

International Journal of Business and Systems Research

ISSN online: 1751-2018 - ISSN print: 1751-200X
https://www.inderscience.com/ijbsr

Reconfigurable business process: a constraint-based approach

Priyanka Chakraborty, Anirban Sarkar

DOI: 10.1504/IJBSR.2023.10046549

Article History:
Received: 07 May 2021
Accepted: 30 November 2021
Published online: 05 January 2024

Powered by TCPDF (www.tcpdf.org)

Copyright © 2024 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijbsr
https://dx.doi.org/10.1504/IJBSR.2023.10046549
http://www.tcpdf.org

 Int. J. Business and Systems Research, Vol. 18, No. 1, 2024 1

 Copyright © 2024 Inderscience Enterprises Ltd.

Reconfigurable business process: a constraint-based
approach

Priyanka Chakraborty* and Anirban Sarkar
Department of Computer Science and Engineering,
National Institute of Technology Durgapur,
West Bengal, India
Email: priyanka1nitdgp@gmail.com
Email: sarkar.anirban@gmail.com
*Corresponding author

Abstract: Continuous and rapid changes in the business environment and user
requirements demand a suitable design of business processes (BPs). Most of the
existing approaches either add a large number of BP elements to the existing
BP or replace the current BP with a new one. Thus, those approaches are
expensive and less user-friendly. Conversely, the constraint-based approach
results in a minimal amount of changes in the structure of BP. Additionally,
this approach gives the privilege to the stakeholders. Additionally, this
approach gives the privilege to the stakeholders to reconfigure the BPs
according to their goal requirements. In this paper, a constraint-driven approach
is proposed to achieve reconfigurability in BP. Constraints like data, gateway
and ordering are considered in BPs. Several real-life case studies have been
described in detail. Finally, an algorithm named reconfigurable business
process achievement algorithm (RCBPA) has been proposed and implemented
to achieve reconfigurability in BP.

Keywords: constraint-based reconfigurability; gateway constraints; ordering
constraints; data constraints; reconfigurable business process.

Reference to this paper should be made as follows: Chakraborty, P. and
Sarkar, A. (2024) ‘Reconfigurable business process: a constraint-based
approach’, Int. J. Business and Systems Research, Vol. 18, No. 1, pp.1–29.

Biographical notes: Priyanka Chakraborty is presently a Research Fellow in
the National Institute of Technology Durgapur, India, since February 2016. She
received her MTech in Software Engineering from the same institute in 2015,
and MCA from the West Bengal University of Technology, India, in 2011. She
is pursuing her PhD in the field of Software Design. Her main areas of research
interests include enterprise architecture framework.

Anirban Sarkar is presently an Associate Professor in the Department of
Computer Science and Engineering, National Institute of Technology
Durgapur, India. He received his PhD from the National Institute of
Technology Durgapur, India, in 2010. His broad areas of research interests are
software engineering, database management system and cloud computing.
He is an author or co-author of over 100 publications in numerous refereed
journals and conference proceedings.

 2 P. Chakraborty and A. Sarkar

1 Introduction

Business processes (BPs) are now seen as business services (BSs), which extend the
organisational boundaries and need to satisfy the cross-organisational objectives. In this
context, the BP can be defined as “a business process is a collection of activities that
takes one or more kinds of input and creates an output that is of value to the customer”
(Monk and Wagner, 2012). Technically, BPs are realised as service oriented architecture
(SOA) which is a service-based software integration solution for related business
activities (Li et al., 2005; Basias et al., 2013; Sarno et al., 2015). Reusability, flexibility
and maintainability are the main powers of service-oriented architecture (Ardagna and
Pernici, 2007).

A BP is comprised of five types of elements including, a set of activities or user tasks,
a set of sequence flows, a set of gateways, a set of events and data or messages. Those
five BP elements and the BP flow are immensely affected by the three major constraints
like data, gateway and ordering constraints. Moreover, the three major BP elements such
as data, gateway and activity and their corresponding constraints like data, gateway and
ordering constraints determine the execution path of the BP based on the various
conditions. Those three constraints are general and mandatory, however, there may
exist specific application-based specific constraints like event-based constraints, role
constraints to affect the BP flow to a certain limit. Activities or user tasks are considered
as the atomic units of a BP. The same activities can be reused in different BPs. An
activity can be related to another activity, gateways, or events through sequence flows.
The rearrangement, elimination, or addition of those five types of BP elements makes a
BP reconfigurable so that it can adapt to the new business goals or sub-goals to a certain
pre-defined limit. Reconfigurability of BPs can be achieved at either of the external or
internal levels depending on the changes in the external or internal business scenarios of
an organisation (Arsanjani and Ng, 2002; Bazoun et al., 2014; Marques et al., 2017).
Internal level reconfigurability of a BP is the topic of concern in this paper.

The rapid and unpredictable changes in customer requirements and marketing
strategies of a business organisation demand introduction of reconfigurable BPs to adapt
to the ever-changing business environment (Gao and Miao, 2013; Silva et al., 2016;
Chakraborty and Sarkar, 2017, 2019). Reconfigurability property enables those design
capabilities in BPs by refining the overall business goals and behaviour patterns of the
resultant services in an enterprise computing environment. Reconfigurable BPs are
reusable, flexible and cost-effective. Moreover, those can quickly respond to the market
and business environment changes. Suppose, a company aims to sell only dresses for the
children, later it decides to open a new segment to sell dresses also for the adults. Here,
the goal (selling dresses) remains the same but a new sub-goal has been added with the
previous set of sub-goals. There is no need to replace the associated BPs to satisfy the
newly added sub-goal. The new sub-goal can be sufficed by only the reconfigurable BPs.
Thus, new BPs are capable of satisfying both the previous and new sub-goal
simultaneously. In this context, the major research questions are:

1 How BPs are made reconfigurable?

2 At which range (maximum range) a BP is reconfigurable.

Here, the maximum range signifies the highest range of retaining the same existing
services along with the new services that have been integrated into the new BP. The aim

 Reconfigurable business process 3

is to make the best use of the pre-existing services by reusing them in the newly modified
BP and to reduce the number of new services (Li et al., 2011; Mendonça et al., 2013; Yin
et al., 2017) to be integrated into that new BP. If the range of reconfigurability of a BP
exceeds that maximum value, then that BP is not reconfigurable, and a new BP is to be
created.

Three major ways to achieve reconfigurability in BPs are:

1 Goal has been changed from the previous one. The newly modified goal has been
availed by the rearrangement of several BP elements within a BP. In this scenario, no
new BP elements have been added.

2 Goal has been reformed, and the new goal is achieved either by adding a large
number of BP elements (user tasks, gateways and events) to the existing BP or by
replacing the previous BP with a new BP.

3 Previous goal is transformed into a new goal through minimum changes of its
sub-goals. Consequently, the new sub-goal is achieved with nominal changes of the
elements of the BP, associated with that sub-goal.

The first approach is applicable only when the goal is changed to its lowest amount by
merely the rearrangement of the elements in the BP, associated with that goal. In reality,
this approach is not very feasible because the ever-changing business environment
requires a certain amount of changes in its goal and corresponding sub-goals and those
changes cannot be sufficed by only rearranging several BP elements. In the second
approach, a large amount of BP elements or the replacement of the previous BP with the
new BP results in the maximisation of both the development and the maintenance cost.
These costs can be reduced by following the third approach which states that the
incorporation of a minimal amount of BP elements into the pre-existing BP is sufficient
to satisfy the modified goal. Consequently, the third approach is more feasible,
cost-effective, easy to implement and less time-consuming in comparison with the other
two approaches.

Most of the existing works followed either the first or the second approach, whereas
the third approach is adopted in this paper. Consideration of the constraint property of the
BP helps to incorporate the minimum number of new elements in the pre-existing BP to
suffice the newly modified goal. Moreover, constraint specification plays an important
role in specifying the boundary or limit of the domain of BPs. By changing only,
the constraint specifications, the BP can be made reconfigurable. Consequently,
constraint-based reconfigurable BPs (Gao et al., 2006; Li et al., 2011) become more
user-centric.

In this paper, constraint-based reconfigurable BP has been introduced. Whenever the
operating environment and business requirements are changed, reconfigurable BPs
change their behaviour accordingly, to adapt to such changes. Usually, either the prior BP
is replaced by a new BP, or an enormous number of new BP elements are incorporated
into the prior set of BP elements within the BPs. Thus, both approaches (replacement of
BP and the integration of new BP elements to the existing BP) cause an increase in the
development and maintainable cost of BPs. In contrast, rearrangement of the existing BP
elements within a BP or incorporation of a minimal number of BP elements within
an existing BP is a cost-effective procedure to achieve reconfigurability in BPs.

 4 P. Chakraborty and A. Sarkar

Constraint-based reconfiguration makes BPs reusable, more flexible, more user-centric
and cost-effective. The constraints are divided into three categories like:

1 data constraints

2 ordering constraints

3 gateway constraints.

Formal representations of all these three constraints are presented in this paper. Business
process model and notation (BPMN) (Chinos and Trombetta, 2009; Kurz, 2016) have
been used to represent the constraints pictorially. Finally, an algorithm has been proposed
and implemented to achieve reconfigurability in the BP.

This paper is structured with the following sections: Section 2 encompasses the
related work. Section 3 contains the representation of behavioural aspects of a BP.
Section 4 is comprised of the proposed work and the proposed algorithm with its
implementation. Section 5 contains one case study for the illustration of the algorithm
through the representation of equivalent BP diagrams related to each constraint. Section 6
contains experimental results and their analysis. Section 7 contains the conclusions.

2 Related work

Earlier existing works in this field followed mainly the second approach to achieve
reconfigurability in a BP (Yu and Lin, 2005; Hermosillo et al., 2010). This approach
leads to either the addition of lots of BP elements to existing BP or the replacement of the
existing BP by a refined and new BP. Consequently, that method is expensive and less
user-friendly. In Zhang et al. (2012), a proactive service selection and reconfiguration
approach has been proposed to prevent service process failure. Both dependent and
independent context models are introduced to describe the context model transition
relationship. A probabilistic graph model is used to represent the transition relationship
among context elements.

The independent context model can be easily adopted, while the dependent model
contains dependency between control states. Finally, context transition prediction
algorithms for both context models are represented. In Zhang et al. (2005), a workplace
design framework has been proposed. This framework automatically analyses the
BPs and produces workplace applications from those BPs. In Xiao et al. (2011), a
constraint-based framework has been proposed. It can dynamically adapt the BPs.
Process fragments are modular and reusable functional units. Depending on the process
fragments, process adaptation can be in two levels – the process schema level and the
fragment level. At the process schema level, the fragments and their relationships are
modelled by constraints. Whenever business requirements change a new process,
schemas are dynamically generated depending on the constraints. The fragment level
focuses on fragment selection and substitution. Finally, an algorithm for process
generation has been proposed. In Jabbar et al. (2015), a BP reconfiguration method
based on UML and polychromatic sets (PS) theory have been proposed. Finally, a BP
reconfiguration for enterprise information systems has been suggested.

 Reconfigurable business process 5

3 Representation of functional constraints in BP

Sometimes, pre-existing BPs may be outdated, and they should be replaced by new BPs.
Moreover, customer needs, business rules and policies, operating environment in which
BPs operate change abruptly and in an undefined manner from time to time. Thus,
reconfigurable BPs are required to cope with the ever-changing operating environment
and business requirements easily.

BPs are composed of a set of BP elements, like, activities or user tasks, gateways,
events, sequence flows and data. Same BP elements can be reused across multiple BPs.
Suppose, goal GA has been modified into goal GB where GB is the superset of GA.
Corresponding BP (BPA) of GA will be also modified into the BP (BPB) associated with
GB, so that BPB can be the superset of BPA that is BPA ⊆ BPB. Hence, BPB contains
several additional BP elements with the existing BP elements of BPA.

In this work, the relationship among all the elements is specified in a constraint-based
manner. Constraint-based reconfiguration of the process makes BPs reusable, more
flexible, user-centric and cost-effective. It makes BPs adapt to the ever-changing internal
and external business environment easily. Constraint-based reconfigurability can be
achieved through three techniques like changing the range of data, adding some
constraints in gateway level and changing the order of the activities.

A BP is comprised of five types of elements like the set of activities ()Ac or user

tasks, set of events (),Ev set of gateways (),Gw set of data ()Da and set of sequence

flows ().Sq The set of constraints is considered as the sixth kind of BP element. Thus,

BP can be denoted as ().BP Ac Ev Gw Da Sq Co→ ∪ ∪ ∪ ∪ ∪ Activities, events,
gateways, data or messages are structural elements and constraints are behavioural
elements of a BP.

BP activities are of two types, like, set of tasks (Ta) (atomic activities) and a set of
sub-processes (SP) (composite activities). Both types of activities are reusable through
different BPs. Events may be of five types like start events (SEv), intermediate events
(IEv), timer events (TEv), message events (MEv) and end events (EEv). Gateways are of
five kinds like a parallel gateway (PGa), inclusive gateway (IGa), exclusive gateway
(XGa), event gateway (EGa) and complex gateways (CGa).

Specification of constraints of different levels can be of three types, data level
constraint specification (DC), gateway level constraint specification (GC) and ordering
level constraint specifications (OC). Formal representation of the structural and
behavioural elements within a BP can be represented as,

()() () () () () () () ()x Ele x Type x Ac x Ev x Gw x Da x Sq x Co x∀ ∧ → ∨ ∨ ∨ ∨ ∨ (F1)

()() () () ()x Ac x Type x Ta x Sp x∀ ∧ → ∨ (F2)

()() () () () () () ()x Gw x Type x PGa x IGa x XGa x EGa x CGa x∀ ∧ → ∨ ∨ ∨ ∨ (F3)

()() () () () () () ()x Ev x Type x SEv x IEc x TEv x MEv x EEv x∀ ∧ → ∨ ∨ ∨ ∨ (F4)

() ()() () () () ()x Co x Type x DC x GC x OC x∀ ∧ → ∨ ∨ (F5)

 6 P. Chakraborty and A. Sarkar

(
)

1 2 1 2 (1) (2) (1) (2)
(1, 1) (2, 2) _ _ _ (1, 2)

3 4 (3) (4) (1, 3) (2, 4)
_ _ _ (

y y t t Ac y Ac y timestamp t timestamp t
Execute y t Execute y t Greater than equal to t t

t t timestamp t timestamp t Execute y t Execute y t
Greater than equal to t

∀ ∀ ∃ ∃ ∧ ∧ ∧

∧ ∧ ∧
→ ∃ ∃ ∧ ∧ ∧
∧ 3, 4)t

 (F6)

In F1, Ele() predicate implies the element of a BP and Type() represents the type of its
argument. Ac(), Ev(), Gw(), Da(), Sq() and Co() predicates imply activities, events,
gateways, data, sequence flows and constraints elements of a BP, respectively. In F2,
predicates Ta() and Sp() imply two types of activities like a task (atomic activity) and
sub-process (composite activity), respectively. In F3, predicate PGa() indicates parallel
gateway or AND gateway, IGa() represents Inclusive gateway, XGa() implies exclusive
or EX-Or gateway, EGa() represents event gateway and CGa() implies complex
gateways. In F4, predicates, SEv(), IEv(), TEv(), MEv() and EEv() implies start event,
intermediate event, timer event, message event and end events, respectively. In F5,
predicates DC(), GC() and OC() represent data constraint, gateway constraints and
ordering constraints, respectively. In F6, the timestamp() predicate denotes the time and
t1, t2 are instances of timestamp. Similarly, y1 and y2 are instances of activities.
Execute() predicate implies that y1 and y2 instances are executed at timestamp t1 and t2
respectively. Greater_than_equal_to() predicate implies that the second argument is
greater than or equal to the value of the first argument. Thus, F6 implies that a BP will be
reconfigurable and maintain the temporal aspect property if the activities of the BP
maintain a specific order of execution in the previous and the new modified BP.

The detailed formalism of all those three constraints can be expressed as follows.

3.1 Data or message constraints (DC)

The BP elements like activities, gateways and events may receive data as input and
generate the output data. However, the data flow may be a constraint in different ways. It
can be of three types, data type constraints (DTC), not null constraints (DNLC) and value
range constraints (DVRC). DTC defines what should be the type of input dataset and
output dataset. It also specifies that the input data type and output data type must be
compatible. DNLC specifies that the value of the data must not be null. DVRC describes
that the value range of the data domain must lie between the maximum and minimum
values specified by the user.

()() () () () ()x DC x Type x DTC x DNLC x DVRX x∀ ∧ → ∧ ∧ (F7)

()(
())

() () () () (,) (,)

(), ()

x DTC x y z Ac y Gw y Ev y Input x y Output z y

EQ DT x DT z

∀ → ∃ ∃ ∨ ∨ ∧ ∧

∧
 (F8)

()()()() () (,) _ _ (), 0x DNLC x y Ac y Input x y Not Equal To value x∀ → ∃ ∧ ∧ (F9)

() (
()

())

() () (,)
_ _ _ (), Min

_ _ _ (), Max

x DVRC x y Gw y Input x y
Greater Than Equal To value x

Less Than Equal To value x

∀ → ∃ ∧ ∧

∧

∧

 (F10)

 Reconfigurable business process 7

In F7, DC() predicate represents the data constraint. DTC(), DNLC() and DVRC()
represent three types of data constraints like data type constraints, not null constraints and
value range constraints, respectively. In F8, predicate Input() implies that the first
argument is input to the second argument. Similarly, the Output() predicate denotes that
the first argument is the output of the second argument. DT() function implies the data
type of its argument. EQ() predicate implies that its two arguments are equal in value. In
F9, the value() function returns the value of its argument and the Not_Equal_To()
predicate implies that the value of its first argument is not equal to zero. In F10,
Greater_Than_Equal_To() predicate denotes that the value of the first argument is
greater than or equal to the Min(constant value) value. Less_Than_Equal_To() predicate
implies that the value of the first argument is less than or equal to the Max (constant
value) value. The Min and Max values are set by the user.

3.2 Gateway level constraints (GC)

In a BP, gateways control the flow of the process. Gateways are of five types, namely:

1 exclusive gateway (XGa)

2 inclusive gateway (IGa)

3 parallel gateway (PGa)

4 event-based gateway (EGa)

5 complex gateway (CGa).

These types of constraints restrict the flow of the elements within a BP. Exclusive
gateway evaluates the state of a BP depending on various conditions and divides the
flows into two or more paths. Only one of those paths will be active at a time, i.e., all the
paths are mutually exclusive. An inclusive gateway breaks the process flow into two or
more paths. Unlike, exclusive gateway, an inclusive gateway can choose more than
one path at a time. Parallel gateways are used to demonstrate the simultaneous
occurrences of two tasks. Event gateway works like an exclusive gateway, but it checks
what event has happened. Depending on an event, this gateway divides the process flow
into more than one path. Only one path can be activated at a time.

()1 2 (1) (2) (1, 2) (1 2) (1 2)x x Ac x Ac x XGa x x x x x x∀ ∀ ∧ ∧ → ¬ ∧ ∨ ∧ ¬ (F11)

()1 2 (1) (2) (1, 2) (1 2)x x Ac x Ac x IGa x x x x∀ ∀ ∧ ∧ → ∨ (F12)

()1 2 (1) (2) (1, 2) (1 2)x x Ac x Ac x PGa x x x x∀ ∀ ∧ ∧ → ∧ (F13)

() ()1 2 (1) (2) (1, 2) (1 2) (1 2)x x Ev x Ev x EGa x x x x x x∀ ∀ ∧ ∧ → ¬ ∧ ∨ ∧ ¬ (F14)

In F11, F12, F13 and F14, predicates XGa(), IGw(), PGa() and EGa() imply exclusive or
EX-Or gateway, inclusive gateway, parallel gateway or AND gateway and event
gateway, respectively.

 8 P. Chakraborty and A. Sarkar

3.3 Ordering constraints (OC)

All activities within a BP are performed either in a particular order or in non-sequential
order. The order of execution of activities must be preserved properly. A small change in
the execution order of activities results in a modified BP.

(
)

1 2 1 2 (1) (2) _ (1, 2) (1)
(2) (1 2) (1, 1) (2, 2)

_ (1, 2)

x x t t Ac x Ac x Seq order x x timestampl t
timestampl t x x Execute x t Execute x t
Greater than t t

∀ ∀ ∃ ∃ ∧ ∧ ∧

∧ → ∧ ∧ ∧
∧

 (F15)

In F15, Seq_order() predicate implies the sequential order of its two arguments. The
timestamp() predicate implies time and t1, t2 are instances of timestamp. Execute()
predicate implies that the first argument is executed at the timestamp of the second
argument. Greater_than() predicate implies that the second argument is greater than the
first argument.

3.4 Priority of constraints

Gateway constraints influence the flow of a BP at the most as the inclusion of a gateway
determines the path of execution of the activities within a BP. If gateway constraint exists
then only, data constraints and ordering constraints come into existence. Data constraints
affect the subsequent activities, whereas, ordering constraints affect the pre-condition and
the post-condition of the sequence flows within a BP. When there is a requirement of
modification in more than one constraint, then priority values are needed to be assigned
to those constraints so that the execution order of the BP elements can be structured
according to those priority values of the constraints. The gateway constraint is given the
highest priority due to its maximum impact on the BP flow while the ordering and the
data constraints are given lesser priority values because of their lower effect on BP flows.
Thus, the priority values of various constraints turn a BP into a reconfigurable BP in a
more user-defined manner. Moreover, whenever GC, DC and OC exist simultaneously
GC will be executed first followed by DC and OC. It can be denoted as GC → DC ∧ OC.

4 Proposed reconfigurability mechanism in BP

The procedure for achieving constraint-based reconfigurable BP is comprised of
multi-fold steps. The first step is to identify the sub-goals to be changed. Then, the BPs,
associated with those sub-goals will be recognised. The following step is to identify the
BP components that are required to be reconciled. Then, data present in the same
activities within the same process will be identified and merged.

4.1 Method

Any BP is deployed to achieve a set of business goals. Each goal may be comprised of
several sub-goals. Whenever any of these sub-goals is changed, or a new sub-goal is
added, the associated BP is also changed. New BP (BP′) satisfies both the former and the
new sub-goal. Thus, BP′ is the superset of the previous BP (BP ⊆ BP′).

 Reconfigurable business process 9

The entire procedure for achieving reconfigurable BP includes different steps. At
first, the sub-goal is changed. Either a new sub-goal is added, or an existing sub-goal is to
be modified. Secondly, identify the associated BP that is to be modified to satisfy the
changed or newly added sub-goal.

The next step is to identify which constraint level modification is required. It may be
either at the data constraint level modification, at the gateway constraint level
modification or the ordering level constraint modification. It may also be any
combination set of those three constraints. Whenever more than one constraint level
change is required, the execution order of the constraints is maintained by the priority
values related to each of them. Priorities are determined by the users depending on the
input and output sequence flows of the BP elements. Gateway level constraint
modification has been given the highest priority. All the constraints to be changed are
stored in a priority queue with their priority values. While the priority queue is
non-empty, the constraint with the highest priority is fetched from the queue, and
corresponding activities are executed.

The change in the data level constraint is defined by the change in the range value of
the data domain, depending on the related condition specified by the stakeholders. In
gateway level constraint changes, a new type of gateway (exclusive, inclusive, parallel,
event and complex) replaces the old one. In ordering level constraint specification, the
order of the execution of a set of activities is rearranged based upon the current business
requirements.

All the constraints are stored in a priority queue based upon their priority values.
Priority values of the constraints are assigned according to their order of execution. At
first, the input dataset is classified into distinct classes, depending on the value range of
the data constraint. After categorisation, different classes of data are given as input into
different types of gateways based on their related checking conditions.

Different execution orders of a set of activities result in a distinct set of outputs. Thus,
in the ordering constraint, the execution order of the set of activities keeps changing. Data
constraints and ordering constraints are given the same priority values. Thus, whenever
more than one constraint level is needed to be changed in the priority queue; they are
executed according to their priority values.

4.2 Metrics

In this section, three software metrics, namely:

1 degree of reusability (DRU)

2 degree of reappropriation (DRA)

3 degree of reconfigurability (DRC) are introduced.

DRU is used to measure how many elements of the previous BP are reusable in newly
modified BP. DRA is represented to calculate the reappropriation, required to carry out in
each of those BP elements, obtained in DRU. DRC is formulated to estimate how much
complexity exists to change each type of BP element in terms of gateway (Ga), activity
(Ac) and data (Da) type by assigning certain weightage values to Ga, Ac and Da.

 10 P. Chakraborty and A. Sarkar

a Degree of reusability (DRU) is represented as the ratio [equation (1)] of the number of
reusable BP elements (NRU) from the pre-existing BP (BP1) and the total number of
BP elements (NT) in the resultant BP (BP′).

RU
NRUD
NT

= (1)

DRU ≤ k, where k ≤ 1 and k are user-defined. If (DRU ≤ k) condition is satisfied then
only DRA and DRC are calculated. Finally, in this step, a vector containing all the
elements of the previous BP, those will be reused in the new BP (BP′), is generated.

b For each of the BP elements belonging to the vector obtained in the previous step,
DRA is calculated. Thus, the number of changes that are required for three types of BP
elements (Da, Ga and Ac) are calculated. Let us take an example. Suppose, a
gateway is changed by adding a new branch to it as well as the type of that Ga is
also changed like the parallel (AND) Ga is turned into an exclusive (X-OR) Ga.
Consequently, changes in two features of that Ga result in changes in the level is
average. Similarly, if a single feature of a BP element is changed then the changes in
level are simple and changes in three features consequence changes in level are
complex. Levels complex, average and simple are also termed as high (Hi), medium
(Md) and low (Lw), respectively. So, it is clearly understood that change in level
simple is the most desirable and the changes in the level complex are the least
desirable. Now, certain weightage values are assigned to three types of BP elements
like Ga, Ac and Da as well as to the levels Hi, Md and Lw for each of those
three elements individually based on their modification effect on the entire BP. Any
kind of change in the gateway affects the BP most while the effects of changes in the
activity and the data within a BP are medium and minimum, respectively. Thus,
[{Wv(Da(Lw)) < Wv(Da(Md)) < Wv(Da(Hi))} < {Wv(Ac(Lw)) < Wv(Ac(Md))
< Wv(Ac(Hi))} < {Wv(Ga(Lw)) < Wv(Ga(Md)) < Wv(Ga(Hi))}], where Wv(Ga(Lw))
denotes the weightage value of the gateways those belongs to the Lw level
modifications.

 [{x1 < x2 < x3} < {y1 < y2 < y3} < {z1 < z2 < z3}], where x1, x2, x3, y1, y2, y3, z1, z2, z3
are user-defined variables those values are decided by the stakeholders of an EAF
based on the current business scenario. Thus, in this step of calculation DRA, a 3D
vector is obtained containing three elements, each of which represents the sum of
weightage values of data elements, activity elements and gateway elements,
respectively.

() () ()
() () ()
() () ()

() () () (1 2 3)
() () () (1 2 3)
() () () (1 2 3)

RA

Wv Da Lw Wv Da Md Wv Da Hi x x x
D Wv Ac Lw Wv Ac Md Wv Ac Hi y y y

Wv Ga Lw Wv Ga Md Wv Ga Hi z z z

 + + + + 
   = + + = + +   
   + + + +  

 (2)

In equation (2), the first element is the summation of Wv(Da(Lw)), Wv(Da(Md)), and
Wv(Da(Hi)), that denotes the total weightage value of data of level Lw(simple),
Md(average) and Hi(complex). Similarly, the second element is the summation of
Wv(Ac(Lw)), Wv(Ac(Md)), and Wv(Ac(Hi)) that signifies the total weightage value of
activities of level Lw(simple), Md(average) and Hi(complex) and the third element is

 Reconfigurable business process 11

the summation of Wv(Ga(Lw)), Wv(Ga(Md)), and Wv(Ga(Hi)), that denotes the total
weightage value of gateway of level Lw(simple), Md(average) and Hi(complex).

c Degree of reconfigurability (DRC) is represented as the ratio of the magnitude of
two vectors. The column matrix (3 ∗ 1) is comprised of three rows (Da, Ac, Ga) and
one column named as Max_weightage value (MWv).

Now, another calculation is required for computing how many new BP elements are
needed to be created to suffice the new sub-goal. Consequently, the newly created BP
(BP2) associated with the new sub-goal will be created and finally pre-existing BP (BP1),
related to the previous sub-goal will be merged with the newly created BP (BP2) to
suffice the newly modified goal. Thus, the new BP (BP′), produced as the output,
is the combined form of the BP1 and BP2. So, another 3D weightage vector with
three elements is generated. The first element represents the total weightage value of data
elements belonging to the levels such as Lw(d1), Md(d2) and Hi(d3) while the second
element denotes the total weightage value of activity elements belonging to the levels like
Lw(a1), Md(a2) and Hi(a3). Similarly, the third element of the 3D vector symbolises the
total weightage value of activity elements belonging to the levels like Lw(g1), Md(g2)
and Hi(g3). And rows named as Da, Ac and Ga and one column entitled as Wv, is
generated for measuring how many elements from BP2 are included in BP′.

Thus, the 3D weightage vector is obtained as

(1 2 3)
(1 2 3)
(1 2 3)

d d d
WM a a a

g g g

+ + 
 = + + 
 + + 

 (3)

Finally, DRA and WM are added by the rule of 3D vector addition and the result is like,

()
()
()

(1 2 3) (1 2 3)
(1 2 3) (1 2 3)
(1 2 3) (1 2 3)

x x x d d d
TW y y y a a a

z z z g g g

 + + + + +
 = + + + + + 
 + + + + + 

 (4)

where, three elements of the TW vector represent the total weightage values of data,
activities and gateways that either have been taken from BP1 and reused in BP′ with a
certain level of modification or newly created in BP2 and is reused in BP′. A new vector
denoted as NTW is introduced to represent the total weightage values of data, activities
and gateways, which needed to be incorporated within BP′ if BP′ would be newly created
to accomplish the newly modified goal G′.

()
()
()

()
()
()

Wvn Da Hi
NTW Wvn Ac Hi

Wvn Ga Hi

 
 =  
  

 (5)

where Wvn(Da(Hi)) represents the total weightage value of data elements, contained in
BP′, if BP′ would be newly created in its totality, without reusing any of its elements.

Thus, DRC is represented as the ratio of the magnitude of two vectors like TW and
NTW.

 12 P. Chakraborty and A. Sarkar

| | 1
| |RC

TWD x
NTW

= ≤ < (6)

where the value of the variable x is decided by the stakeholders of an enterprise based on
the present business scenario as well as the ongoing customer requirements and that value
must be less than 1. The value of DRC increases with the higher values of TW, that means
the amount of changes in the pre-existing elements from BP1 and BP2, those are
integrated within BP′ is of a large amount. Consequently, the cost for this reconfiguration
is also high. On the contrary, a lower value of DRC implies that a small amount of changes
in the prior BP elements in BP1 and BP2 is sufficient for the incorporation of those BP
elements within BP′ to satisfy the modified goal G′. Therefore, the cost of reconfiguration
is also reduced to a certain extent. So, minimising the value of DRC is the prime focus of
the stakeholders at the time of achieving the newly modified goal G′. Thus, the
user-defined value of DRC gives the privilege to its users to take favourable decisions
based on the current market situation, to earn the maximum profit for their organisation.

4.2.1 Illustration of metrics with example
Let us explain the above three software metrics with the help of an example. Suppose, a
BP′ is comprised of 21 BP elements (10 Da, 7 Ac, 4 Ga) and 14 elements have been
reused from pre-existing BP (BP1). Among those 14 elements from BP1, 11 elements can
be reused in their original form and the rest of the elements are reused in BP′ through
further modifications.

So, 14 0.66 ,
21RuD k= = ≥ where k is determined as 0.3 by the stakeholders.

The value of k conceptually may vary from 0 to 1. The lowest value (0) of k signifies
that no element, belonging to the prior BP (BP1) can be reused in the BP′. Consequently,
BP′ would be fully reconfigured and it would increase the development cost to the
maximum level. Hence, in that case, it would be profitable to reconstruct BP′ instead of
reconfigure it. On the other hand, the highest value (1) of k denotes that all BP elements
of BP1 can be reused in BP′ and that is the ideal condition. In reality, the suitable value of
k is assigned by the top-level stakeholders like the management group of an organisation,
based on their various types of requirements, business strategies and the margin of profit
level.

So, the BP1 is reusable. A list is obtained containing those elements to be reused like,
[Ac1, Ac3, Ac4, Ac5, Ac7, Gw1, Gw2, Gw4, Da1, Da2, Da4, Da5, Da6, Da8]. Suppose,
stakeholders has assigned the values of x1, x2, x3, y1, y2, y3, z1, z2, and z3 as 1, 2, 3, 4, 5, 6,
7, 8 and 9, respectively.

The activities like, Ac1 and Ac3 are to be changed in terms of one feature (level Lw)
and two features (level Md) respectively while only one feature (level Lw) is to be
changed in Gw1. Other BP elements can be reused with their original form. So, we obtain

a 3D vector
(0 0 0) 0
(4 5 0) 9 .
(7 0 0) 7

RAD
+ +   

   = + + =   
   + +   

 Reconfigurable business process 13

Suppose, four Da, two Ac and one Ga are taken from BP2 with the complex (Hi)

level of changes and those are reused in BP′. So, the
0 0 (4 3) 12
0 0 (2 6) 12 .
0 0 (1 9) 9

WM
+ + ∗   

   = + + ∗ =   
   + + ∗   

So, the desired 3D vector TW is obtained after the addition of DRA and WM
0 12 12
9 12 21 ,
7 9 16

     
     + =     
          

 The magnitude of the vector TW is 2 2 212 21 16 29.+ + =

If BP′ would be newly created in its wholeness then the weightage vector NTW would

be 2 2 2

(10 3) (30)
(7 6) (42) 30 42 36 62.928.
(4 9) (36)

∗   
   ∗ = = + + =   
   ∗   

29 .460 .75
62.928RCD x= = ≤ =

Hence, the BP is reconfigurable.
If 0.5 ≤ DRC < 1 then only BPs are reconfigurable. The boundary value of DRC is

specified by the user. Thus, the user can change the limiting value of DRC based on the
current scenario of the enterprise.

4.3 Algorithm for reconfigurable BP

Currently, various types of organisations are inefficient to deal with the fast and irregular
changes in business strategies, customer requirements and behaviour. These rapid and
unpredictable changes in internal and external business environments demand business
organisations to adopt reconfigurable BPs to efficiently handle this random nature of
business organisations.

An algorithm has been proposed in this section to achieve reconfigurability in BP.
When a goal or a sub-goal has been changed, the related BP is also changed. Thus,
corresponding BP elements to be changed are recognised first. The degree of
reconfigurability DRC metric has been introduced to measure the amount of changes in
BP. Then, the constraint level to which the modification to happen is identified.
Modifications may occur either of data constraint level, gateway level, or ordering level.

4.3.1 Discussion
The RCPBA algorithm starts with identifying the sub-goal to be changed. Consequently,
the associated BP is to be modified. Then, DRC is calculated for that BP. The array E[]
stores the BP elements to be changed. Parse() function is defined on the array E[] for
traversing all elements. Three functions like, Checkactivity(), Check_gateway() and
Check_flow_order() are defined on the array E[]. If (DRC < 1) for a BP, then that BP is
reconfigurable. If BPs are reconfigurable, then corresponding constraint names (to be
modified) are stored in an array X[]. Three invariants like data_constraint,
ordering_constraint and gateway_constraint take inputs of the pre-existing BP (BP1) and
the new BP (BP2) associated with the new sub-goal and produces the output as the new

 14 P. Chakraborty and A. Sarkar

reconfigured BP (BP′) by using the rule of data constraint, ordering constraint and
gateway constraint, respectively. In our study, the gateway constraint has been given the
highest priority as the BP flow is determined by the gateways. Data and ordering
constraints have been given the same priority. So, if the array X[] contains gateway then a
priority queue Q is defined where the constraint names and corresponding priorities are
stored. A lower number represents a higher priority. Three operations, Insert(),
Get_highest_priority(), Delete_highest_priority() are defined on the priority queue. All
the operations can be represented using a heap data structure. The constraint with the
highest priority can be accessed from the priority queue using the mean heap property
(minimum the value, higher the priority). Delete_highest_priority() function deletes the
constraint with the highest priority from the priority queue. After reconfiguring BPs
corresponding to the highest priority constraint in Q, that constraint is removed from the
Q. This process is continued until the Q becomes empty. If there is no gateway constraint
in X[], then the priority queue is not used as the data and ordering constraints have been
given the same priorities. In this case, BPs corresponding to data and ordering constraints
are reconfigured in first come first serve (FCFS) manner. Finally, the entire process is
terminated if X[] becomes empty.
Algorithm 1 Reconfigurable business process achievement algorithm (RCBPA)

Input: previous goal G, previous business process BP, new goal G′;
Output: new business process BP′;
Define two empty arrays E[] and X[] ;
Define a priority queue Q to store the constraints to be modified;
Define a string variable Chp to store the constraint name;
1 Identify the sub-goal to be changed;
2 Y ← the changed sub-goal;
3 Identify the name and number of BP elements to be changed;
5 E[] ← the BP elements to be changed;
5 Calculate degree of reconfigurability DRC with the help of E[];
6 If (DRC < 1)
 {
 Print ‘all BPs are reconfigurable’;
 X[] ← the constraints to be modified;
 If (X[] contains ‘gateway’)
 {
 Q ← store the constraint names and their corresponding priorities;
 While (Q is not empty)
 {
 Chp ← retrieve the highest priority constraint name from Q;
 If (Chp == ‘data’)
 {
 Reconfigure BPs using data_constraint;
 Remove the head of the priority queue Q;
 }

 Reconfigurable business process 15

 Else If (Chp == ‘order’)
 {
 Reconfigure BPs using ordering_constraint;
 Remove the head of the priority queue Q;
 }
 Else If (Chp == ‘gateway’)
 {
 Reconfigure BPs using gateway_constraint;
 Remove the head of the priority queue Q;
 }
 Else
 Print ‘wrong constraint input’;
 }
 else
 {
 While(X[] is not empty)
 {
 If (X[index] == ‘data’)
 {
 Reconfigure BPs using data_constraint;
 }
 Else If (X[index] == ‘order’)
 {
 Reconfigure BPs using ordering_constraint;}
 }
 }
 }
 else
 BPs are not reconfigurable;
7 Process end;

5 Illustration of the proposed method using the case studies

Five detailed case studies are generated to study the impact of data, gateway and ordering
constraints on the reconfigurability property of BPs. All case studies are distinct by the
number of BP elements, degree of reconfigurability and complexity level. One case study
is discussed in this section and others (library management system, ATM withdrawal
systems, hospital management system and online shopping system) are appended in
Supplementary materials. One case study is discussed in this section and the other
four case studies are explained in supplementary files.

 16 P. Chakraborty and A. Sarkar

5.1 Online admission system

A college with only the undergraduate (UG) course has got permission to start the
postgraduate (PG) course from its new session. Here, previous goal G was to provide
education for only UG students. The new goal G′ is to provide education to both UG and
PG students. Here, a new sub-goal (open course for PG) has been added to the new
modified goal G′. Former BP has also been changed into (BP′). The management group
can incorporate the PG course with the existing UG course in several different ways.

5.1.1 Data constraint
If UG and PG admission follows the same procedure that is all the activities of the
previous and new BPs remain the same, only conditions are different for UG and PG
admission, then data constraint is applied. In BP1, the activity set contains the following
activities, like:

a student registration (Ac1)

b check age (Ac2)

c show message eligible for UG (Ac3)

d check marks (Ac4)

e get enrolled (Ac5)

f show message not eligible (Ac6)

g not enrolled (Ac7).

These seven activities remain the same for UG and PG courses. Only, the conditions are
changed accordingly. Gateways and events are also the same for both cases. Activities
are not changed in BP2. Only, a small change has been done in the value range of data.
Rule F7 is satisfied with the data constraints. Figures 1(a), 1(b) and 1(c) represent
equivalent BP diagrams of admission procedures in undergraduate, postgraduate and
combined courses (UG + PG), respectively. In this case, the degree of reconfigurability is
DRC = 0.400.

In this case, seven activities, three gateways and two data elements from the
pre-existing BP (BP1) have been reused in the resultant BP (BP′). Hence, according to

the above representation, (7 3 2) 12 0.571 0.3.21(11 5 5)RUD k+ += = = ≥ =
+ +

 So, BP1 (online

admission system for UG) is reusable in BP′. The list of BP elements that can be reused is
[Ac1, Ac2, Ac3, Ac4, Ac5, Ac6, Ac7, Ga1, Ga2, Ga3, Da1, Da2] and Ga1 and Da1 are
modified at the simple (Lw) level.

So,
1
0 .
7

RAD
 
 =  
  

Two Da, four Ac and two Ga with the Hi level modifications, from the newly
generated BP (BP2) (online admission system for PG) can be reused in BP′.

 Reconfigurable business process 17

So,
2 3 6
4 6 24 .
2 9 18

WM
∗   

   = ∗ =   
   ∗   

 Now the total amount of modification in BP′ is

1 6 7
() 0 24 24 .

7 18 25
RAD WM TW

     
     + = = + =     
          

 So, the magnitude of the resultant vector TW is

2 2 27 24 25 1250 35.35.+ + = =

Figure 1 Academic admission procedure BP using data constraint, (a) existing BP for handling
only undergraduate admission procedure (input 1) (b) existing BP for handling only
postgraduate admission procedure (input 2) (c) reconfigured BP capable of handling
both undergraduate and postgraduate admission procedure (output)

(a)

(b)

(c)

 18 P. Chakraborty and A. Sarkar

If BP′ would be newly created in its wholeness then the weightage vector NTW would be
3 3 9

11 6 66 .
5 9 45

∗   
   ∗ =   
   ∗   

 The magnitude of the vector would be 2 2 29 66 45 6462+ + =

88.38.=

35.355 0.400 0.75
88.386RCD x= = ≤ =

Thus, the condition of reconfigurability is satisfied.

5.1.2 Gateway level constraint
‘Check marks’ and ‘check all India rank’ are two mandatory activities for the UG course.
Management decides that those two activities are optional for the PG course. In the UG
course, parallel gateways are used to express the simultaneous activities, whereas, in the
PG course, inclusive gateways are used to represent the optional activities. Data
constraints remain the same. Thus, Figures 2(a), 2(b) and 2(c) represent the admission
procedure for UG, PG and combined courses, respectively. In this case, the number of
elements in previous and new BPs is the same, only the gateway types are changed. Here,
the rules F10 and F11 have been satisfied. Here, the degree of reconfigurability value is
DRC = 0.465.

In this case, nine activities, five gateways and three data elements from the
pre-existing BP (BP1) have been reused in the resultant BP (BP′).

(9 5 3) 17 0.548 0.3.31(15 9 7)RUD k+ += = = ≥ =
+ +

So, BP1 (online admission system for UG) is reusable in BP′. The list of BP elements that
can be reused is [Ac1, Ac2, Ac3, Ac4, Ac5, Ac6, Ac7, Ac8, Ac9, Ga1, Ga2, Ga3, Ga4,
Ga5, Da1, Da2, Da3] and Ga1 and Da1 are modified at the simple (Lw) level.

Figure 2 Academic admission procedure BP using gateway constraint, (a) existing BP for
handling only undergraduate admission procedure (input 1) (b) existing BP for handling
only postgraduate admission procedure (input 2) (c) reconfigured BP capable of
handling both undergraduate and postgraduate admission procedure (output)

(a)

 Reconfigurable business process 19

Figure 2 Academic admission procedure BP using gateway constraint, (a) existing BP for
handling only undergraduate admission procedure (input 1) (b) existing BP for handling
only postgraduate admission procedure (input 2) (c) reconfigured BP capable of
handling both undergraduate and postgraduate admission procedure (output)
(continued)

(b)

(c)

So,
1
0 .
7

RAD
 
 =  
  

 20 P. Chakraborty and A. Sarkar

Three Da, six Ac and four Ga with the Hi level modifications, from the newly
generated BP (BP2) (online admission system for PG) can be reused in BP′. So,

3 3 9
6 6 36 .
4 9 36

WM
∗   

   = ∗ =   
   ∗   

Now, the total amount of modification in BP′ is

1 9 10
() 0 36 36 .

7 36 43
RAD WM TW

     
     + = = + =     
          

So, the magnitude of the resultant vector TW is 2 2 210 36 43 3245 56.964.+ + = =
If BP′ would be newly created in its wholeness then the weightage vector NTW would

be
6 3 18

15 6 90 .
9 9 81

∗   
   ∗ =   
   ∗   

The magnitude of the vector would be 2 2 218 90 81 14985 122.413.+ + = =

56.964 0.465 0.75.
122.413RCD x= = ≤ =

Thus, the condition of reconfigurability is satisfied.

5.1.3 Ordering level constraint
For the UG course, document verification activity is happened, after completion of
checking marks and checking all India rank activities. But in the case of PG admission,
document verification is happened before checking marks and checking all India rank.
So, by only changing the ordering of activities, the modified sub-goal can be achieved.
Here, rule F14 is satisfied.

Figure 3 Academic admission procedure BP using ordering constraint, (a) existing BP for
handling only UG admission procedure (input 1) (b) existing BP for handling only
PG admission procedure (input 2) (c) reconfigured BP for handling both UG and PG
admission procedure (output)

(a)

 Reconfigurable business process 21

Figure 3 Academic admission procedure BP using ordering constraint, (a) existing BP for
handling only UG admission procedure (input 1) (b) existing BP for handling only
PG admission procedure (input 2) (c) reconfigured BP for handling both UG and PG
admission procedure (output) (continued)

(b)

(c)

Figures 3(a), 3(b) and 3(c) represent equivalent BP diagram of UG admission procedure,
PG admission procedure and combined (UG + PG) admission procedure, respectively.
Here, the degree of reconfigurability value is DRC = 0.471.

 22 P. Chakraborty and A. Sarkar

In this case study, whenever data constraint, gateway constraint and ordering
constraint need to be changed simultaneously, then data constraint is given to the highest
priority as discussed above. At first, the student information (dataset) is categorised into
two classes, one is for UG students, and the other class is for the PG students. After the
classifications of data, different gateways are chosen to make the decision point, from
where the BP flow diverges. Then, the order of execution of different activities is
decided. Finally, the decision of which role will execute which set of activities will be
taken.

In this case, 11 activities, six gateways and four data elements from the pre-existing

BP (BP1) have been reused in the resultant BP (BP′). (11 6 4) 21
39(19 11 9)RUD + += =

+ +

0.538 0.3.k= ≥ = So, BP1 (online admission system for UG) is reusable in BP′. The list
of BP elements that can be reused is [Ac1, Ac2, Ac3, Ac4, Ac5, Ac6, Ac7, Ac8, Ac9, Ac10,
Ac11, Ga1, Ga2, Ga3, Ga4, Ga5, Ga6, Da1, Da2, Da3, Da4] and Ga1 and Da1 are

modified at the simple (Lw) level. So,
1
0 .
7

RAD
 
 =  
  

Four Da, eight Ac and five Ga with the Hi level modifications, from the newly
generated BP (BP2) (online admission system for PG) can be reused in BP′. So,

4 3 12
8 6 48 .
5 9 45

WM
∗   

   = ∗ =   
   ∗   

 Now, the total amount of modification in BP′ is

1 12 13
() 0 48 48 .

7 45 52
RAD WM TW

     
     + = = + =     
          

So, the magnitude of the resultant vector TW is 2 2 213 48 52 5177 71.95.+ + = =
If BP′ would be newly created in its wholeness then the weightage vector NTW would

be
7 3 21

19 6 114 .
11 9 99

∗   
   ∗ =   
   ∗   

The magnitude of the vector would be 2 2 221 114 99 23238 152.44.+ + = =

71.951 0.471 0.75.
152.440RCD x= = ≤ =

Thus, the condition of reconfigurability is satisfied.

6 Experimental result and analysis

Detailed performance analysis of the proposed algorithm has been done in this section.
The variation of the DRC values with the BPs of different complexity in terms of the

 Reconfigurable business process 23

number of BP elements they have and the total execution time (Et) taken by this proposed
algorithm to reconfigure those BPs have been discussed here. Certain benchmark has
been set for this experiment, like DRU and DRC values should be less than 1. The proposed
algorithm (RCBPA) has been implemented through five different case studies containing
a different number of gateways, data and user tasks (activities). For each case study, the
DRC and the corresponding execution time (Et) for data, order and gateway constraints
have been calculated individually. The implementation of the algorithm has been done on
the Java Eclipse platform using document object model (DOM) (Yang et al., 2015;
XML DOM, https://www.w3schools.com/xml/dom_intro.asp/), Parser (used to
parse XML document) (Chinos and Trombetta, 2009; Kurz, 2016; XML
DOM, https://www.w3schools.com/xml/dom_intro.asp/). Camunda BPMN Modeler
Camunda Docs, https://docs.camunda.org/get-started/quick-start/; BPMN Tutorial,
https://camunda.com/bpmn/) has been used for creating input files with BPMN diagrams.
A lower DRC value signifies that the amount of changes required to be done for the
conversion of the pre-existing BP into the reconfigurable BP is minimum. On the
contrary, the higher value of DRC implies larger overall changes in the pre-existing BP.
Consequently, a lesser DRC value shows that the complexity level in terms of the number
of BP elements, to be incorporated in the earlier BP is low while this number of BP
elements increases with the increment of DRC value. The experimental result also shows
that DRC is reduced with the addition of more BP elements to the pre-existing BP. The
execution time is measured by setting a counter variable to store the difference between
the starting and the ending time of the program execution.

6.1 Comparative study on degree of reconfigurability (DR) values

To measure the performance of the proposed method, five selected case studies with
different levels of complexities have been considered. Table 1 exhibits the degree of
reconfigurability (DR) values in the case of five different real-life scenarios. DRC of each
of these five case studies has been calculated for data constraints, gateway constraints and
order constraints. From the experimental result, it is observed that more complex BP
leads to a high DRC value.
Table 1 Different degree of reconfigurability (DRC) values for corresponding data, gateway

and order constraints for five distinct case studies

 ATM Online shopping Library Admission Hospital
Data constraint 0.274 0.336 0.437 0.400 0.447
Gateway constraint 0.322 0.429 0.573 0.465 0.470
Ordering constraint 0.423 0.429 0.460 0.471 0.452

The complexity of a BP is measured by the number of BP elements (user tasks, gateways
and datasets) it contains. In the case of data-constraint-based reconfigurable BP, the
number of new BP elements to be added is less as compared to the gateway and
order-based reconfigurable BPs. It results in a low DRC value for the data constraint-based
reconfigurable mechanism. Lesser value of DRC signifies that the level of complexity in
terms of the number of new BP elements, needed to be incorporated within the new
modified BP is low. DRC value increases with the increment of the number of BP
elements that are required to be integrated into the new BP. Here, the lowermost value of

 24 P. Chakraborty and A. Sarkar

DRC is obtained from the case studies is 0.33. Figure 4 is the graphical representation of
distinct DRC values for data, gateway and order constraints for five case studies.

Figure 4 Graphical representation of DRC values corresponding to five case studies (see online
version for colours)

6.2 Comparative study on execution time (Et)

Table 2 represents execution times taken by the proposed algorithm that implements data,
gateway and order constraint-based reconfigurable mechanism in different real-life
scenarios. In each of the case study, it is shown that the execution time (Et) of the
proposed algorithm is of the lowest value in the data constraint, while for the gateway
and the ordering constraints, the Et values differ (in several cases, Et value of gateway
constraint is higher than Et value of ordering constraint and in the other cases the reverse
result occurs) depending on the amount of changes required to be done in the pre-existing
BP. Figure 5 exhibits that there is no direct relationship between the DRC value and the
Et value because the DRC value signifies the amount of modifications required in the
pre-existing BP, while Et represents the total processing increases with the increasing
value of the execution time of that algorithm. It signifies that the incorporation of more
BP elements to the existing BP needs more execution time because this integration raises
the complexity level of the BP.
Table 2 Execution times (Et) (ms) for data, gateway and order constraints for five case studies

 ATM Online shopping Library Admission Hospital
Data constraint 281 283 286 303 313
Gateway constraint 296 300 303 306 320
Ordering constraint 284 303 307 313 322

 Reconfigurable business process 25

Figure 5 Graphical representation of execution time Et (ms) versus DRC for data, gateway and
order constraints for five case studies (see online version for colours)

6.3 Analysis of results

Table 1 and Table 2 display how the DRC values and corresponding execution times (Et)
differ for five distinct case studies. Those five real-life scenarios deal with BPs having a
different number of BP elements and various levels of complexity. In Table 1, DRC value
varies from 0.274 to 0.573. This range satisfies the condition that was discussed in
Section 3.2. Thus, for each case study, the DRC value is within the specified range, which
implies that each BP is reconfigurable. Keeping the overall goal unchanged only a
sub-goal is added in every situation. That additional sub-goal causes minimal changes to
the existing BP elements. The incorporation of fewer BP elements results in a lower
value of DRC. Furthermore, DRC values for data constraints obtain the lowest value
amongst the three constraints for individual cases. For the case of gateway constraint and
order constraint, the DRC value increases as the result of the insertion of more BP
elements. A gateway diverge the process flow among more than one path. Replacement
of pre-existing gateway with new one results in the inclusion of several new BP elements.
On the other hand, the ordering constraint introduces the changes in the execution order
of the user tasks within an existing BP. These modifications in execution order also cause
to include multiple new BP elements. Thus, the addition of more BP elements increases
DRC value in both constraints (gateway and order) in comparison with data constraints.

The experimental result shows that the value of DRC for the gateway constraint is
higher than the DRC value of ordering constraint for the case studies, like library
management system and hospital management system while the inverse result is obtained
in the other two case studies like ATM withdrawal system and online admission system.
For online shopping system, the DRC value possesses the same value. So, in reality, values
of DRC for gateway constraint and ordering constraint differ to some extent depending on
the complexity level of the BP.

 26 P. Chakraborty and A. Sarkar

Table 2 shows that the execution time (Et) value varies from 264 ms to 322 ms. The
Et value includes the processing time for taking two input files containing BP1 and BP2,
the reconfiguration time and the generation time of output as the reconfigured BP (BP′).
Consequently, Et value depends on the size (in terms of the number of datasets, activities
and gateways) of both BPs (BP1 and BP2), the number of Da, Ac and Ga elements, taken
from BP2 and integrated into the pre-existing BP (BP1) and the number of total BP
elements (including Da, Ac, Ga) in the output BP (BP′). So, more complex BP causes an
increase in the execution time (Et). For example, online admission system contains
seven Ac, three Ga and two Da in both the input BPs (BP1 and BP2) and 11 Ac, five Ga
and five Da in BP′, whereas, ATM withdrawal system contains six Ac, two Ga and
two Da in both the input BPs (BP1 and BP2) and eight Ac, two Ga and four Da in BP′.
Henceforth, the Et values for data constraint in the online admission system and the
library management system are 312 ms and 281 ms respectively because of the greater
and lesser number of BP elements.

The assumption has been made that these five case studies with different complexity
levels have different numbers of datasets, user tasks and gateways. The case study on
online admission system deals with seven user tasks, three gateways and two datasets
while the ATM withdrawal system works with six user tasks, two gateways and
two datasets. Consequently, the DRC value for data constraint in the previous case is
greater (DRC = 0.400) than the DRC value (DRC = 0.274) of the ATM withdrawal system.
Similarly, DRC values for gateway and order constraints in the case of online admission
procedure are also greater than the corresponding values of DRC for ATM withdrawal
system.

DOM Parser has been chosen for its several advantageous properties like platform
and language independence, high navigation abilities and dynamicity. According to the
proposed algorithm, two input files (BP1 and BP2) are represented as the BPMN files
and their back end are represented as the XML files. DOM Parser takes those input files
and generates the parse trees so that the navigation, the access to any node and the
modification to that node of those parse trees can be done very quickly and easily.
Moreover, DOM application programming interface (API) is very easy to use because it
supports both read and write operations in the XML file and the capability of performing
both operations like, read (for processing the input files) and write (for the generation of
the output file) operation is the basic requirement of that algorithm. Similarly, Camunda
BPMN Modeler provides a REST API that allows users to use any programming
language.

7 Conclusions

Reconfigurable BP is the major focus of this paper. The reconfigurability property of a
BP makes it adaptable to changes in customer requirements and business strategies of an
organisation. When a goal or a sub-goal is modified due to such frequent changes in
business requirements, there is no need to replace the previous BP with a new BP.
Instead, the earlier version of BP will be reconfigured by rearrangement, addition, or
deletion of the BP elements of that BP.

Thus, the elements of BP either can be reused with their original form or can be used
in the new BP with minimal changes in their earlier form. A BP is reconfigurable within
the user-defined limit, and beyond that limit, the BP will be not reconfigurable, rather it

 Reconfigurable business process 27

will be replaceable with a new BP. Here, a systematic approach has been proposed to
achieve reconfigurability, based on different types of constraints.

The constraint-based reconfigurability property of a BP allows the users to define the
boundary values of the domain of that BP. Henceforth, users can change these limiting
values depending on the current business scenarios. Moreover, in this approach, most of
the existing BP elements can be used again in the new BP. This reusability property of
BP elements reduces the development cost and maintenance cost of the BP. Another
benefit of this constraint-based approach is that the BPs can easily adapt to the rapid and
unpredictable changes in the internal and external business environment. So, flexible BPs
can easily satisfy business requirements. Thus, the constraint-based reconfigurable
approach makes BPs more user-friendly, reusable, flexible and cost-effective. Constraints
like data constraints, gateway constraints and ordering constraints are demonstrated
formally. In addition, equivalent BP diagram representations have also been generated
through five case studies. Finally, an algorithm has been proposed and implemented to
describe the mechanism of achieving reconfigurability in BPs.

All these BPs that are used to represent the case studies satisfy the specified range of
DRC. Consequently, all BPs are reconfigurable and the DRC value for data constraint
obtains the highest value among three constraints for each of the five case studies. It is
also observed from the experimental result, that the DRC value decreases with the increase
of the complexity level of a BP. In addition, more complex BP needs more execution
time (Et) to reconfigure.

The future work will be focused on the enrichment of three software metrics (DRU,
DRA and DRC) by the inclusion of more properties of the BP elements within those
metrics. Those properties may include the type of BP elements like different weightage
values may be given to the different types of gateways like exclusive gateways, inclusive
gateways and parallel gateways based on their modification effect on the flow of a BP.
Similarly, the number of branches, associated with the gateways will also be assigned the
different weightage values such as higher weightage value should be given to the
gateways having more number of branches due to their greater impact on the BP flow.
Another aspect to be considered is the inclusion of the role constraint within a BP. There
should be a proper allocation of the set of activities to its corresponding role to determine
the execution path of a BP.

Appendices/Supplementary materials are available on request by emailing the
corresponding author or can be obtained under https://tinyurl.com/5xrpu9ua.

References
Ardagna, D. and Pernici, B. (2007) ‘Adaptive service composition in flexible processes’, IEEE

Transactions on Software Engineering, Vol. 33, No. 6, pp.369–384.
Arsanjani, A. and Ng, D. (2002) ‘Business compilers: towards supporting a highly re-configurable

architectural style for service-oriented architecture’, in Companion of the 17th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, pp.26–27.

Basias, N., Themistocleous, M. and Morabito, V. (2013) ‘SOA adoption in e-banking’, Journal of
Enterprise Information Management, Vol. 26, No. 6, pp.719–739.

 28 P. Chakraborty and A. Sarkar

Bazoun, H., Bouanan, Y., Zacharewicz, G., Ducq, Y. and Boye, H. (2014) ‘Business process
simulation: transformation of BPMN 2.0 to DEVS models (WIP)’, in Proceedings of the
Symposium on Theory of Modeling & Simulation – DEVS Integrative, pp.1–7.

BPMN Tutorial, BPMN 2.0 Tutorial for Beginners – Learn BPMN Camunda BPM [online]
https://camunda.com/bpmn/ (accessed 24 January 2020).

Camunda Docs, Get Started with Camunda [online] https://docs.camunda.org/get-started/quick-
start/ (accessed 24 January 2020).

Chakraborty, P. and Sarkar, A. (2017) ‘Context driven approach for enterprise architecture
framework’, in Proceedings of 16th International Conference on Computer Information
Systems and Industrial Management Applications, Springer, Bialystok, Poland, pp.277–289.

Chakraborty, P. and Sarkar, A. (2019) ‘Score framework: a layered approach for enterprise
architecture’, International Journal of Business and Systems Research, Vol. 13, No. 4,
pp.438–467.

Chinos, M. and Trombetta, A. (2009) ‘Modeling and validating BPMN diagrams’, in IEEE
Conference on Commerce and Enterprise Computing, IEEE, Vienna, Austria, pp.353–360.

Gao, H. and Miao, H. (2013) ‘A quantitative model-based selection of web service
reconfiguration’, in 2013 14th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, IEEE, pp.365–371.

Gao, X., Li, Z., Zhao, L. and Yao, Y. (2006) ‘Reconfiguring business process for enterprise
information system based on UML and polychromatic sets’, in Research and Practical Issues
of Enterprise Information Systems, Springer, Vienna, Austria, pp.371–381.

Hermosillo, G., Seinturier, L. and Duchien, L. (2010) ‘Using complex event processing for
dynamic business process adaptation’, in 2010 IEEE International Conference on Services
Computing, IEEE, pp.466–473.

Jabbar, ZA., Kumar, M. and Samreen, A. (2015) ‘Designing conceptual framework for
aligning service oriented architecture with business process’, Journal of Computer and
Communications, Vol. 3, No. 11, pp.11–22.

Kurz, M. (2016) ‘Automating BPMN interchange testing’ in 42th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), IEEE, Limassol, Cyprus,
pp.331–338.

Li, N., Kang, J. and Lv, W. (2005) ‘A hybrid approach for dynamic business process mining based
on reconfigurable nets and event types’, in IEEE International Conference on e-Business
Engineering (ICEBE’05), IEEE, pp.289–294.

Li, Y., Zhang, X., Yin, Y. and Lu, Y. (2011) ‘Towards functional dynamic reconfiguration for
service-based applications’, in 2011 IEEE World Congress on Services, IEEE, Washington,
DC, pp.467–473.

Marques, M., Agostinho, C., Zacharewicz, G. and Jardim-Goncalves, R. (2017) ‘Reconfigurable
and updatable product-service systems: the path for sustainability and personalization’,
in Proceedings of the Symposium on Model driven Approaches for Simulation Engineering,
pp.1–12.

Mendonça, D.F., Rodrigues, G.N., Favacho, A. and Holanda, M. (2013) ‘A systematic mapping
study on service oriented computing in the context of quality of services’, in 2013 VII
Brazilian Symposium on Software Components, Architectures and Reuse, IEEE, Brasilia,
Brazil, pp.39–48.

Monk, E. and Wagner, B. (2012) Concepts in Enterprise Resource Planning, Cengage Learning,
Boston, MA, USA.

Sarno, R., Pamungkas, E.W. and Sunaryono, D. (2015) ‘Business process composition based on
meta models’, in 2015 International Seminar on Intelligent Technology and its Applications
(ISITIA), IEEE, pp.315–318.

Silva, R.M.D., Junqueira, F., Filho, D.J.S. and Miyagi, P.E. (2016) ‘Control architecture and design
method of reconfigurable manufacturing systems’, Control Engineering Practice, Vol. 49,
No. 1, pp.87–100.

 Reconfigurable business process 29

Xiao, Z., Cao, D., You, C. and Mei, H. (2011) ‘Towards a constraint-based framework for dynamic
business process adaptation’, in 2011 IEEE International Conference on Services Computing,
IEEE, pp.685–692.

XML DOM, XML DOM Tutorial [online] https://www.w3schools.com/xml/dom_intro.asp/
(accessed 12 February 2020).

Yang, D., Wei, Z. and Yang, Y. (2015) ‘A novel implementation of a hash function based on XML
DOM Parser’, in International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, IEEE, Xi’an, China, pp.5–8.

Yin, J., Luo, Z., Li, Y. and Wu, Z. (2017) ‘Service pattern: an integrated business process model
for modern service industry’, IEEE Transactions on Services Computing, Vol. 10, No. 6,
pp.841–853.

Yu, T. and Lin, K. (2005) ‘Adaptive algorithms for finding replacement services in autonomic
distributed business processes’, in Proceedings Autonomous Decentralized Systems, IEEE,
pp.427–434.

Zhang, J., Lee, J. and Lin, K. (2012) ‘Context-aware proactive process reconfiguration in
service-oriented architecture’, in 2012 IEEE 14th International Conference on Commerce and
Enterprise Computing, IEEE, pp.62–69.

Zhang, Q., Zou, Y., Tong, T., McKegney, R. and Hawkins, J. (2005) ‘Automated workplace design
and reconfiguration for evolving business processes’, in CASCON, Citeseer, pp.320–333.

