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Abstract: The present paper aims at theoretical development of a strain gauge-
based methodology for accurate determination of notch stress intensity factor 
(NSIF) in sharp center V-notched tensile configuration (CENT). In line with 
Dally-Sanford’s single strain gauge technique for determination of stress 
intensity factor (SIF) in cracked configuration, theoretical formulations have 
first been developed for single edge notch tensile (SENT) specimen and the 
same is applied to CENT by making necessary changes. Efficacy of the 
theoretical formulations developed has been investigated by carrying out finite 
element (FE) simulation in extracting NSIF for CENT. Results from FE 
simulations show that the theoretical formulations developed could correctly 
guide in accurate extraction of NSIF from the strain gauge readings in the case 
of CENT. In addition, it was also observed that the bounds on the strain gauge 
location put forward by the present formulation has an important bearing on 
accuracy of extracted NSIF. Placing strain gauges within and outside the upper 
bound results in highly accurate (<5%) and highly erroneous (>30%) values of 
NSIF respectively. 

Keywords: sharp center V-notch; NSIF; notch stress intensity factor; strain 
gauge technique; mode I; optimal radial strain gauge location. 
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1 Introduction 

Notches in structural or machine components tend to reduce the load bearing capacity 
with time, prompt crack initiation leading to catastrophic failure of such components. 
Due to high stress concentration around sharp V-notches, it is important to calculate the 
notch stress intensity factors (NSIF) VK . Seweryn (1994) found that when the NSIF 
reached the critical value, then a crack developed from a notch tip. Williams (1952), 
using eigen function expansion method, found that in a V-notch, the singularity occurs at 
the tip following ( )1V

ij ijK r fλσ θ′−= , where 1λ′ −  (the order of stress singularity) and 
( )ijf θ  (the angular function) are functions of γ  (notch angle). 
For a specific geometry of the specimen and the loading condition, the state of stress 

in the vicinity of the notch is completely defined by VK  similar to SIF for cracks. 
Researchers developed efficient numerical (Ayatollahi and Nejati, 2011; Gross and 
Mendelson, 1972; Hussain and Murthy, 2018; Kumar and Pandey, 2015; Li and Guo, 
2001) and experimental (Prassianakis and Theocaris, 1980; Kondo et al., 2001; Kondo et 
al., 2014; Ayatollahi and Nejati, 2011; Ayatollahi et al., 2013) techniques for the 
determination of NSIF VK  for different notched configurations. Sarangi et al. (2010) 
developed a single strain gauge technique for cracks in isotropic materials for accurate 
determination of SIF. Chakraborty et al. (2016) developed a single strain gauge technique 
for accurate determination of mode I stress intensity factors in cracked orthotropic 
laminates. 

Even though Paul et al. (2018) developed a finite element based single strain gauge 
technique to accurately determine NSIF VK  for single edge notch tensile (SENT) under 
mode I loading condition following Dally and Sanford (1987), no work is still reported 
for sharp center V-notch tensile configuration (CENT). In the present paper, thus, an 
attempt is made to apply the theories developed for SENT in determination of NSIF VK  
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for CENT. With an objective to analyse whether the single strain gauge technique  
developed for SENT configuration could be applied to CENT configuration, first an FE 
based numerical methodology, supported by theoretical formulation, is discussed for 
CENT configuration. To understand the efficacy of the proposed methodology for 
analysing CENT, the FE simulated results are further validated with published results of 
Treifi et al. (2009). 

2 Formulation details 

Even though the fundamental approach for determination of VK  for CENT would be 
similar to that for SENT, the loaded boundary conditions would clearly distinguish 
between the CENT configuration and the SENT configuration. The complete procedure 
starting from the fundamental theoretical formulation till the implementation of proposed 
single strain gauge technique in CENT configurations are systematically presented in the 
following sub-sections. 

2.1 Formulation for strain analysis of sharp center V-notches 

It is assumed that a sharp center V-notched isotropic and homogeneous body is subjected 
to mode I loading (plane stress). According to Williams (1952), the stresses in polar 
coordinates (Figure 1) are represented by equation (1) as follows

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1

3 cos 1 cos 2 cos 2 cos 1
Re 1 cos 1 cos 2 cos 2 cos 1

1 sin 1 cos 2 cos 2 sin 1
n

r n n n n n
n n

n n n n n
n

r n n n n n

A
rθ λ

θ

σ λ λ θ λ α λ α λ θ
λσ λ λ θ λ α λ α λ θ

τ λ λ θ λ α λ α λ θ

∞

′−
=

⎧ ⎫′ ′ ′ ′ ′− − + + +⎡ ⎤⎧ ⎫
′ ′⎪ ⎪⎪ ⎪ ⎢ ⎥′ ′ ′ ′ ′= + − − + +⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥′ ′ ′ ′ ′− − − + +⎩ ⎭ ⎣ ⎦⎩ ⎭

∑

 

(1) 

In equation (1), n  and nA′
 represent the order of the terms and coefficients of terms 

respectively in Williams’ infinite series and the corresponding eigen value for the mode I 
problems nλ′ . The eigen value nλ′  could be evaluated from the characteristic equation 
given by 

sin 2 sin 2 0n nλ α λ α′ ′+ =  (2) 

Here, nλ′  the positive root of equation (2) defines the order of singularity beyond the 
notch tip for mode I loading and is dependent on α  (equation (2)), and thus a function of 
γ  (Figure 1). The eigenvalue nλ′  can be generally represented as 

*
n n niλ λ λ′ = +  (3) 

The first eigenvalue 1λ′  has been observed to be always real meaning 1 1λ λ′ =  and 
*

1 0λ = , but the higher order eigen values may be real or complex which is decided by 
the value of the notch angle. On the basis of the nature of notch eigenvalues (real or 
complex), the coefficients, nA′  in Williams expansion may be real or complex. Details 
about nλ′  and nA′  were illustrated earlier (Ayatollahi and Nejati, 2011; Paul et al., 2018). 
Therefore, the coefficients nA′  may be written as 
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*
n n nA A iA′ = +  (4) 

Since corresponding to 1n = , 1λ′  is real, 1 1A A′ =  is the only singular term and its 
relation to the NSIF V

IK  is 

11
1 1 1 1 10

lim( 2 ( 0)) 2 (1 cos 2 cos 2 )V
I yr

K r Aλπ σ θ π λ λ λ α αλ−

→
= = = + − −  (5) 

However, for 1n > , nA′
 have both real and imaginary components. 

Figure 1 Different zones (I, II and III) around a sharp center V notch tip 

 

Using stress transformation, the Cartesian components of stresses (Figure 1) for mode I 
loading could be expressed as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1
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∑  (6) 

Using the stress strain relations for plane state of stress, the strain components 
( ),  and x y xyε ε γ

 
at ( ),r θ  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1
1

1

2 cos 1 cos 2 cos 1
2 Re

cos 2 cos 1 1 cos 3

2 cos 1 cos 2 cos 1
2 Re

cos 2 cos 1 1 cos 3

n

n

n n nn n
x

n n n n n

n n nn n
y

n n n n

A
G

r

A
G

r

λ

λ

κ λ θ λ α λ θλε
λ α λ θ λ λ θ

κ λ θ λ α λ θλε
λ α λ θ λ λ θ

∞

′−
=

′−

⎧ ⎫′ ′ ′− + ⋅ ⋅ − +⎡ ⎤′ ′⎪ ⎪= ⎢ ⎥⎨ ⎬′ ′ ′ ′⋅ − − − ⋅ −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
′ ′ ′− − ⋅ ⋅ − −⎡ ⎤′ ′

= ⎢ ⎥
′ ′ ′ ′⋅ − + − ⋅ −⎢⎣ ⎦

∑

( ) ( )
( ) ( )

1

1
1

2 1 sin 3
2 Re

2 cos 2 cos 2 sin 1n

n

n nn n
xy

n n n n

A
G

r λ

λ λ θλγ
λ α λ α λ θ

∞

=

∞

′−
=

⎧ ⎫⎪ ⎪
⎨ ⎬

⎥⎪ ⎪⎩ ⎭
⎧ ⎫′ ′− ⋅ − −⎡ ⎤′ ′⎪ ⎪= ⎢ ⎥⎨ ⎬′ ′ ′+ ⋅ −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑

∑
 (7)

 



   

 

   

   
 

   

   

 

   

   276 P. Paul et al.    
 

    
 

   

   
 

   

   

 

   

       
 

In equation (7), G  is the rigidity modulus, for plane stress, ( ) ( )1 / 1κ ν ν= − +  and for 
plane strain, 3κ ν= − . 

2.2 Formulation for single strain gauge technique 

It is always essential to locate the strain gauges in a feasible zone ahead of the notch tip 
for accurate strain measurement. In Figure 1, the zone I lying close to the notch tip is not 
an optimal zone for precise strain measurement on account of plasticity, very stiff strain 
gradients and three dimensional stress state. The farthest zone in Figure 1 (zone III) also 
does not qualify as an optimal zone for strain measurement as the solutions exist in the 
form of infinite series leading to the requirement of large number of strain gauges. It is, 
therefore, concluded that a practically viable zone or an optimal region for measuring 
such surface strains is zone II. In zone II, the strains are assumed to comprise a singular 
term (the first term of the infinite series) and additional one or two higher order terms 
(specifically second order) which are non-singular according to Williams (1952). In zone 
II, the components of strain with terms associated with 1n =  and 2n =  are generalised 
as 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 2 2

1 2 2

1 2

1 1 1* * * *
1 1 1 2 2 2 2 2 2 2 2

1 1 1* * * *
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2 , , , , , , , , , , , , ,

2 , , , , , , , , , , , , ,
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y
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G r A g r A g r r

λ λ λ
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ε λ ν θ γ λ λ θ γ ν λ λ θ γ ν

ε λ ν θ γ λ λ θ γ ν λ λ θ γ ν
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− − −

− − −

− +

= + +

= + +

= + + ( )2 1 * * *
2 2 2 2, , , ,xyA g r λ λ θ γ+

 

  (8) 

The strain expressions in equation (7) are reduced to equation (8) containing only three 
unknown coefficients 1A , 2A  and *

2A  for a given notched configuration. The strain 
expressions, as seen in equation (8), consist of a singular term (the first order term) and 
two non-singular second order terms. The normal strain component ( aε  ), at point P 
along ‘ a ‘ which is subtending an angle β  with the notch axis (Figure 2), is derived 
using strain transformation rule as 

( ) ( )
( )

1 2

2

1 1 *
1 1 1 2 2 2 2

1 * * *
2 2 2 2

2 , , , , , , , , , ,

, , , , , ,

aG r A f r A f r

r A f r

λ λ

λ

ε θ β λ ν γ θ β λ λ γ ν

θ β λ λ γ ν

− −

−

= +

+
 (9) 

where the functions 1f , 2f  and *
2f  were shown expanded by Paul et al. (2018). Using 

strain gauge readings from three radial locations, in equation (9), three simultaneous 
equations could be solved for 1A , 2A  and *

2A . After measuring 1A , the parameter V
IK  

(mode I NSIF) could be determined conveniently using equation (5). 
Another simplified technique for measuring V

IK  using single strain gauge can be 
adopted by manipulating equation (9). According to this single strain gauge technique, 
the coefficient of the term 2A  in equation (9) should be equated to zero as follows 

( )*
2 2 2, , , , , , 0f rθ β λ λ γ ν =  (10) 
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and also the coefficient of the term *
2A

 

should be equated to zero as follows

 ( )* *
2 2 2, , , , , , 0f rθ β λ λ γ ν =  (11) 

It is observed that in the case of notch angle 40γ ≤ °  (approximately), 2λ′
 is real (i.e., 

2 2λ λ′ = ) and thus *
2λ  vanishes resulting to *

2 0A =  in equation (9). Thus, the resultant 
normal strain aε  in equation (9) contains only the coefficients corresponding to 1A  and 

2A . Consequently, only the equation (10) should be satisfied in case of the notch angle 
40γ ≤ °  and the equation (11) gets automatically satisfied because *

2 0λ =  in such case. 
In case of 40γ ≤ °  and a specific Poisson’s ratio ν , infinitely many combinations of θ  
and β  can be obtained after solving equation (10). Finally for a particular combination 
of θ  and β  values, in case of 40γ ≤ ° , equation (9) reduces to equation (12) (since 

2 0f =  and *
2 0f = ) 

( )1 1
1 1 12 , , , ,aG r A fλε θ β λ ν γ−=  (12) 

where 

[ ]2
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1 1
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1)
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sin ( 3)sin 2 cos sin ( 1)sin 2

λ
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⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
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⎨ ⎬
⎪ ⎪− +⎪ ⎪
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⎪ ⎪

− − −⎪ ⎪⎩ ⎭

 

 (13) 

The equation (12) includes only 1A  meaning that only one strain gauge is required to 
determine 1A . The schematic as shown in Figure 2 represents a point ( ),P r θ  on the 
gauge line characterised by θ  at which the strain gauge needs to be positioned for strain 
measurement. At ( ),P r θ , the strain gauge is tilted along a direction making an angle 
β  with notch axis (Figure 2). The measured strain aε  at ( ),P r θ  will be substituted in 
equation (12) to evaluate 1A . Subsequently, the mode I NSIF V

IK  is evaluated using 
equation (5). 

In case of 40γ > ° , the equation (10) and equation (11) have to be simultaneously 
solved to get a unique combination of θ  and β  values for a particular Poisson’s ratio 
ν . As *

2λ  does not vanish in case of 40γ > ° , thus aε  in equation (9) comprises all the 
three coefficients 1A , 2A  and *

2A . With the unique combination of θ  and β , the 
equation (9) will be reduced to equation (12) containing only coefficient 1A  to be 
determined. The procedure to determine V

IK  is same as discussed above for case 
40γ ≤ ° . 
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Figure 2 General schematic for strain gauge orientation in a sharp center V-notched body 

 

2.3 Approximation of upper bound for the radial distance of strain gauge using 
finite element analysis 

From equation (12), it can be observed that a prior knowledge of valid radial distance r  
is necessary for pasting the strain gauge in order to determine V

IK . In order to accurately 
measure aε , the strain gauges need to be placed within the region where the multi-
parameter strain series of equation (9) is valid, and this is the basic principle for 
estimation of optimal or valid strain gauge locations. In summary, the extent of validity 
of the selected strain series, equation (9), on the gauge line decides the magnitude of 
maximum permissible radial distance of strain gauge maxr  within which the strain gauges 
ought to be pasted. Finite element analysis is carried out to determine the maxr  which is 
discussed in the following paragraphs. 

It is evident from equation (12) that the function 1f  is a constant. Other parameters 

such as rigidity modulus G  and the Williams’ coefficient 1A  are also constants for a 
given notched configuration. Hence, equation (12) gets reduced to 

11a
C

r λε −=  (14) 

In equation (14), C  is a constant. Applying logarithm on both sides in equation (14) 

1ln ( 1) ln lna r Cε λ= − +  (15) 

The equation (15) is satisfied up to a radial distance maxr r≤  from the tip of notch on the 
gauge line as shown in Figure 2. The equation (15) could be plotted as a graph between 
ln( )aε  vs. ln( )r  representing a straight line with slope 1( 1)λ −  and an intercept of 
ln( )C . As 1 1λ < , so the slope 1( 1)λ −  is invariably negative. Ideally, the aforesaid 
straight line property will not be exhibited for radial distances maxr r>  on the gauge line 
as some more higher order Williams coefficients will be required in equation (9) in 
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addition to 1A , 2A  and *
2A  to represent strain aε . Thus, for cases maxr r> , the equation 

(15) will no longer exhibit any straight line property. The maxr , thus, is the extent of 
radial location till which equation (12) is valid. In the present study, maxr  has been 
determined by superimposing a straight line of slope 1(1 )λ− −  on the plot between 
ln( )aε  and ln( )r  and noticing the point where it deviates (Figure 3). 

Figure 3 Plot of ln( )aε  vs. ln( )r  along the gauge line 

 

Figure 3 clearly shows that the maxr  is literally the radial distance till which the graph 
between ln( )aε  and ln( )r  exhibits the linear property but the graph begins exhibiting 
non-linear property beyond maxr . Once the value of maxr  is established through the plot, 
then the optimal or valid radial strain gauge locations can be easily determined a priori 
using the equation as follows 

min maxr r r≤ ≤  (16) 

where 

min 1.25r = ×  plate thickness (Li and Guo, 2001) (17) 

Any radial location r  on the gauge line, if found satisfying equation (16), is an optimal 
or valid gauge location. Using finite element analysis, the strain aε  is computed at a 
large number of nodes on the gauge line of a given sharp center V-notched configuration 
(i.e., from notch tip to the plate boundary). 

3 Results and discussions 

A sharp center V-notched plate under mode I loading with plane state of stress is 
considered as shown in the Figure 4. Geometry, material properties and loading 
parameters are listed in Table 1. Exploiting the symmetry of the specimen, only a quarter 
of the plate has been modelled in the FEA shown as shaded region in Figure 4 along with 
the boundary conditions. FEA has been carried out using general purpose FE software 
ANSYS and eight noded isoparametric elements (PLANE183) are used for meshing the 
analysis domain. Around the notch tip, eight noded elements have been collapsed in a 
characteristic spider web fashion. In order to understand the influence of notch angle on 
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the NSIF, four different notch angles viz., 0o,30o, 45o and 60o have been considered. In 
addition, four different /a b  ratios viz., 0.2, 0.4, 0.6 and 0.8 have been considered to 
understand the influence of /a b  ratio. 

Figure 4 Sharp center V-notched configurations under uniaxial tension 

 

Table 1 Geometric, material and loading parameters of sharp center V-notched configurations 

Example b (mm) 
Notch angle 

γ  /a b  / 2h b  ν  E (GPa) σ (MPa) 

1 75 30o 0.2 2 1/3 200 100 
2 75 0°, 30°, 45°, 

60° 
0.2, 0.4, 0.6, 

0.8 
2 1/3 200 100 

3.1 Determination of maxr  and mesh convergence 

A mesh refinement study has been suitably carried out to decide the degree of refinement 
required in the present FEA based on the converged value of maxr . For this purpose, four 
meshes have been considered in the ascending order of mesh density with /a b = 0.2 as 
shown in Figure 5 indicating the number of elements (NE) and number of nodes (NN). 
The finite element meshes are so designed that a large number of nodes lie along a radial 
line known as the gauge line (Figure 5) making an angle of θ  with the notch axis. This 
line emanates from the notch tip and spans up to the outer boundaries of the notched 
plate. From FEA, strains along the radial line are obtained in the global coordinate system 
and are transformed into the linear strain aε  in the direction having an orientation of β  
with the notch axis. The radial distances ( )r  of each node from the notch tip along the 
gauge line are then obtained. 
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Figure 5 Mesh refinement for convergence: (a) Mesh 1; (b) Mesh 2; (c) Mesh 3 and (d) Mesh 4 

 

As there is a necessity of knowing optimal or valid radial strain gauge locations to 
accurately measure the NSIF, so this gives rise to the necessity of knowing the 
appropriate range of radial distances within which the strain gauge can be pasted. The 
minimum permissible radial distance minr  is 1.25 times the plate thickness and the 
maximum permissible radial distance maxr  is to be determined numerically using FEA. A 
plate thickness t = 2 mm has been considered in all the examples throughout, hence 

min =1.25 2 mm = 2.5 mmr × . The log-log plot for each of the four meshes of the case 
/a b = 0.2 are shown in Figure 6 and the corresponding maxr  values are also shown. It is 

to be noted here that the notch tip point is not plotted as the radial distance r  at this point 
is zero and the logarithm of zero is undefined. Each log-log plot (Figure 6) consists of 
very clear linear portion followed by a clear non-linear portion as stated in the previous 
section. The radial location corresponding to the terminal point of the linear portion of 
the plots in Figure 6 basically denotes the extent of the three parameter strain series or 

maxr  following equation (12). The extent of the linear portion of the plots ( maxr ) is 
observed to gradually decrease with successive mesh refinement due to decreased finite 
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element size and convergence could be observed. Therefore, in all further analyses, the 
refined mesh (NE = 88500, NN = 266441) has been used. Table 2 shows the converged 
value as a result of mesh refinement study. 

Figure 6 Plot of ln( )aε  vs. ln( )r  for sharp center V-notch with γ  = 30o subjected to mode I 
loading corresponding to four successive refined FE meshes viz.: (a) Mesh 1;  
(b) Mesh 2; (c) Mesh 3 and (d) Mesh 4 (see online version for colours) 

 
(a) 

 
(b) 

 
(c) (d)  

Table 2 Finite element mesh convergence for a sharp center V-notch with γ  = 30o, /a b = 0.2 

Mesh maxr  (mm) 

Mesh 1 11.13 
Mesh 2 10.72 
Mesh 3 7.98 
Mesh 4 7.70 

Figure 7 presents the relative error between the FE solution of Mesh 4 (Figure 5) and 
ideal solution of ln( )aε (obtained from the straight line) at different radial locations along 
the gauge line. Figure 7 further shows that the error reduces monotonically when one 
observes from the non-linear portion to the linear portion. The radius where the error 
becomes less than 0.5% is regarded as the upper limit on the permissible radial distance 
( maxr ) for pasting the strain gauge for the sharp centre V-notched configuration with 

/a b = 0.2 and notch angle γ  = 30o. The point representing the value of maxr  is marked 
in all the log-log plots in Figure 6. 
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Figure 7 Relative error in the FE computed values of ln( )aε  as a function of radial location 
along the gauge line of the sharp center V-notched configuration 

 

3.2 Influence of /a b  on maxr  in sharp center V-notched configurations 

For any notched geometry, ascertaining the characteristic behaviour of the maximum 
permissible radial distance of strain gauge maxr  in response to the varying /a b  ratio is 
very much essential. In this context, variation of max /r b  with /a b  ratio for sharp center 
V-notched configurations with different notch angles has been studied. Figure 8 shows 
the typical graph for the variation of ln( )aε  with ln( )r  for / 0.2a b =  to 0.8  and 

60γ =  which is a direct representation of the determination of maxr . It could be seen 
from Figure 8 that values of maxr  vary with the /a b  ratio. In order to understand the 
influence of /a b  ratio on maxr , the ratio of max /r b  is plotted against /a b  for different 
notch angles as shown in Figure 9. Figure 9 exhibits the characteristic bell shaped curve 
showing that the parameter max /r b  increases in the beginning while shifting from 

/a b = 0.2 to /a b = 0.4 and subsequently it decreases while shifting from /a b = 0.4 to 
/a b = 0.8 which is due to the edge effect as observed in the case of cracks as well as for 

SENT configurations (Sarangi et al., 2010; Paul et al., 2018). Figure 9 also gives an 
approximate trend of obtaining higher maxr  with higher notch angle γ  at a constant 

/a b  ratio. 
Table 3 shows the maxr  values for different notch angles and corresponding to 

different /a b  ratios considered in this study. More importantly, Table 3 shows the 
computed values of normalised notch SIF and their comparison with the reference 
solutions (Treifi et al., 2009). As could be seen from Table 3 that the normalised notch 
SIF for all the cases of notch angles and /a b  considered in the present study show 
excellent agreement with the reference solution with highest error being only 1.87%. This 
clearly shows that theoretical developments for determination of notch SIF using single 
strain gauge leads to correct values of VK  when implemented numerically. This 
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reinforces that the single strain gauge technique developed for SENT could be applied to 
CENT for determination of notch SIF. 

Figure 8 Plot of ln( )aε  vs. ln( )r  for mode-I sharp center V-notched configurations with notch 
angle 60γ =  (see online version for colours) 

 

Figure 9 max /r b  variation with /a b  for sharp center V-notched configuration for different 
notch angles γ  under mode I loading condition 

 

In addition to showing the trends of maxr  with /a b  and notch angle as discussed, results 
in Table 3 also show that notch SIF increases with increasing notch angles from 0o to 60o 
for all /a b  ratios. In order to substantiate the usefulness of knowing maxr  a priori, strain 
measurements are taken at selected optimal and non-optimal radial gauge locations and 
NSIFs are calculated based on those strain values and listed in Table 4. Table 4 clearly 
shows that the notch SIF values show excellent agreement with the reference solution at 
radial locations maxr r< , the percentage relative error increases at radial locations 

maxr r> , and the error is as high as 30% at r  which is far ahead of maxr . Though the 
results in Table 4 correspond to γ  = 30o and /a b = 0.2 particularly, however the trends 
for other /a b  and γ  were observed to be the same. This again clearly substantiates the 
importance of maxr  in accurate determination of notch SIF in CENT specimen. 
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Table 3 Validation of computed results (notch stress intensity factors) with published results 

Notch 
angle 
γ  /a b  

maxr  
(mm) 

Normalised 
NSIF 

11

V
IK
a λσ π −  

Normalised 
NSIF 

(Treifi et al., 
2009) 

Error % in 
normalised NSIF 

0.2 6.59 1.031 1.024 0.68 
0.4 11.37 1.110 1.109 0.09 
0.6 9.59 1.311 1.303 0.61 

0o 

0.8 5.07 1.812 1.814 0.11 
0.2 7.70 1.070 1.053 1.61 
0.4 13.19 1.160 1.151 0.78 
0.6 9.84 1.378 1.375 0.22 

30o 

0.8 5.08 1.971 1.959 0.61 
0.2 30.99 1.087 1.067 1.87 
0.4 47.07 1.197 1.184 1.09 
0.6 42.57 1.442 1.433 0.63 

45o 

0.8 18.53 2.093 2.072 1.01 
0.2 41.44 1.138 1.131 0.62 
0.4 63.72 1.265 1.261 0.32 
0.6 41.58 1.560 1.547 0.84 

60o 

0.8 15.81 2.2826 2.283 0.02 

Source: Treifi et al. (2009) 

Table 4 Error in mode-I normalised NSIF, V
IK  at different strain gauge locations for sharp 

center V-notch with 30γ = , / 0.2a b =  ( maxr = 7.7 mm, minr = 2.5 mm) 

Radial location  
(in mm), r  max/r r  

Estimated 
normalised V

IK  

% Relative error 
( )Ref 1.053V

INormalised K − =  

3.0 (optimal) 0.38961 1.080 2.6 
4.0 (optimal) 0.519481 1.087 3.2 
5.0 (optimal) 0.649351 1.093 3.8 
6.0 (optimal) 0.779221 1.101 4.6 
7.0 (optimal) 0.909091 1.108 5.2 
8.0 (Non optimal) 1.038961 1.115 5.9 
9.0 (Non optimal) 1.168831 1.124 6.7 
11.0 (Non optimal) 1.428571 1.140 8.3 
15.0 (Non optimal) 1.948052 1.179 12.0 
20.0 (Non optimal) 2.597403 1.238 17.6 
25.0 (Non optimal) 3.246753 1.303 23.7 
30.0 (Non optimal) 3.896104 1.374 30.5 
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4 Conclusion 

The presented work shows theoretical formulations for CENT configuration followed by 
FE simulations for determination of accurate NSIF based on Williams’ strain series 
expansion approach and Dally-Sanford’s single strain gauge technique. We could observe 
that the theoretical formulations developed for determination of accurate NSIF for SENT 
using a single strain gauge technique could be also used for determination of accurate 
NSIF for CENT and examining the versatility of these formulations with CENT 
configurations is purely a novel research work. In addition, the presented work shows the 
importance of optimal or valid radial strain gauge locations for obtaining accurate NSIFs. 
There exists a maximum permissible radial distance maxr  within which the strain gauge 
needs to be pasted to ensure determination of accurate NSIF. For a given CENT 
configuration, the maxr  could be determined a priori using the proposed finite element 
based methodology and it varies with /a b  ratio of CENT for a given notch angle. With 
the increase in /a b , maxr  increases up to a certain value of /a b , and beyond that maxr  
again decreases exhibiting a characteristic bell shaped curve. Numerical (finite element) 
simulations show that in determination of accurate NSIF for CENT configurations using 
the proposed single strain gauge technique, a highly accurate (error < 3%) value of NSIF 
may be obtained only if the strain is measured within maxr , but a highly erroneous (error 
> 30%) NSIF may result if strain is measured beyond maxr . With the help of the present 
investigation, we could conclude that the NSIF, in CENT configurations, increases with 
notch angle and /a b  ratio. 
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