEEE
International
Software Metrics
Symposium

S28 Multi-criteria
detection of bad
smells in code with
UTA method

Walter, B. and
Pietrzak, B.

2005 Conference International
Conference on
Extreme
Programming and
Agile Processes in
Software
Engineering

S29 Detecting structural
refactoring conflicts
using critical pair
analysis

Mens, T.,
Taentzer, G. and
Runge, O.

2005 Journal Electronic Notes in
Theoretical
Computer Science

S30 Exploring Bad Code
Smells Dependencies

Pietrzak, B. and
Walter, B.

2005 Journal Software
Engineering:
Evolution and
Emerging
Technologies

S31 Detecting Bad Code
Smells for
Refactoring by using
Historical Data of
Source Control
System

Sheikh, S.I. 2005 Thesis National University
of Computer and
Emerging Sciences,
Lahore, Pakistan

S32 Refactoring to
Patterns/Data Access
Patterns

Schneider, R. 2005 Journal Software Quality
Professional

 116 A. Nandini et al.

ID Title Authors Year Category Source

S33 Evaluating software
refactoring tool
support

Mealy, E. and
Strooper, P.

2006 Conference Australian Software
Engineering
Conference
(ASWEC’06)

S34 Leveraging code
smell detection with
inter-smell relations

Pietrzak, B. and
Walter, B.

2006 Conference International
Conference on
Extreme
Programming and
Agile Processes in
Software
Engineering

S35 Drivers for software
refactoring decisions

Mäntylä, M.V. and
Lassenius, C.

2006 Conference Proceedings of the
2006 ACM/IEEE
international
symposium on
Empirical software
engineering

S36 Does refactoring
improve reusability?

Moser, R., Sillitti, A.,
Abrahamsson, P. and
Succi, G.

2006 Conference International
conference on
software reuse

S37 Predicting classes in
need of refactoring:
an application of
static metrics

Zhao, L. and
Hayes, J.

2006 Conference Proceedings of the
2nd International
PROMISE Workshop

S38 Subjective evaluation
of software
evolvability using
code smells: An
empirical study

Mäntylä, M.V. and
Lassenius, C.

2006 Journal Empirical Software
Engineering

S39 Supporting
refactoring activities
using histories of
program
modification

Hayashi, S.,
Saeki, M. and
Kurihara, M.

2006 Journal IEICE transactions
on information and
systems

S40 REFACTORING
Refactoring can help
you wash away code
smells. Here’s how
to get started

Ray, C.K. 2006 Journal BETTER
SOFTWARE

S41 A heuristic-based
approach to code-
smell detection

Kirk, D., Roper, M.
and Wood, M.

2007 Conference Proc. 1st Workshop
on Refactoring Tools

S42 Challenges in model
refactoring

Mens, T.,
Taentzer, G. and
Müller, D.

2007 Conference Proc. 1st Workshop
on Refactoring Tools

 Code smells and refactoring: a tertiary systematic literature review 117

ID Title Authors Year Category Source

S43 High-impact
refactoring based on
architecture
violations

Bourquin, F. and
Keller, R.K.

2007 Conference 11th European
Conference on
Software
Maintenance and
Reengineering

S44 An empirical
evaluation of
refactoring

Wilking, D.,
Kahn, U.F. and
Kowalewski, S.

2007 Journal e-Informatica
Software
Engineering Journal

S45 Refactoring object
constraint language
specifications

Correa, A. and
Werner, C.

2007 Journal Software and Systems
Modeling

S46 Analysing
refactoring
dependencies using
graph transformation

Mens, T.,
Taentzer, G. and
Runge, O.

2007 Journal Software and Systems
Modeling

S47 From Bad Smells to
Refactoring: Metrics
Smoothing the Way

Crespo, Y.,
López, C. and
Martinez, M.E.M.

2007 Conference Object-Oriented
Design Knowledge:
Principles, Heuristics
and Best Practices

S48 Refactoring--does it
improve software
quality?

Stroggylos, K. and
Spinellis, D.

2007 Conference Fifth International
Workshop on
Software Quality

S49 Towards automated
restructuring of
object oriented
systems

Trifu, A. and
Reupke, U.

2007 Conference 11th European
Conference on
Software
Maintenance and
Reengineering

S50 Towards a
refactoring guideline
using code clone
classification

Schulze, S.,
Kuhlemann, M. and
Rosenmüller, M.

2008 Conference Proceedings of the
2nd Workshop on
Refactoring Tools

S51 Seven habits of a
highly effective
smell detector

Murphy-Hill, E. and
Black, A.P.

2008 Conference Proceedings of the
2008 international
workshop on
Recommendation
systems for software
engineering

S52 Impact of metrics
based refactoring on
the software quality:
a case study

Shrivastava, S.V. and
Shrivastava, V.

2008 Conference TENCON 2008-2008
IEEE Region 10
Conference

S53 Scalable, expressive,
and context-sensitive
code smell display

Murphy-Hill, E. 2008 Conference Companion to the
23rd ACM SIGPLAN
conference on
Object-oriented
programming
systems languages
and applications

 118 A. Nandini et al.

ID Title Authors Year Category Source

S54 A critical analysis of
two refactoring tools

Drozdz, M.Z. 2008 Thesis University of
Pretoria

S55 A model to identify
refactoring effort
during maintenance
by mining source
code repositories

Moser, R.,
Pedrycz, W.,
Sillitti, A. and
Succi, G.

2008 Conference International
Conference on
Product Focused
Software Process
Improvement

S56 A catalogue of
lightweight
visualizations to
support code smell
inspection

Parnin, C., Görg, C.
and Nnadi, O.

2008 Conference Proceedings of the
4th ACM Symposium
on Software
Visualization

S57 JDeodorant:
Identification and
removal of type-
checking bad smells

Tsantalis, N.,
Chaikalis, T. and
Chatzigeorgiou, A.

2008 Conference 2008 12th European
conference on
software
maintenance and
reengineering

S58 Visualizing Java
code smells with dot
plots

Jefferson, A.H. 2008 Book Southern Illinois
University at
Carbondale

S59 Classifying desirable
features of software
visualization tools
for corrective
maintenance

Sensalire, M.,
Ogao, P. and
Telea, A.

2008 Conference Proceedings of the
4th ACM symposium
on Software
visualization

S60 A metric-based
approach to
identifying
refactoring
opportunities for
merging code clones
in a Java software
system

Higo, Y.,
Kusumoto, S. and
Inoue, K.

2008 Journal Journal of Software
Maintenance and
Evolution: Research
and Practice

S61 Search-based
refactoring for
software
maintenance

O’Keeffe, M. and
Cinnéide, M.O.

2008 Journal Journal of Systems
and Software

S62 Adaptation of
refactoring strategies
to multiple axes of
modularity:
characteristics and
criteria

Arnaoudova, V. and
Constantinides, C.

2008 Conference 2008 Sixth
International
Conference on
Software
Engineering
Research,
Management and
Applications

S63 Improving the
precision of fowler’s
definitions of bad
smells

Zhang, M.,
Baddoo, N.,
Wernick, P. and
Hall, T.

2008 Conference 2008 32nd Annual
IEEE Software
Engineering
Workshop

 Code smells and refactoring: a tertiary systematic literature review 119

ID Title Authors Year Category Source

S64 Classification of
model refactoring
approaches

Mohamed, M.,
Romdhani, M. and
Ghédira, K.

2009 Journal Journal of Object
Technology

S65 Identifying
architectural bad
smells

Garcia, J.,
Popescu, D.,
Edwards, G. and
Medvidovic, N.

2009 Conference 2009 13th European
Conference on
Software
Maintenance and
Reengineering

S66 Strengthening
refactoring: Towards
software evolution
with quantitative and
experimental
grounds

Bryton, S. and
Abreu, F.B.

2009 Conference 2009 Fourth
International
Conference on
Software
Engineering
Advances

S67 Toward a catalogue
of architectural bad
smells

Garcia, J.,
Popescu, D.,
Edwards, G. and
Medvidovic, N.

2009 Conference International
conference on the
quality of software
architectures

S68 The evolution and
impact of code
smells: A case study
of two open source
systems

Olbrich, S.,
Cruzes, D.S.,
Basili, V. and
Zazworka, N.

2009 Conference 2009 3rd
international
symposium on
empirical software
engineering and
measurement

S69 JSmell: A Bad Smell
detection tool for
Java systems

Roperia, N. 2009 Thesis California State
University

S70 An exploratory study
of the impact of code
smells on software
change-proneness

Khomh, F.,
Di Penta, M. and
Gueheneuc, Y.G.

2009 Conference 2009 16th Working
Conference on
Reverse Engineering

S71 Refactoring to
improve the
understandability of
specifications written
in object constraint
language

Correa, A.,
Werner, C. and
Barros, M.

2009 Journal IET software

S72 Refactoring of
crosscutting concerns
with metaphor-based
heuristics

da Silva, B.C.,
Figueiredo, E.,
Garcia, A. and
Nunes, D.

2009 Journal Electronic Notes in
Theoretical
Computer Science

S73 Empirical
investigation of
refactoring effect on
software quality

Alshayeb, M. 2009 Journal Information and
software technology

S74 Identification of
move method
refactoring
opportunities

Tsantalis, N. and
Chatzigeorgiou, A.

2009 Journal IEEE Transactions
on Software
Engineering

 120 A. Nandini et al.

ID Title Authors Year Category Source

S75 A literature review
on code smells and
refactoring

Wangberg, R. 2010 Thesis University of Oslo

S76 An interactive
ambient visualization
for code smells

Murphy-Hill, E. and
Black, A.P.

2010 Conference Proceedings of the
5th international
symposium on
Software
visualization

S77 Building empirical
support for
automated code
smell detection

Schumacher, J.,
Zazworka, N.,
Shull, F., Seaman, C.
and Shaw, M.

2010 Conference Proceedings of the
2010 ACM-IEEE
international
symposium on
empirical software
engineering and
measurement

S78 Investigating the
evolution of bad
smells in object-
oriented code

Chatzigeorgiou, A.
and Manakos, A.

2010 Conference 2010 Seventh
International
Conference on the
Quality of
Information and
Communications
Technology

S79 Identification of
refactoring
opportunities
introducing
polymorphism

Tsantalis, N. and
Chatzigeorgiou, A.

2010 Journal Journal of Systems
and Software

S80 Reducing
subjectivity in code
smells detection:
Experimenting with
the long method

Bryton, S.,
Abreu, F.B. and
Monteiro, M.

2010 Conference 2010 Seventh
International
Conference on the
Quality of
Information and
Communications
Technology

S81 Are all code smells
harmful? A study of
God Classes and
Brain Classes in the
evolution of three
open source systems

Olbrich, S.M.,
Cruzes, D.S. and
Sjøberg, D.I.

2010 Conference 2010 IEEE
international
conference on
software
maintenance

S82 A visual based
framework for the
model refactoring
techniques

Štolc, M. and
Polášek, I.

2010 Conference 2010 IEEE 8th
International
Symposium on
Applied Machine
Intelligence and
Informatics (SAMI)

 Code smells and refactoring: a tertiary systematic literature review 121

ID Title Authors Year Category Source

S83 An empirical
investigation of code
smell ‘deception’ and
research
contextualisation
through paul’s
criteria

Counsell, S.,
Hamza, H. and
Hierons, R.M.

2010 Journal Journal of computing
and information
technology

S84 Empirical software
evolvability-code
smells and human
evaluations

Mäntylä, M.V. 2010 Conference 2010 IEEE
International
Conference on
Software
Maintenance

S85 Assure high quality
code using
refactoring and
obfuscation
techniques

Long, T., Liu, L.,
Yu, Y. and Wan, Z.

2010 Conference 2010 Fifth
International
Conference on
Frontier of Computer
Science and
Technology

S86 Domain-specific
tailoring of code
smells: an empirical
study

Guo, Y., Seaman, C.,
Zazworka, N. and
Shull, F.

2010 Conference Proceedings of the
32nd ACM/IEEE
International
Conference on
Software
Engineering

S87 Automatic Detection
of Possible
Refactorings

Peldzius, S. 2010 Conference Proceedings of the
16th International
Conference on
Information and
Software
Technologies (ICIST)

S88 The theory of
relative dependency:
Higher coupling
concentration in
smaller modules

Koru, A.G. and
El Emam, K.

2010 Journal IEEE software

S89 Sub-clone
refactoring in open
source software
artifacts

Tairas, R. and
Gray, J.

2010 Conference Proceedings of the
2010 ACM
Symposium on
Applied Computing

S90 Evaluation and
improvement of
software
architecture:
Identification of
design problems in
object-oriented
systems and
resolution through
refactorings

Tsantalis, N. 2010 Thesis Univ. Macedonia

 122 A. Nandini et al.

ID Title Authors Year Category Source

S91 CodeVizard: a tool to
aid the analysis of
software evolution

Zazworka, N. and
Ackermann, C.

2010 Conference Proceedings of the
2010 ACM-IEEE
International
Symposium on
Empirical Software
Engineering and
Measurement

S92 Impact of refactoring
on quality code
evaluation

Fontana, F.A. and
Spinelli, S.

2011 Conference Proceedings of the
4th Workshop on
Refactoring Tools

S93 Ranking refactoring
suggestions based on
historical volatility

Tsantalis, N. and
Chatzigeorgiou, A.

2011 Conference 2011 15th European
Conference on
Software
Maintenance and
Reengineering

S94 TrueRefactor: An
automated
refactoring tool to
improve legacy
system and
application
comprehensibility

Griffith, I., Wahl, S.
and Izurieta, C.

2011 Conference 24th International
Conference on
Computer
Applications in
Industry and
Engineering, ISCA

S95 Understanding the
longevity of code
smells: preliminary
results of an
explanatory survey

Arcoverde, R.,
Garcia, A. and
Figueiredo, E.

2011 Conference Proceedings of the
4th Workshop on
Refactoring Tools

S96 Code bad smells: a
review of current
knowledge

Zhang, M., Hall, T.
and Baddoo, N.

2011 Journal Journal of Software
Maintenance and
Evolution: research
and practice

S97 An experience report
on using code smells
detection tools

Fontana, F.A.,
Mariani, E.,
Mornioli, A.,
Sormani, R. and
Tonello, A.

2011 Conference 2011 IEEE fourth
international
conference on
software testing,
verification and
validation workshops

S98 Using software
metrics to select
refactoring for long
method bad smell

Meananeatra, P.,
Rongviriyapanish, S.
and
Apiwattanapong, T.

2011 Conference The 8th Electrical
Engineering/Electron
ics, Computer,
Telecommunications
and Information
Technology (ECTI)

S99 Exploring the
eradication of code
smells: An empirical
and theoretical
perspective

Counsell, S., Hierons,
R.M., Hamza, H.,
Black, S. and
Durrand, M.

2011 Journal Advances in Software
Engineering

 Code smells and refactoring: a tertiary systematic literature review 123

ID Title Authors Year Category Source

S100 Detecting
architecturally-
relevant code smells
in evolving software
systems

Bertran, I.M. 2011 Conference Proceedings of the
33rd International
Conference on
Software
Engineering (pp.
1090-1093).

S101 Looking for patterns
in code bad smells
relations

Walter, B. and
Martenka, P.

2011 Conference 2011 IEEE Fourth
International
Conference on
Software Testing,
Verification and
Validation
Workshops

S102 An empirical
assessment of
refactoring impact on
software quality
using a hierarchical
quality model

Shatnawi, R.
and Li, W.

2011 Journal International Journal
of Software
Engineering and Its
Applications

S103 Schedule of bad
smell detection and
resolution: A new
way to save effort

Liu, H., Ma, Z.,
Shao, W. and Niu, Z.

2011 Journal IEEE transactions on
Software
Engineering

S104 Code smell detecting
tool and code smell-
structure bug
relationship

Danphitsanuphan, P.
and Suwantada, T.

2012 Conference 2012 Spring
Congress on
Engineering and
Technology

S105 Evaluating the
lifespan of code
smells using software
repository mining

Peters, R. and
Zaidman, A.

2012 Conference 2012 16th European
conference on
software
maintenance and
reengineering

S106 Quantifying the
effect of code smells
on maintenance
effort

Sjøberg, D.I.,
Yamashita, A.,
Anda, B.C.,
Mockus, A. and
Dybå, T.

2012 Journal IEEE Transactions
on Software
Engineering

S107 Automatic detection
of bad smells in
code: An
experimental
assessment

Fontana, F.A.,
Braione, P. and
Zanoni, M.

2012 Journal J. Object Technol.

S108 Automated
refactoring to the
strategy design
pattern

Christopoulou, A.,
Giakoumakis, E.A.,
Zafeiris, V.E. and
Soukara, V.

2012 Journal Information and
Software Technology

 124 A. Nandini et al.

ID Title Authors Year Category Source

S109 Investigating the
impact of code
smells debt on
quality code
evaluation

Fontana, F.A.,
Ferme, V. and
Spinelli, S.

2012 Conference 2012 Third
International
Workshop on
Managing Technical
Debt (MTD)

S110 CodeSmellExplorer:
Tangible exploration
of code smells and
refactorings

Raab, F. 2012 Conference 2012 IEEE
Symposium on Visual
Languages and
Human-Centric
Computing
(VL/HCC)

S111 Identifying
refactoring
sequences for
improving software
maintainability

Meananeatra, P. 2012 Conference Proceedings of the
27th IEEE/ACM
International
Conference on
Automated Software
Engineering

S112 Identifying extract-
method refactoring
candidates
automatically

Sharma, T. 2012 Conference Proceedings of the
Fifth Workshop on
Refactoring Tools

S113 Can software faults
be analyzed using
bad code smells?: An
empirical study

Dhillon, P.K. and
Sidhu, G.

2012 Journal Int J Sci Res Publ

S114 Reconciling manual
and automatic
refactoring

Ge, X., DuBose, Q.L.
and Murphy-Hill, E.

2012 Conference 2012 34th
International
Conference on
Software
Engineering (ICSE)

S115 Assuring software
quality by code smell
detection

Van Emden, E. and
Moonen, L.

2012 Conference 2012 19th Working
Conference on
Reverse Engineering

S116 Do code smells
reflect important
maintainability
aspects?

Yamashita, A. and
Moonen, L.

2012 Conference 2012 28th IEEE
International
Conference on
Software
Maintenance (ICSM)

S117 Refactoring edit
history of source
code

Hayashi, S.,
Omori, T.,
Zenmyo, T.,
Maruyama, K. and
Saeki, M.

2012 Conference 2012 28th IEEE
International
Conference on
Software
Maintenance (ICSM)

S118 Move code
refactoring with
dynamic analysis

Kimura, S., Higo, Y.,
Igaki, H. and
Kusumoto, S.

2012 Conference 2012 28th IEEE
International
Conference on
Software
Maintenance (ICSM)

 Code smells and refactoring: a tertiary systematic literature review 125

ID Title Authors Year Category Source

S119 On the existence of
high-impact
refactoring
opportunities in
programs

Dietrich, J.,
McCartin, C.,
Tempero, E. and
Shah, S.M.A.

2012 Conference Proceedings of the
Thirty-fifth
Australasian
Computer Science
Conference

S120 Assessment of Code
Smells for Predicting
Class Change
Proneness

Malhotra, R. and
Pritam, N.

2012 Journal Software Quality
Professional

S121 Monitor-based
instant software
refactoring

Liu, H., Guo, X. and
Shao, W.

2013 Journal IEEE Transactions
on Software
Engineering

S122 A multidimensional
empirical study on
refactoring activity

Tsantalis, N.,
Guana, V.,
Stroulia, E. and
Hindle, A.

2013 Conference CASCON

S123 A comparative study
on code smell
detection tools

Hamid, A., Ilyas, M.,
Hummayun, M. and
Nawaz, A.

2013 Journal International Journal
of Advanced Science
and Technology

S124 Do developers care
about code smells?
An exploratory
survey

Yamashita, A. and
Moonen, L.

2013 Conference 2013 20th working
conference on
reverse engineering
(WCRE)

S125 Conflict-aware
optimal scheduling
of prioritised code
clone refactoring

Zibran, M.F. and
Roy, C.K.

2013 Journal IET software

S126 Identification of
refused bequest code
smells

Ligu, E.,
Chatzigeorgiou, A.,
Chaikalis, T. and
Ygeionomakis, N.

2013 Conference 2013 IEEE
International
Conference on
Software
Maintenance

S127 Detection and
refactoring of bad
smell caused by large
scale

Dexun, J., Peijun, M.,
Xiaohong, S. and
Tiantian, W.

2013 Journal International Journal
of Software
Engineering and
Applications

S128 Jsnose: Detecting
javascript code
smells

Fard, A.M. and
Mesbah, A.

2013 Conference 2013 IEEE 13th
international
working conference
on Source Code
Analysis and
Manipulation
(SCAM)

S129 Implementation and
analysis of a
refactoring tool for
detecting code smells

Kaur, A. and
Raperia, H.

2013 Journal International Journal
of Computers and
Technology

 126 A. Nandini et al.

ID Title Authors Year Category Source

S130 Investigating the
impact of code
smells on system’s
quality: An empirical
study on systems of
different application
domains

Fontana, F.A.,
Ferme, V.,
Marino, A.,
Walter, B. and
Martenka, P.

2013 Conference 2013 IEEE
International
Conference on
Software
Maintenance

S131 Detecting bad smells
in source code using
change history
information

Palomba, F.,
Bavota, G.,
Di Penta, M.,
Oliveto, R.,
De Lucia, A. and
Poshyvanyk, D.

2013 Conference 2013 28th
IEEE/ACM
International
Conference on
Automated Software
Engineering (ASE)

S132 Identification of
generalization
refactoring
opportunities

Liu, H., Niu, Z.,
Ma, Z. and Shao, W.

2013 Journal Automated Software
Engineering

S133 Search-based
refactoring using
recorded code
changes

Ouni, A.,
Kessentini, M. and
Sahraoui, H.

2013 Conference 2013 17th European
Conference on
Software
Maintenance and
Reengineering

S134 Code smells as
system-level
indicators of
maintainability: An
empirical study

Yamashita, A. and
Counsell, S.

2013 Journal Journal of Systems
and Software

S135 Exploring the impact
of inter-smell
relations on software
maintainability: An
empirical study

Yamashita, A. and
Moonen, L.

2013 Conference 2013 35th
International
Conference on
Software
Engineering (ICSE)

S136 Trends, opportunities
and challenges of
software refactoring:
A systematic
literature review

Abebe, M. and
Yoo, C.J.

2014 Journal International Journal
of software
engineering and its
Applications

S137 A robust multi-
objective approach
for software
refactoring under
uncertainty

Mkaouer, M.W.,
Kessentini, M.,
Bechikh, S. and
Ó Cinnéide, M.

2014 Conference International
Symposium on
Search Based
Software
Engineering

S138 Investigating the
evolution of code
smells in object-
oriented systems

Chatzigeorgiou, A.
and Manakos, A.

2014 Journal Innovations in
Systems and Software
Engineering

 Code smells and refactoring: a tertiary systematic literature review 127

ID Title Authors Year Category Source

S139 Recommendation
system for software
refactoring using
innovization and
interactive dynamic
optimization

Mkaouer, M.W.,
Kessentini, M.,
Bechikh, S., Deb, K.
and Ó Cinnéide, M.

2014 Conference Proceedings of the
29th ACM/IEEE
international
conference on
Automated software
engineering

S140 Automated pattern-
directed refactoring
for complex
conditional
statements

Liu, W., Hu, Z.G.,
Liu, H.T. and
Yang, L.

2014 Journal Journal of Central
South University

S141 Bulk fixing coding
issues and its effects
on software quality:
Is it worth
refactoring?

Szoke, G., Antal, G.,
Nagy, C., Ferenc, R.
and Gyimóthy, T.

2014 Conference 2014 IEEE 14th
International
Working Conference
on Source Code
Analysis and
Manipulation

S142 A case study of
refactoring large-
scale industrial
systems to efficiently
improve source code
quality

Szőke, G., Nagy, C.,
Ferenc, R. and
Gyimóthy, T.

2014 Conference International
Conference on
Computational
Science and Its
Applications

S143 Classification and
summarization of
software refactoring
researches: a
literature review
approach

Abebe, M. and
Yoo, C.J.

2014 Journal Advanced Science
and Technology
Letters

S144 Mining version
histories for
detecting code smells

Palomba, F.,
Bavota, G.,
Di Penta, M., Oliveto,
R., Poshyvanyk, D.
and De Lucia, A.

2014 Journal IEEE Transactions
on Software
Engineering

S145 Multi-Step
Automated
Refactoring For
Code Smell

Lakshmanan, M. and
Manikandan, S.

2014 Journal IJRET: International
Journal of Research
in Engineering and
Technology

S146 Identifying accurate
refactoring
opportunities using
metrics

Bian, Y., Su, X. and
Ma, P.

2014 Conference Proceedings of
International
Conference on Soft
Computing
Techniques and
Engineering
Application

S147 Recommending
refactoring
operations in large
software systems

Bavota, G.,
Lucia, A.D.,
Marcus, A. and
Oliveto, R.

2014 Journal Recommendation
Systems in Software
Engineering

 128 A. Nandini et al.

ID Title Authors Year Category Source

S148 Functional over-
related classes bad
smell detection and
refactoring
suggestions

Dexun, J., Peijun, M.,
Xiaohong, S. and
Tiantian, W.

2014 Journal International Journal
of Software
Engineering and
Applications

S149 Assessing the
capability of code
smells to explain
maintenance
problems: an
empirical study
combining
quantitative and
qualitative data

Yamashita, A. 2014 Journal Empirical Software
Engineering

S150 Some code smells
have a significant but
small effect on faults

Hall, T., Zhang, M.,
Bowes, D. and
Sun, Y.

2014 Journal ACM Transactions
on Software
Engineering and
Methodology
(TOSEM)

S151 Ranking The
Refactoring
Techniques Based on
The External Quality
Attributes

Alshehri, S. and
Aljuhani, A.

2014 Journal International Journal
of Research in
Engineering and
Science (IJRES)

S152 Distance metric
based divergent
change bad smell
detection and
refactoring scheme
analysis

Jiang, D., Ma, P.,
Su, X. and Wang, T.

2014 Journal International Journal
of Innovative
Computing,
Information and
Control

S153 Manual refactoring
changes with
automated
refactoring validation

Ge, X. and
Murphy-Hill, E.

2014 Conference Proceedings of the
36th International
Conference on
Software
Engineering

S154 High dimensional
search-based
software
engineering: finding
tradeoffs among 15
objectives for
automating software
refactoring using
NSGA-III

Mkaouer, M.W.,
Kessentini, M.,
Bechikh, S., Deb, K.
and Ó Cinnéide, M.

2014 Conference Proceedings of the
2014 Annual
Conference on
Genetic and
Evolutionary
Computation

S155 Case study on
software refactoring
tactics

Liu, H., Liu, Y.,
Xue, G. and Gao, Y.

2014 Journal IET software

 Code smells and refactoring: a tertiary systematic literature review 129

ID Title Authors Year Category Source

S156 Do they really smell
bad? a study on
developers’
perception of bad
code smells

Palomba, F.,
Bavota, G.,
Di Penta, M.,
Oliveto, R. and
De Lucia, A.

2014 Conference 2014 IEEE
International
Conference on
Software
Maintenance and
Evolution

S157 FaultBuster: An
automatic code smell
refactoring toolset

Szőke, G., Nagy, C.,
Fülöp, L.J.,
Ferenc, R. and
Gyimóthy, T.

2015 Conference 2015 IEEE 15th
International
Working Conference
on Source Code
Analysis and
Manipulation
(SCAM)

S158 On experimenting
refactoring tools to
remove code smells

Fontana, F.A.,
Mangiacavalli, M.,
Pochiero, D. and
Zanoni, M.

2015 Conference Scientific Workshop
Proceedings of the
XP2015

S159 An experimental
investigation on the
innate relationship
between quality and
refactoring

Bavota, G.,
De Lucia, A.,
Di Penta, M.,
Oliveto, R. and
Palomba, F.

2015 Journal Journal of Systems
and Software

S160 Prioritizing code-
smells correction
tasks using chemical
reaction optimization

Ouni, A.,
Kessentini, M.,
Bechikh, S. and
Sahraoui, H.

2015 Journal Software Quality
Journal

S161 Identifying
refactoring
opportunities in
object-oriented code:
A systematic
literature review

Al Dallal, J. 2015 Journal Information and
software Technology

S162 AutoRefactoring: A
platform to build
refactoring agents

dos Santos Neto,
B.F., Ribeiro, M.,
Da Silva, V.T.,
Braga, C.,
De Lucena, C.J.P. and
de Barros Costa, E.

2015 Journal Expert systems with
applications

S163 Improving multi-
objective code-
smells correction
using development
history

Ouni, A.,
Kessentini, M.,
Sahraoui, H.,
Inoue, K. and
Hamdi, M.S.

2015 Journal Journal of Systems
and Software

S164 A review of code
smell mining
techniques

Rasool, G. and
Arshad, Z.

2015 Journal Journal of Software:
Evolution and
Process

 130 A. Nandini et al.

ID Title Authors Year Category Source

S165 When and why your
code starts to smell
bad

Tufano, M.,
Palomba, F.,
Bavota, G.,
Oliveto, R.,
Di Penta, M., De
Lucia, A. and
Poshyvanyk, D.

2015 Conference 2015 IEEE/ACM
37th IEEE
International
Conference on
Software
Engineering

S166 On the use of time
series and search
based software
engineering for
refactoring
recommendation

Wang, H., Kessentini,
M., Grosky, W. and
Meddeb, H.

2015 Conference Proceedings of the
7th International
Conference on
Management of
computational and
collective
intElligence in
Digital EcoSystems

S167 Towards assessing
software architecture
quality by exploiting
code smell relations

Fontana, F.A.,
Ferme, V. and
Zanoni, M.

2015 Conference 2015 IEEE/ACM 2nd
International
Workshop on
Software
Architecture and
Metrics

S168 Challenges to and
solutions for
refactoring adoption:
An industrial
perspective

Sharma, T.,
Suryanarayana, G.
and Samarthyam, G.

2015 Journal IEEE Software

S169 Investigation of code
smells in different
software domains

Delchev, M. and
Harun, M.F.

2015 Journal Full-scale Software
Engineering

S170 JSpIRIT: a flexible
tool for the analysis
of code smells

Vidal, S., Vazquez,
H., Diaz-Pace, J.A.,
Marcos, C.,
Garcia, A. and
Oizumi, W.

2015 Conference 2015 34th
International
Conference of the
Chilean Computer
Science Society

S171 Landfill: An open
dataset of code
smells with public
evaluation

Palomba, F.,
Di Nucci, D.,
Tufano, M.,
Bavota, G., Oliveto,
R., Poshyvanyk, D.
and De Lucia, A.

2015 Conference 2015 IEEE/ACM
12th Working
Conference on
Mining Software
Repositories

S172 UML model
refactoring: a
systematic literature
review

Misbhauddin, M. and
Alshayeb, M.

2015 Journal Empirical Software
Engineering

S173 Dynamic and
automatic feedback-
based threshold
adaptation for code
smell detection

Liu, H., Liu, Q.,
Niu, Z. and Liu, Y.

2015 Journal IEEE Transactions
on Software
Engineering

 Code smells and refactoring: a tertiary systematic literature review 131

ID Title Authors Year Category Source

S174 Architectural
refactoring: A task-
centric view on
software evolution

Zimmermann, O. 2015 Journal IEEE Software

S175 Are test smells really
harmful? an
empirical study

Bavota, G.,
Qusef, A.,
Oliveto, R.,
De Lucia, A. and
Binkley, D.

2015 Journal Empirical Software
Engineering

S176 An approach to
prioritize code smells
for refactoring

Vidal, S.A.,
Marcos, C. and
Díaz-Pace, J.A.

2016 Journal Automated Software
Engineering

S177 Revisiting the
relationship between
code smells and
refactoring

Yoshida, N.,
Saika, T., Choi, E.,
Ouni, A. and
Inoue, K.

2016 Conference 2016 IEEE 24th
International
Conference on
Program
Comprehension
(ICPC)

S178 Does refactoring
improve software
structural quality? a
longitudinal study of
25 projects

Cedrim, D.,
Sousa, L., Garcia, A.
and Gheyi, R.

2016 Conference Proceedings of the
30th Brazilian
Symposium on
Software
Engineering

S179 JDeodorant: clone
refactoring

Mazinanian, D.,
Tsantalis, N.,
Stein, R. and
Valenta, Z.

2016 Conference Proceedings of the
38th international
conference on
software engineering
companion

S180 Code smell analyzer:
a tool to teaching
support of
refactoring
techniques source
code

Sirqueira, T.F.M.,
Brandl, A.H.M.,
Pedro, E.J.P.,
de Souza Silva, R.
and Araujo, M.A.P.

2016 Journal IEEE Latin America
Transactions

S181 Measuring
refactoring benefits:
a survey of the
evidence

Ó Cinnéide, M.,
Yamashita, A. and
Counsell, S.

2016 Conference Proceedings of the
1st International
Workshop on
Software Refactoring

S182 On the use of design
defect examples to
detect model
refactoring
opportunities

Ghannem, A.,
El Boussaidi, G. and
Kessentini, M.

2016 Journal Software Quality
Journal

S183 An empirical study
on the effect of the
order of applying
software refactoring

Khrishe, Y. and
Alshayeb, M.

2016 Conference 2016 7th
International
Conference on
Computer Science
and Information
Technology (CSIT)

 132 A. Nandini et al.

ID Title Authors Year Category Source

S184 A code refactoring
dataset and its
assessment regarding
software
maintainability

Kádár, I.,
Hegedus, P.,
Ferenc, R. and
Gyimóthy, T.

2016 Conference 2016 IEEE 23rd
International
conference on
software analysis,
Evolution, and
Reengineering
(SANER)

S185 Do developers focus
on severe code
smells?

Saika, T., Choi, E.,
Yoshida, N.,
Haruna, S. and
Inoue, K.

2016 Conference 2016 IEEE 23rd
International
Conference on
Software Analysis,
Evolution, and
Reengineering
(SANER)

S186 Identifying extract
method refactoring
opportunities based
on functional
relevance

Charalampidou, S.,
Ampatzoglou, A.,
Chatzigeorgiou, A.,
Gkortzis, A. and
Avgeriou, P.

2016 Journal IEEE Transactions
on Software
Engineering

S187 An empirical study
of bad smell in code
on maintenance
effort

Kumar, R., Singh, J.
and Kaur, A.

2016 Journal Int. J. Comput. Sci.
Eng

S188 Context-based code
smells prioritization
for prefactoring

Sae-Lim, N.,
Hayashi, S. and
Saeki, M.

2016 Conference 2016 IEEE 24th
International
Conference on
Program
Comprehension
(ICPC)

S189 Designing and
developing
automated
refactoring
transformations: An
experience report

Szoke, G., Nagy, C.,
Ferenc, R. and
Gyimóthy, T.

2016 Conference 2016 IEEE 23rd
International
Conference on
Software Analysis,
Evolution, and
Reengineering
(SANER)

S190 Multi-criteria code
refactoring using
search-based
software
engineering: An
industrial case study

Ouni, A.,
Kessentini, M.,
Sahraoui, H.,
Inoue, K. and
Deb, K.

2016 Journal ACM Transactions
on Software
Engineering and
Methodology
(TOSEM)

S191 Assessment of the
Code Refactoring
Dataset Regarding
the Maintainability
of Methods

Kádár, I.,
Hegedűs, P.,
Ferenc, R. and
Gyimóthy, T.

2016 Conference International
Conference on
Computational
Science and Its
Applications

 Code smells and refactoring: a tertiary systematic literature review 133

ID Title Authors Year Category Source

S192 Comparing and
experimenting
machine learning
techniques for code
smell detection

Arcelli Fontana, F.,
Mäntylä, M.V.,
Zanoni, M. and
Marino, A.

2016 Journal Empirical Software
Engineering

S193 MORE: A multi-
objective refactoring
recommendation
approach to
introducing design
patterns and fixing
code smells

Ouni, A.,
Kessentini, M.,
Ó Cinnéide, M.,
Sahraoui, H., Deb, K.
and Inoue, K.

2017 Journal Journal of Software:
Evolution and
Process

S194 Understanding the
impact of refactoring
on smells: A
longitudinal study of
23 software projects

Cedrim, D.,
Garcia, A.,
Mongiovi, M.,
Gheyi, R., Sousa, L.,
de Mello, R.,... and
Chávez, A.

2017 Conference Proceedings of the
2017 11th Joint
Meeting on
foundations of
Software
Engineering

S195 A robust multi-
objective approach to
balance severity and
importance of
refactoring
opportunities

Mkaouer, M.W.,
Kessentini, M.,
Cinnéide, M.Ó.,
Hayashi, S.
and Deb, K.

2017 Journal Empirical Software
Engineering

S196 A systematic review
on search-based
refactoring

Mariani, T. and
Vergilio, S.R.

2017 Journal Information and
Software Technology

S197 An exploratory study
on the relationship
between changes and
refactoring

Palomba, F.,
Zaidman, A.,
Oliveto, R. and
De Lucia, A.

2017 Conference 2017 IEEE/ACM
25th International
Conference on
Program
Comprehension
(ICPC)

S198 Empirical evaluation
of the impact of
object-oriented code
refactoring on quality
attributes: A
systematic literature
review

Al Dallal, J. and
Abdin, A.

2017 Journal IEEE Transactions
on Software
Engineering

S199 When and why your
code starts to smell
bad (and whether the
smells go away)

Tufano, M.,
Palomba, F.,
Bavota, G.,
Oliveto, R.,
Di Penta, M.,
De Lucia, A. and
Poshyvanyk, D.

2017 Journal IEEE Transactions
on Software
Engineering

 134 A. Nandini et al.

ID Title Authors Year Category Source

S200 Code smell severity
classification using
machine learning
techniques

Fontana, F.A. and
Zanoni, M.

2017 Journal Knowledge-Based
Systems

S201 How do developers
select and prioritize
code smells? A
preliminary study

Sae-Lim, N.,
Hayashi, S. and
Saeki, M.

2017 Conference 2017 IEEE
International
Conference on
Software
Maintenance and
evolution (ICSME)

S202 Empirical study on
refactoring large-
scale industrial
systems and its
effects on
maintainability

Szőke, G., Antal, G.,
Nagy, C., Ferenc, R.
and Gyimóthy, T.

2017 Journal Journal of Systems
and Software

S203 How developers
perceive smells in
source code: A
replicated study

Taibi, D., Janes, A.
and Lenarduzzi, V.

2017 Journal Information and
Software Technology

S204 A systematic
literature review:
Refactoring for
disclosing code
smells in object
oriented software

Singh, S. and
Kaur, S.

2018 Journal Ain Shams
Engineering Journal

S205 The scent of a smell:
An extensive
comparison between
textual and structural
smells

Palomba, F.,
Panichella, A.,
Zaidman, A.,
Oliveto, R. and
De Lucia, A.

2018 Conference Proceedings of the
40th International
Conference on
Software
Engineering

S206 An empirical study
to improve software
security through the
application of code
refactoring

Mumtaz, H.,
Alshayeb, M.,
Mahmood, S. and
Niazi, M.

2018 Journal Information and
Software Technology

S207 Assessing the
refactoring of brain
methods

Vidal, S., Berra, I.,
Zulliani, S.,
Marcos, C. and
Pace, J.A.D.

2018 Journal ACM Transactions
on Software
Engineering and
Methodology
(TOSEM)

S208 Recommending
refactoring solutions
based on traceability
and code metrics

Nyamawe, A.S.,
Liu, H., Niu, Z.,
Wang, W. and
Niu, N.

2018 Journal IEEE Access

 Code smells and refactoring: a tertiary systematic literature review 135

ID Title Authors Year Category Source

S209 Beyond technical
aspects: How do
community smells
influence the
intensity of code
smells?

Palomba, F.,
Tamburri, D.A.,
Fontana, F.A.,
Oliveto, R.,
Zaidman, A. and
Serebrenik, A.

2018 Journal IEEE transactions on
software engineering

S210 A large-scale
empirical study on
the lifecycle of code
smell co-occurrences

Palomba, F.,
Bavota, G.,
Di Penta, M.,
Fasano, F.,
Oliveto, R. and
De Lucia, A.

2018 Journal Information and
Software Technology

S211 Identifying and
prioritizing
architectural debt
through architectural
smells: a case study
in a large software
company

Martini, A.,
Fontana, F.A.,
Biaggi, A. and
Roveda, R.

2018 Conference European conference
on software
architecture

S212 A survey of search-
based refactoring for
software
maintenance

Mohan, M. and
Greer, D.

2018 Journal Journal of Software
Engineering
Research and
Development

S213 Empirical evaluation
of software
maintainability based
on a manually
validated refactoring
dataset

Hegedűs, P.,
Kádár, I., Ferenc, R.
and Gyimóthy, T.

2018 Journal Information and
Software Technology

S214 On the diffuseness
and the impact on
maintainability of
code smells: a large
scale empirical
investigation

Palomba, F.,
Bavota, G.,
Di Penta, M.,
Fasano, F.,
Oliveto, R. and
De Lucia, A.

2018 Conference Proceedings of the
40th International
Conference on
Software
Engineering

S215 An interactive and
dynamic search-
based approach to
software refactoring
recommendations

Alizadeh, V.,
Kessentini, M.,
Mkaouer, M.W.,
Ocinneide, M.,
Ouni, A. and Cai, Y.

2018 Journal IEEE Transactions
on Software
Engineering

S216 Can you tell me if it
smells? a study on
how developers
discuss code smells
and anti-patterns in
stack overflow

Tahir, A.,
Yamashita, A.,
Licorish, S.,
Dietrich, J. and
Counsell, S.

2018 Conference Proceedings of the
22nd International
Conference on
Evaluation and
Assessment in
Software
Engineering

 136 A. Nandini et al.

ID Title Authors Year Category Source

S217 Analyzing
refactoring trends
and practices in the
software industry

Khanam, Z. 2018 Journal International Journal
of Advanced
Research in
Computer Science

S218 An investigative
study on how
developers filter and
prioritise code smells

Sae-Lim, N.,
Hayashi, S. and
Saeki, M.

2018 Journal IEICE
TRANSACTIONS on
Information and
Systems

S219 Context-based
approach to prioritize
code smells for
prefactoring

Sae-Lim, N.,
Hayashi, S. and
Saeki, M.

2018 Journal Journal of Software:
Evolution and
Process

S220 Refactoring
opportunity
identification
methodology for
removing long
method smells and
improving code
analyzability

Meananeatra, P.,
Rongviriyapanish, S.
and
Apiwattanapong, T.

2018 Journal IEICE Transactions
on Information and
Systems

S221 Improving code: The
(mis) perception of
quality metrics

Pantiuchina, J.,
Lanza, M. and
Bavota, G.

2018 Conference 2018 IEEE
International
Conference on
Software
Maintenance and
Evolution (ICSME)

S222 Barriers to
Refactoring: Issues
and Solutions

Khanam, Z. 2018 Journal International Journal
on Future Revolution
in Computer Science
and Communication
Engineering

S223 Detecting and
managing code
smells: Research and
practice

Sharma, T. 2018 Conference Proceedings of the
40th International
Conference on
Software
Engineering:
Companion
Proceedings

S224 Causes, impacts, and
detection approaches
of code smell: a
survey

Haque, M.S.,
Carver, J. and
Atkison, T.

2018 Conference Proceedings of the
ACMSE 2018
Conference

S225 A quantitative study
on characteristics and
effect of batch
refactoring on code
smells

Bibiano, A.C.,
Fernandes, E.,
Oliveira, D.,
Garcia, A.,
Kalinowski, M.,
Fonseca, B.,... and
Cedrim, D.

2019 Conference 2019 ACM/IEEE
International
Symposium on
Empirical Software
Engineering and
Measurement
(ESEM)

 Code smells and refactoring: a tertiary systematic literature review 137

ID Title Authors Year Category Source
S226 An approach to

suggest code smell
order for refactoring

Guggulothu, T. and
Moiz, S.A.

2019 Conference International
Conference on
Emerging
Technologies in
Computer
Engineering

S227 Can refactoring be
self-affirmed? an
exploratory study on
how developers
document their
refactoring activities
in commit messages

AlOmar, E.,
Mkaouer, M.W. and
Ouni, A.

2019 Conference 2019 IEEE/ACM 3rd
International
Workshop on
Refactoring (IWoR)

S228 Deep learning based
code smell detection

Liu, H., Jin, J.,
Xu, Z., Zou, Y.,
Bu, Y. and Zhang, L.

2019 Journal IEEE transactions on
Software
Engineering

S229 A survey on UML
model smells
detection techniques
for software
refactoring

Mumtaz, H.,
Alshayeb, M.,
Mahmood, S. and
Niazi, M.

2019 Journal Journal of Software:
Evolution and
Process

S230 Machine learning
techniques for code
smells detection: a
systematic mapping
study

Caram, F.L.,
Rodrigues, B.R.D.O.,
Campanelli, A.S. and
Parreiras, F.S.

2019 Journal International Journal
of Software
Engineering and
Knowledge
Engineering

S231 A review on search-
based tools and
techniques to identify
bad code smells in
object-oriented
systems

Kaur, A. and
Dhiman, G.

2019 Journal Harmony search and
nature inspired
optimization
algorithms

S232 Code smells analysis
mechanisms,
detection issues, and
effect on software
maintainability

Lafi, M., Botros,
J.W., Kafaween, H.,
Al-Dasoqi, A.B. and
Al-Tamimi, A.

2019 Conference 2019 IEEE Jordan
International Joint
Conference on
Electrical
Engineering and
Information
Technology (JEEIT)

S233 Toward proactive
refactoring: An
exploratory study on
decaying modules

Sae-Lim, N.,
Hayashi, S. and
Saeki, M.

2019 Conference 2019 IEEE/ACM 3rd
International
Workshop on
Refactoring (IWoR)

S234 On the impact of
refactoring on the
relationship between
quality attributes and
design metrics

AlOmar, E.A.,
Mkaouer, M.W.,
Ouni, A. and
Kessentini, M.

2019 Conference 2019 ACM/IEEE
International
Symposium on
Empirical Software
Engineering and
Measurement
(ESEM)

 138 A. Nandini et al.

ID Title Authors Year Category Source

S235 A case study on the
effects and
limitations of
refactoring

Békefi, B.F.,
Szabados, K. and
Kovács, A.

2019 Conference 2019 IEEE 15th
International
Scientific Conference
on Informatics

S236 How does object-
oriented code
refactoring influence
software quality?
Research landscape
and challenges

Kaur, S. and
Singh, P.

2019 Journal Journal of Systems
and Software

S237 Self-admitted
technical debt
removal and
refactoring actions:
Co-occurrence or
more?

Iammarino, M.,
Zampetti, F.,
Aversano, L. and
Di Penta, M.

2019 Conference 2019 IEEE
International
Conference on
Software
Maintenance and
Evolution (ICSME)

S238 A large-scale
empirical exploration
on refactoring
activities in open
source software
projects

Vassallo, C.,
Grano, G.,
Palomba, F.,
Gall, H.C. and
Bacchelli, A.

2019 Journal Science of Computer
Programming

S239 Reducing the large
class code smell by
applying design
patterns

Turkistani, B. and
Liu, Y.

2019 Conference 2019 IEEE
International
Conference on
Electro Information
Technology (EIT)

S240 Machine learning
techniques for code
smell detection: A
systematic literature
review and meta-
analysis

Azeem, M.I.,
Palomba, F., Shi, L.
and Wang, Q.

2019 Journal Information and
Software Technology

S241 Ranking
architecturally
critical
agglomerations of
code smells

Vidal, S.,
Oizumi, W.,
Garcia, A.,
Pace, A.D. and
Marcos, C.

2019 Journal Science of Computer
Programming

S242 Generating code-
smell prediction rules
using decision tree
algorithm and
software metrics

Mhawish, M.Y. and
Gupta, M.

2019 Journal International Journal
of Computer Sciences
and Engineering

S243 Code smells and
refactoring: A
tertiary systematic
review of challenges
and observations

Lacerda, G.,
Petrillo, F.,
Pimenta, M. and
Guéhéneuc, Y.G.

2020 Journal Journal of Systems
and Software

 Code smells and refactoring: a tertiary systematic literature review 139

ID Title Authors Year Category Source

S244 A systematic
literature survey of
software metrics,
code smells and
refactoring
techniques

Agnihotri, M. and
Chug, A.

2020 Journal Journal of
Information
Processing Systems

S245 cASpER: A plug-in
for automated code
smell detection and
refactoring

De Stefano, M.,
Gambardella, M.S.,
Pecorelli, F.,
Palomba, F. and
De Lucia, A.

2020 Conference Proceedings of the
International
Conference on
Advanced Visual
Interfaces

S246 Are code smell co-
occurrences harmful
to internal quality
attributes? a mixed-
method study

Martins, J.,
Bezerra, C.,
Uchôa, A. and
Garcia, A.

2020 Conference Proceedings of the
34th Brazilian
Symposium on
Software
Engineering

S247 How does
incomplete
composite
refactoring affect
internal quality
attributes?

Bibiano, A.C.,
Soares, V.,
Coutinho, D.,
Fernandes, E.,
Correia, J.L.,
Santos, K.,... and
Oliveira, D.

2020 Conference Proceedings of the
28th International
Conference on
Program
Comprehension

S248 Increasing the trust
in refactoring
through visualization

Bogart, A.,
AlOmar, E.A.,
Mkaouer, M.W. and
Ouni, A.

2020 Conference Proceedings of the
IEEE/ACM 42nd
International
Conference on
Software
Engineering
Workshops

S249 Automatic software
refactoring: a
systematic literature
review

Baqais, A.A.B. and
Alshayeb, M.

2020 Journal Software Quality
Journal

S250 Bad smell detection
using quality metrics
and refactoring
opportunities

Bafandeh Mayvan, B.,
Rasoolzadegan, A.
and Javan Jafari, A.

2020 Journal Journal of Software:
Evolution and
Process

S251 Refactoring graphs:
Assessing refactoring
over time

Brito, A., Hora, A.
and Valente, M.T.

2020 Conference 2020 IEEE 27th
International
Conference on
Software Analysis,
Evolution and
Reengineering
(SANER)

 140 A. Nandini et al.

ID Title Authors Year Category Source

S252 When are smells
indicators of
architectural
refactoring
opportunities: A
study of 50 software
projects

Sousa, L.,
Oizumi, W.,
Garcia, A.,
Oliveira, A.,
Cedrim, D. and
Lucena, C.

2020 Conference Proceedings of the
28th International
Conference on
Program
Comprehension

S253 Developer-driven
code smell
prioritization

Pecorelli, F.,
Palomba, F.,
Khomh, F. and
De Lucia, A.

2020 Conference Proceedings of the
17th International
Conference on
Mining Software
Repositories

S254 Refactoring test
smells: A perspective
from open-source
developers

Soares, E.,
Ribeiro, M.,
Amaral, G.,
Gheyi, R., Fernandes,
L., Garcia, A.,... and
Santos, A.

2020 Conference Proceedings of the
5th Brazilian
Symposium on
Systematic and
Automated Software
Testing

S255 A longitudinal study
of the impact of
refactoring in
android applications

Hamdi, O., Ouni, A.,
Cinnéide, M.Ó. and
Mkaouer, M.W.

2021 Journal Information and
Software Technology

S256 A brief review on
multi-objective
software refactoring
and a new method
for its
recommendation

Kaur, S.,
Awasthi, L.K. and
Sangal, A.L.

2021 Journal Archives of
Computational
Methods in
Engineering

S257 Toward the
automatic
classification of self-
affirmed refactoring

AlOmar, E.A.,
Mkaouer, M.W. and
Ouni, A.

2021 Journal Journal of Systems
and Software

S258 How do Code Smell
Co-occurrences
Removal Impact
Internal Quality
Attributes? A
Developers’
Perspective

Martins, J.,
Bezerra, C.,
Uchôa, A. and
Garcia, A.

2021 Conference Brazilian Symposium
on Software
Engineering

S259 Prioritization of code
smells in object-
oriented software: A
review

Kaur, A., Jain, S.,
Goel, S. and
Dhiman, G.

2021 Journal Materials Today:
Proceedings

 Code smells and refactoring: a tertiary systematic literature review 141

ID Title Authors Year Category Source

S260 Refactoring practices
in the context of
modern code review:
An industrial case
study at Xerox

AlOmar, E.A.,
AlRubaye, H.,
Mkaouer, M.W.,
Ouni, A. and
Kessentini, M.

2021 Conference 2021 IEEE/ACM
43rd International
Conference on
Software
Engineering:
Software
Engineering in
Practice (ICSE-
SEIP)

S261 A fuzzy genetic
automatic refactoring
approach to improve
software
maintainability and
flexibility

Saheb Nasagh, R.,
Shahidi, M. and
Ashtiani, M.

2021 Journal Soft Computing

S262 Behind the scenes:
On the relationship
between developer
experience and
refactoring

AlOmar, E.A.,
Peruma, A.,
Mkaouer, M.W.,
Newman, C.D. and
Ouni, A.

2021 Journal Journal of Software:
Evolution and
Process

S263 Understanding code
smell detection via
code review: A study
of the openstack
community

Han, X., Tahir, A.,
Liang, P.,
Counsell, S. and
Luo, Y.

2021 Conference 2021 IEEE/ACM
29th International
Conference on
Program
Comprehension
(ICPC)

S264 Software refactoring
side effects

AbuHassan, A.,
Alshayeb, M. and
Ghouti, L.

2021 Journal Journal of Software:
Evolution and
Process

S265 Deep analysis of
quality of primary
studies on assessing
the impact of
refactoring on
software quality

Kaur, S., Kaur, A.
and Dhiman, G.

2021 Journal Materials Today:
Proceedings

S266 The Prevalence of
Code Smells in
Machine Learning
projects

van Oort, B.,
Cruz, L., Aniche, M.
and van Deursen, A.

2021 Conference 2021 IEEE/ACM 1st
Workshop on AI
Engineering-
Software
Engineering for AI
(WAIN)

S267 Supporting Proactive
Refactoring: An
Exploratory Study on
Decaying Modules
and Their Prediction

Sae-Lim, N.,
Hayashi, S. and
Saeki, M.

2021 Journal IEICE Transactions
on Information and
Systems

 142 A. Nandini et al.

ID Title Authors Year Category Source

S268 A Study of Relevant
Parameters
Influencing Code
Smell Prioritization
in Object-Oriented
Software Systems

Verma, R., Kumar, K.
and Verma, H.K.

2021 Conference 2021 6th
International
Conference on Signal
Processing,
Computing and
Control (ISPCC)

S269 On preserving the
behavior in software
refactoring: A
systematic mapping
study

AlOmar, E.A.,
Mkaouer, M.W.,
Newman, C. and
Ouni, A.

2021 Journal Information and
Software Technology

S270 Addressing the trade
off between smells
and quality when
refactoring class
diagrams

Barriga, A.,
Bettini, L., Iovino, L.,
Rutle, A. and
Heldal, R.

2021 Journal J. Object Technol.

S271 An automated extract
method refactoring
approach to correct
the long method code
smell

Shahidi, M.,
Ashtiani, M. and
Zakeri-Nasrabadi, M.

2022 Journal Journal of Systems
and Software

S272 How do i refactor
this? An empirical
study on refactoring
trends and topics in
Stack Overflow

Peruma, A.,
Simmons, S.,
AlOmar, E.A.,
Newman, C.D.,
Mkaouer, M.W. and
Ouni, A.

2022 Journal Empirical Software
Engineering

S273 An Empirical Study
on the Occurrences
of Code Smells in
Open Source and
Industrial Projects

Rahman, M.M.,
Satter, A.,
Joarder, M.M.A. and
Sakib, K.

2022 Conference ACM/IEEE
International
Symposium on
Empirical Software
Engineering and
Measurement
(ESEM)

S274 Refactoring for
reuse: an empirical
study

AlOmar, E.A.,
Wang, T., Raut, V.,
Mkaouer, M.W.,
Newman, C. and
Ouni, A.

2022 Journal Innovations in
Systems and Software
Engineering

S275 Toward
Understanding the
Impact of
Refactoring on
Program
Comprehension

Sellitto, G.,
Iannone, E.,
Codabux, Z.,
Lenarduzzi, V.,
De Lucia, A.,
Palomba, F. and
Ferrucci, F.

2022 Conference 29th International
Conference on
Software Analysis,
Evolution, and
Reengineering
(SANER)

 Code smells and refactoring: a tertiary systematic literature review 143

ID Title Authors Year Category Source

S276 Code Smell Co-
occurrences: A
Systematic Mapping

Neto, A.,
Bezerra, C. and
Serafim Martins, J.

2022 Conference Proceedings of the
XXXVI Brazilian
Symposium on
Software
Engineering

S277 A severity-based
classification
assessment of code
smells in Kotlin and
Java application

Gupta, A. and
Chauhan, N.K.

2022 Journal Arabian Journal for
Science and
Engineering

S278 Exploring the
relationship between
refactoring and code
debt indicators

Halepmollasi, R. and
Tosun, A.

2022 Journal Journal of Software:
Evolution and
Process

S279 Understanding
Refactoring Tactics
and their Effect on
Software Quality

Agnihotri, M. and
Chug, A.

2022 Conference 2022 12th
International
Conference on Cloud
Computing, Data
Science and
Engineering

S280 Categorical Analysis
of Code Smell
Detection Using
Machine Learning
Algorithms

Bansal, A., Jayant, U.
and Jain, A.

2022 Conference Intelligent
Sustainable Systems

