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Abstract: This study investigates the effects of cutting speed, feed rate, depth 
of cut, and radial rake angle on the surface roughness of aluminium 5083 
(Al5083), acrylic and polyethylene terephthalate (PET) in the computer 
numerical control end-milling operation. Taguchi L9 orthogonal array of 
experimental design was used to conduct the research. Response surface 
methodology was employed to generate prediction models. To achieve minimal 
surface roughness, optimal machining conditions were found using genetic 
algorithm approach. It was found that the optimal surface roughness for Al5083 
was 0.143 µm, acrylic was 0.048 µm and PET was 0.612 µm. Further, it was 
deduced that the noise factors significantly affected the validation results for 
Al5083 but had little effect on acrylic and PET. Additionally, the study results 
confirm that the surface condition of different materials respond differently to 
identical process parameters and noise conditions. 

Keywords: surface roughness; aluminium 5083; acrylic; polyethylene 
terephthalate; PET; Taguchi experiments; response surface methodology; 
genetic algorithm; end-milling. 
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1 Introduction 

In the manufacturing context, surface finish is defined as the outer texture, a.k.a. surface, 
of a piece, sheet, or block of material (Elder, 2021). Surface roughness of a component 
can be generally represented as the minute irregularities of a surface at the microscopic 
level by virtue of three major physical components of roughness, waviness, and form 
factor (Choudhury and Chinchanikar, 2017). Further, surface finish plays a critical role in 
evaluating the quality of machined components in the manufacturing industry which 
significantly affect various functional characteristics such as fatigue, friction, wear 
resistance, lubrication and coatings (Shahrom et al., 2013). Average surface roughness 
(Ra) is a commonly used index to ascertain the surface finish in machining processes 
(Zain et al., 2010a, 2010b). Ra is defined as the arithmetic average value of departure of 
the roughness profile from the mean line throughout the sampling length of the material 
(Oktem, 2009). Further, Ra is simply a common indicator of the level or degree of surface 
roughness in relation to the surface finish that has been facilitated by the respective 
machining processes (Ali and Hung, 2017). 

Various workpiece materials include metals such as aluminium, mild steel, cast iron 
and brass (Todd et al., 1994), as well as thermoset plastics, thermoplastics and 
composites are commonly used in milling operations. When selecting materials for  
end-milling, typical parameters such as cost, strength, wear resistance and machinability 
of material should be considered. Additionally, surface finish is one measure of 
machinability (Boothroyd and Knight, 2005) and every material produces different 
surface finishes with changing process parameters (Dandge and Harne, 2013). However, 
on viewing the present literature, it was observed that studying and comparing the effects 
of machining parameters on the surface roughness of thermoplastic materials has drawn 
relatively little attention by the academia. Thus, a systematic methodology is proposed in 
this paper for investigating the influence of machining and a tool geometry parameter on 
the surface roughness of two commercially available thermoplastics as well as a 
comparison with a traditional workpiece material. Further, based on a comprehensive 
review of literature, the work reported in this paper differs from previous works in 
following manner: 

• After reviewing the literature in the area of end-milling, very few studies combined 
the machining parameters with cutting-edge angle for assessment of part surface 
roughness. Further, this study is focussed on comparing the impact of process 
parameters on surface roughness of thermoplastics. 

• Radial rake angle is included in the study as it has not been sufficiently investigated 
in the past. 
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The rest of the paper is organised as follows: a review of the literature on the end-milling 
process with a focus on modelling of the machining process in terms of various 
machining parameters, and process optimisation is presented in Section 2. Information 
about the experiments carried and measurement of surface roughness, generation of 
prediction models, optimisation of cutting parameters can be seen under research 
methodology in Section 3. The results and discussion on the optimised parameters is 
presented in Section 4. The research is concluded in Section 5 followed by the future 
work directions. 

2 Related research on end-milling process modelling and optimisation 

To meet the objective of the study, literature has been reviewed from the perspective of 
factors influencing surface roughness, approaches for optimisation of surface roughness, 
and issues in machinability of materials for end-milling operation. In this context, a 
comprehensive review of literature is presented in this section. 

Numerous techniques were used in the past to model and optimise surface roughness 
in terms of the key cutting parameters. Sur et al. (2022) used single-objective and  
multi-objective techniques to optimise cutting speed, feed rate, and cutting tool helix 
angle for minimisation of cutting force and surface roughness in peripheral milling of 
Ti6Al4V. The experiments were performed using carbide end-milling tools with fixed 
and variable helix angles. The effects of control factors and interactions on cutting force 
and surface roughness were determined by analysis of variance. The study found that the 
helix angle of the cutting tool was the most effective parameter on the cutting force and 
the feed rate on the surface roughness. Further it was observed that the cutting force and 
surface roughness values decreased in peripheral milling at high cutting speed, whereas 
the cutting forces increased, and the surface finish of the workpiece decreased at high 
feed rates. Furthermore, the helix angle of the cutting tool has a significant impact on the 
cutting force and surface roughness when performing milling operation with fixed helix 
tools. 

Zhang et al. (2022) conducted a milling parameter optimisation study for 
accomplishment of efficient rough machining process by combining the off-line 
optimisation and real-time monitoring. In this regard a mathematical model was 
developed with machining efficiency as the study objective and the spindle speed, radial 
and axial depth of cuts as the process variables along with the basic parameter feasible 
region, cutting force, stability, spindle torque and power as constraints of the study. 
Further, a series of experimental runs on the titanium alloy Ti5Al5Mo5VCrFe machining 
has been performed. The study results show that the developed parameter optimisation 
method can significantly enhance the machining effectiveness. 

Daniyan et al. (2021), focussed on process design and optimisation of the milling 
operation of aluminium alloy (AA6063 T6) in order to enhance the overall sustainability 
of the machining process. The study includes the orientations of the cutting tool, process 
parameters and energy requirements for performing the milling operations. Further, the 
study developed RSM led correlation model while the physical experiments were 
conducted using a 5-axis CNC milling machine for the end-milling operation. At the end 
the paper stated that the study can be utilised in various manufacturing firms such as 
aerospace, rail and automobile industries. 
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Kuntoğlu et al. (2020) orchestrated a study to understand the ideal cutting conditions, 
vibration analysis and surface roughness under varying cutting speeds, feed rates and 
cutting-edge angles by deployment of response surface methodology (RSM). This 
methodology was used to obtain the optimal turning parameters for Ra and three 
components of vibration (axial, radial and tangential), governed by prediction models to a 
satisfactory degree of accuracy. The outcome of the study proved that the feed rate 
dominantly affected the increase of surface roughness (69.4%) and axial vibration 
(65.8%) while cutting-edge angle and cutting speed were the parameters which had the 
most critical effect on radial vibration (75.5%) and tangential vibration (64.7%), 
respectively. Additionally, this study concluded that the predicted and measured values of 
surface roughness and vibration during turning of AISI 5140 were very close and fell 
within a 10% error range. 

Kumar and Hynes (2020) presented a study on predicting and optimising the surface 
roughness of a thermally drilled hole on galvanised steel by employing an integrated 
adaptive network-based fuzzy inference system (ANFIS) and genetic algorithm (GA) 
approach. In this study, important metrics including spindle speed, tool angle and 
workpiece thickness were varied while keeping feed rate as constant. The experimental 
results allowed for the creation of an ANFIS model to estimate surface roughness. This 
model was then used as the precursor to generate an objective function focused on 
minimising surface roughness. This model was then integrated into a GA toolbox in the 
MATLAB programme to produce the desired surface roughness of the thermally drilled 
hole. Conclusively, the predicted and experimental results were very close in margin, and 
it was observed that the spindle speed and tool angle were the most significant factors 
affecting surface roughness of drilled holes in galvanised steel workpieces. 

Bhasha and Balamurugan (2020) investigated the machinability of a  
ceramic-reinforced aluminium hybrid composite (Al-MMC) by means of end-milling. 
The Taguchi L9 orthogonal array (OA) with low, medium, and high-level parameters was 
employed to assess the effect of the governing parameters on part’s surface roughness 
and material removal rate (MRR). To perform end-milling operation, 8 mm diameter WC 
bit was employed. It was observed that the spindle speed and depth of cut were the most 
significant variables that influenced the part Ra. 

Zeelanbasha et al. (2020) studied the effect of several geometrical parameters such as 
spindle speed, feed rate, axial depth of cut, radial depth of cut and radial rake angle on 
spindle and worktable vibration by assessment of acceleration amplitude and surface 
roughness. Central composite design (CCD) approach was used to conduct experiments 
on aluminium alloy 6061-T6 material with high-speed steel end-milling cutter. Further, 
RSM was employed to develop predictive models and the suitability of these models 
were tested using analysis of variance technique (ANOVA). Furthermore, non-dominated 
sorting of genetic algorithm (NSGA-II) was implemented to solve the multi-objective 
optimisation model for minimisation of vibration and surface roughness in the  
end-milling process. Additionally, the technique for order preference by similarity to 
ideal solution (TOPSIS) and analytical hierarchy process (AHP) were deployed to rank 
the Pareto optimal solutions. 

Ghosh et al. (2019) examined the impact of spindle speed, feed, and depth of cut on 
surface roughness for keyway milling operation of C40 steel under wet condition. 
Artificial neural network (ANN) and RSM approaches were applied for modelling of 
surface roughness in terms of the selected process parameters. Further, ANN and RSM 
were linked with the GA as well as interfaced with the PSO to optimise the process 
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parameters that lead to minimum surface roughness. The study concluded that the RSM 
coupled PSO gives better result in optimisation of the process parameters. 

Tlhabadira et al. (2019), performed an experimental design using the Autodesk 
Fusion and L9 OA with depth of cut, cutting speed and cutting feed as process parameters 
to evaluate the surface roughness of M200 TS material. The experiments were conducted 
on a 3-axis, CNC vertical milling machine with carbide inserts. The surface roughness 
was measured using the Mitutoyo-201 machine. The study found that the selected 
mathematical modelling approach is a good decision making tool for choosing the values 
of the process parameters during the milling process. 

Pillai et al. (2018) derived a set of optimal process parameters for end-milling of 
Al6005A alloy on a 6-axis robotic machining centre. Further this study focused on 
investigating the impact of several process parameters such as tool path strategy, spindle 
speed and feed rate on machining time and surface roughness by applying Taguchi-grey 
relational optimisation method. The study found that the tool path strategy has the most 
significant influence on surface roughness and machining time. 

Das et al. (2018) analysed the effect of cutting speed, feed rate and depth of cut on the 
surface roughness of aluminium alloy under CNC face milling operation. Further, the 
optimum combination of the three selected parameters has also been assessed under 
single and multi-objective setting by means of GA and ABC optimisation methods. The 
study proved that the selected controlling parameters of the milling operation have a great 
impact on the surface roughness of the machined product. 

Lmalghan et al. (2018) conducted a study to examine the influence of spindle speed, 
feed rate and depth on the cutting force, surface roughness and power consumption of 
face-milling operation. In this regard, experiments have been carried out on AA6061 
aluminium samples. Further, the selected milling process parameters was optimised by 
means of RSM, PSO technique and desirability approach. It was concluded that the 
performance ability of PSO can be comparable with the values of the desirability 
approach. 

Chowdary et al. (2017) conducted a study to optimise the machining of aluminium 
5083 using RSM. The study included a combination of several process parameters such 
as spindle speed, feed rate, depth of cut and tool diameter. It was concluded that the 
selected combination of machining and tool parameters improved the performance of the 
end-milling process. 

Shahrom et al. (2013) studied the effect of lubrication conditions on the surface 
roughness in milling operation of AISI 1060 aluminium as work material. Feed rate, 
depth of cut and cutting speed were also investigated and the Taguchi method was used 
to predict the surface roughness. It was found that, minimum quantity lubricant produced 
better surface finish result over the wet machining environment. 

Wibowo and Mohammad (2012) performed a study for investigation of the optimal 
machining conditions for improvement of surface roughness using kernel-based 
regression and GA approaches. The study showed that the GA technique is superior to 
the traditional regression model. Lakshmi and Subbaiah (2012) examined the effect of 
cutting speed, feed rate and depth of cut on the surface roughness and MRR of hardened 
steel. RSM and ANOVA techniques were used for modelling and optimisation. It was 
found that feed rate and cutting speed are the dominant parameters for improvement of 
part surface roughness which decreases with decrease in feed rate and increase in cutting 
speed. Bozdemir and Aykut (2012) investigated the effect of process parameters on the 
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surface roughness of castamide in wet and dry conditions. The investigated parameters 
were cutting speed, feed rate, tool diameter and depth of cut. ANN modelling technique 
was used to validate the experimental results and proved that the developed ANN can be 
used effectively for prediction of part surface roughness. 

Pare et al. (2011) used the PSO approach in optimisation of cutting speed, feed rate, 
radial rake angle and depth of cut. The optimisation results were compared to those 
obtained using GA and it was found that PSO produces better results in a shorter time. 

Zain et al. (2010a) applied GA technique to optimise the cutting conditions in an  
end-milling process to attain minimum surface roughness. Radial rake angle, feed rate 
and cutting speed were the investigated in this research. The GA technique was proven as 
superior in estimating the optimal parameters for minimum surface roughness. 

Oktem (2009) optimised the surface roughness of an end-milling process when 
machining AISI 1040 steel with TiAlN solid carbide tool under wet condition. The effect 
of the four investigated parameters on surface roughness was modelled by means of 
ANOVA technique. GA approach was then used to find the best combination of 
parameters for minimum surface roughness. It was found that the GA technique 
improved the surface roughness by 12%. 

In summary, modelling approaches based on RSM combined with GA led tools for 
optimisation of end-milling process improve the competitiveness of a company. Today, it 
has become more frequent and reasonably easy to machine various composite materials 
and thermoplastics. However, more empirical studies on comparison of machinability of 
traditional materials with thermoplastics will benefit the present-day machinists. This 
forms the basis to conduct the current research for development of predictive models for 
assessment of surface roughness of end-milling process in terms of the critical machining 
parameters. In conclusion, the present study investigates the impact of variations in 
cutting speed, feed rate, depth of cut, and radial rake angle on the surface roughness of 
Al5083, acrylic and polyethylene terephthalate (PET) materials. Taguchi OA approach 
will be used to plan the DOE. Then the RSM and ANOVA will be applied to analyse the 
experimental data and establish prediction models. Finally, GA technique will be 
employed for optimisation of the end-milling process for obtaining minimal surface 
roughness. 

3 Research methodology 

3.1 Taguchi experimental design 

To perform the study, Taguchi design of experiments (DOEs) methodology was followed 
with the objective of obtaining data in a controlled way. The steps included in the 
Taguchi design are: selecting the proper OA according to the number of parameters, 
conducting experiments, analysing the experimental data, identifying the optimum 
parameter settings and performing validation runs. 

Four parameters, radial rake angle (A), spindle speed (B), feed rate (C) and depth of 
cut (D) were selected from the review of literature and varied each at three levels. All 
other process parameters were kept as constant. The parameters and their respective 
levels are given in Table 1. Further, the parameter ranges were selected as per the 
previous studies (Raja and Baskar, 2012; Ojolo et al., 2014). Then the Taguchi OA 
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approach was applied to determine the number of experimental runs required in which an 
L9 array was selected. Table 2 shows the selected parameter combinations of the study. 
Table 1 Cutting parameters and their levels 

Parameters 
Levels 

1 2 3 
Radial rake angle (A) in 0 15 30 30 
spindle speed (B) in rpm 2,000 3,000 4,000 
Feed rate (C) in mm/rev 100 200 300 
Depth of cut (D) in mm 0.2 0.4 0.6 

Table 2 Parameters and the recorded average roughness values 

Experiment number A B C D 
1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 3 2 
8 3 2 1 3 
9 3 3 2 1 

Table 3 Settings of Mitutoyo surface roughness tester 

Measurement condition Value 
Standard JIS 2001 
Profile R_J01 
Sample length 0.8 mm 
Cut-off length 0.25 mm 
Filter Gaussian 
Evaluation length 4.0 mm 
Pre-travel 0.4 mm 
Post-travel 0.4 mm 
Smooth connection Off 
Range 80 µm 
Speed 0.5 mm/s 

3.2 Experimental details 

Figure 1(a) shows the Boxford CNC milling machine employed to perform the 
experiments. The experimental samples were prepared with dimensions of 100 mm  
× 100 mm × 12.7 mm. The workpiece was clamped onto the vice of the Boxford CNC 
milling machine. The machining was performed by means of straight cuts made 15 mm 
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from one end of the workpiece to the other end. A snapshot of the simulation of 
experimental runs can be seen in Figure 1(b). On completion of the experimental runs, 
the surface roughness of the machined cuts was measured with the Mitutoyo surface 
roughness tester as shown in Figure 1(c), whose settings are shown in Table 3. The tester 
was first calibrated with a standard sample. The surface roughness of each cut was then 
measured on either side of the run to observe the impact of the radial rake angle 
parameter. On each side, three readings were taken, and the mean of all readings can be 
seen in Tables 4a–4c. A sample set of Al5063 test specimens after performing the 
experiments can be seen in Figure 2. 

3.3 Generation of prediction model using RSM 

The RSM tool available in Minitab software was used to obtain prediction models in the 
form of regression equations for each of the three selected materials. The derived 
equation was fine-tuned using a stepwise regression design approach in which all 
irrelevant terms were removed and tested to ensure proper agreement with the 
experimental data. 
Table 4a Surface roughness results for Al5083 material 

Test # Material Radial rake 
angle (°) 

Spindle 
speed (rpm) 

Feed rate 
(mm/rev) 

Depth of 
cut (mm) 

Surface 
roughness, Ra 

(μm) 
1 Aluminium 

alloy 
(5083) 

15 2,000 100 0.2 0.155 
2 3,000 200 0.6 0.529 
3 4,000 300 0.4 0.174 
4 30 2,000 200 0.4 0.346 
5 3,000 300 0.2 0.231 
6 4,000 100 0.6 0.179 
7 30 2,000 300 0.6 0.487 
8 3,000 100 0.4 0.369 
9 4,000 200 0.2 0.160 

Table 4b Surface roughness results for acrylic 

Test # Material Radial rake 
angle (°) 

Spindle 
speed (rpm) 

Feed rate 
(mm/rev) 

Depth of 
cut (mm) 

Surface 
roughness, Ra 

(μm) 
1 Acrylic 15 2,000 100 0.2 0.073 
2 3,000 200 0.6 0.086 
3 4,000 300 0.4 0.053 
4 30 2,000 200 0.4 0.185 
5 3,000 300 0.2 0.106 
6 4,000 100 0.6 0.064 
7 30 2,000 300 0.6 0.401 
8 3,000 100 0.4 0.069 
9 4,000 200 0.2 0.113 
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Table 4c Surface roughness results for PET material 

Test # Material Radial rake 
angle (°) 

Spindle 
speed (rpm) 

Feed rate 
(mm/rev) 

Depth of 
cut (mm) 

Surface 
roughness, Ra 

(μm) 
1 Polyethylene 

terephthalate 
(PET) 

15 2,000 100 0.2 1.807 
2 3,000 200 0.6 1.276 
3 4,000 300 0.4 1.053 
4 30 2,000 200 0.4 2.337 
5 3,000 300 0.2 1.783 
6 4,000 100 0.6 1.329 
7 30 2,000 300 0.6 1.012 
8 3,000 100 0.4 1.916 
9 4,000 200 0.2 1.267 

Figure 1 (a) Boxford CNC milling machine (b) A snapshot of simulated experimental runs  
(c) Mitutoyo surface roughness tester (see online version for colours) 

  
(a)     (b) 

 
(c) 
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Figure 2 Sample of Al5083 workpieces showing after performing machining (see online version 
for colours) 

  

Table 5 Statistical analysis for Al5083 prediction model 

Estimated coefficients for Ra (un-coded units) 
Predictor Coefficient P-value 
Constant –0.458 0.056 
A 0.00062 0.937 
B –0.000079 0.317 
C 0.00348 0.652 
D 3.47 0.441 
C * C –0.000008 0.525 
D * D –3.98 0.265 

Analysis of variance 
Source DF Adjusted SS Adjusted MS F-value P-value 
Model 6 0.126543 0.021090 0.98 0.585 
Linear 4 0.063340 0.015835 0.73 0.646 
Square 2 0.063203 0.031601 1.47 0.405 
Error 2 0.043103 0.021551   
Total 8 0.169646    

Table 6 Statistical analysis for acrylic prediction model 

Estimated coefficients for Ra (un-coded units) 
Predictor Coefficient P-value 
Constant 0.076 0.021 
A 0.00571 0.236 
B –0.000072 0.114 
C 0.00059 0.172 
D 0.013 0.947 

Analysis of variance 
Source DF Adjusted SS Adjusted MS F P 
Model 4 0.066275 0.016569 2.19 0.233 
Linear 4 0.066275 0.016569 2.19 0.233 
Error 4 0.030203 0.007551   
Total 8 0.096478    



   

 

   

   
 

   

   

 

   

    Tool geometry and machining variables influence on the surface roughness 11    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Table 7 Statistical analysis for PET prediction model 

Estimated coefficients for Ra (un-coded units) 
Predictor Coefficient P-value 
Constant 3.30 0.055 
A 0.0152 0.512 
B –0.000251 0.272 
C 0.0037 0.353 
D –9.39 0.698 
C * C –0.000014 0.669 
D * D 12.20 0.234 

Analysis of variance 
Source DF Adjusted SS Adjusted MS F P 
Model 6 1.27599 0.21267 1.27 0.503 
Linear 4 0.75829 0.18957 1.13 0.519 
Square 2 0.51770 0.25885 1.55 0.393 
Error 2 0.33492 0.16746   
Total 8 1.61091    

Then the ANOVA analysis was performed on the selected samples to ascertain the effects 
of the process parameters on surface roughness. The sum of squares (SS) is used to 
approximate the square of deviation from the grand mean, mean squares (MS) are 
estimated by dividing the SS by the degrees of freedom (DF) and F and P values are used 
to check the adequacy of the developed model. Tables 5–7 give the statistical analyses of 
each of the prediction models. The regression equation correlating the process parameters 
to surface roughness in un-coded units are given below: 

a(Al5083)R 0.458 0.00062 A 0.000079 B 0.00348 C
3.47 D 0.000008 C C 3.98 D D

= − + − +
+ − ∗ − ∗

 (1) 

a(Acrylic)R 0.076 0.00571 A 0.000072 B 0.000590 C 0.013 D= + − + +  (2) 

a(PET)R 3.30 0.0152 A 0.000251 B 0.0037 C
9.39 D 0.000014 C C 12.20 D D

= + − +
− − ∗ + ∗

 (3) 

3.4 Optimisation of results using GA approach 

The GA tool available in MATLAB software was used to obtain the optimum values of 
the parameters to achieve the minimum surface roughness using equations (1), (2) and (3) 
as the fitness functions. In this regard, the optimisation model was formulated as follows: 

Minimise Ra (A, B, C, D)  (4) 

Within parameter ranges: 

15 A 30° ≤ ≤ °  (5) 
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2,000 rpm B 4,000 rpm≤ ≤  (6) 

100 mm/rev C 300 mm/rev≤ ≤  (7) 

0.2 mm D 0.6 mm≤ ≤  (8) 

The default settings of the GA solver were used to optimise equations (1), (2) and (3) and 
are shown in Table 8. The ranges of the parameters in the optimisation were chosen as 
the lowest and highest levels in the DOE, i.e., levels 1 and level 3 respectively. 
Table 8 GA solver default settings 

Option Setting 
Population type Double vector 
Creation function Constraint dependent 
Scaling function Rank 
Selection function Stochastic uniform 
Mutation function Constraint dependent 
Crossover function Scattered 
Direction Forward 
Hybrid function None 

4 Results and discussion 

4.1 Comparison of Ra 

Workpiece material properties can affect the surface finish of machined components and 
any small changes in these properties can have a significant influence on the produced 
surface (Dandge and Harne, 2013). The workpiece materials studied in the present 
investigation were Al5083, acrylic and PET. Al5083 alloy has high thermal conductivity, 
ductility, excellent corrosion resistance and its common applications include storage 
tanks, pressure vessels and armour plate. Acrylic is a transparent thermoplastic 
commonly used for light-duty mechanical and decorative applications and optical and 
transparent parts. PET is a low-cost thermoplastic with excellent chemical resistance and 
electrical properties and used to fabricate small housings and hollow shapes (Juvinall and 
Marshek, 2012). In comparing the mean Ra values from the results of the experimental 
runs, as shown in Figure 3, it can be observed that acrylic produced the lowest surface 
roughness, followed by Al5083 and then PET. This confirms that the same process 
parameter settings can have varying effects on the surface roughness of different types of 
materials and hence each material characteristics need to be modelled independently to 
optimise the parameters for minimum surface roughness. 

4.2 Adequacy of prediction models 

The adequacy of the prediction models was determined using a normal probability plot. 
The normal probability plots of the residuals are given in Figure 4. It can be perceived in 
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all three plots that the residuals are close to the line of best fit and evenly dispersed, 
indicating that the errors are normally distributed. 

Figure 3 Comparison of results (see online version for colours) 

 

Figure 4 Normal probability plots for, (a) Al5083 (b) acrylic (c) PET (see online version  
for colours) 

 

4.3 Effects of process parameters on Ra 

The main effects plots were generated to establish the significance of each of the 
parameters and are shown in Figure 5. For Al5083, surface roughness increases with an 
increase in radial rake angle. Additionally, it was observed that there is no clear 
relationship between surface roughness and spindle speed, feed rate and depth of cut. 
Further, the surface roughness increases with a spindle speed increase up to 3,000 rpm, 
after which it decreases with an increase in spindle speed. The same trend can be 
observed for feed rate and depth of cut. The plot for acrylic shows that surface roughness 
increases with an increase in radial rake angle and feed rate and decreases with an 
increase in spindle speed. Furthermore, it can be seen that there is no clear relationship 
between surface roughness and depth of cut; the surface roughness increases with an 
increase in depth of cut until 0.4 mm and then it decreases. In the PET plot, it can be 
observed that surface roughness increases with increasing radial rake angle and decreases 
nonlinearly with increasing spindle speed and feed rate. Like for the previous two 
materials, there is no clear relationship between surface roughness and depth of cut for 
PET. It decreases with an increase in depth of cut until 0.4 mm, after which it increases 
with an increase in depth of cut. Surface roughness decreasing with an increase in spindle 
speed and increasing with an increase in feed rate. The indistinct relationships may have 
been due to parameter interactions such as the change in coolant type. 
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Figure 5 Main effects plots (see online version for colours) 

 

4.4 Optimisation and validation 

GA tool was employed for optimisation of the selected machining parameters to achieve 
minimum surface roughness. The optimal surface roughness for each material is 
presented in Table 9. The accuracy of the optimal results was verified using the Boxford 
CNC milling machine and the Mitutoyo surface roughness tester. Results in this regard 
are shown in Table 10. The average Ra obtained for Al5083 as 0.176 µm which had a 
deviation of 0.033 µm from the predicted value. For acrylic, Ra was found as 0.049 µm 
which had a deviation of 0.001 µm and for PET, Ra was measured as 0.623 µm which 
had a deviation of 0.011 µm. These slight deviations may have been due to temperature 
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changes, uncontrolled noise, and airflow during use of the surface roughness tester. Also, 
when compared to the experimental results in Table 4, the average Ra values of the 
acrylic and PET validation runs were smaller than the experimental runs. Hence these 
results confirm that the optimal parameter values generated by the GA for the three 
selected materials produced a minimum surface roughness. Additionally, during the 
validation exercise, the actual to optimised surface roughness of Al5083 was found as 
23.08%. This deviation in surface roughness results could be due to tool wear, machine 
vibration, built up edge (BUE) chips and variations in properties of the workpiece 
material. According to Yallese et al. (2009) an increase in tool wear leads to a 
degradation in surface quality of a machined component. Also as shown in Karim et al.’s 
(2013) study, tool wear increases with an increase in tool rake angle. Therefore, in 
performing the experimental runs with rake angles of 15° and 30°, as well as due to 
bluntness the cutting tool edge may have affected the surface roughness of the specimen. 
Machine tool vibration causes an increase in tool wear and a decrease in surface quality 
of machined components in the milling process. Workpiece material properties affect the 
formation of BUE chips while machining. BUEs occur when the friction between chip 
and tool causes a shear fracture in the locality of the tool face. It has been shown by 
Gokkaya and Taskesen (2008) that BUE cause poor surface finish in aluminium alloys. 
Hence these factors may have attributed to the large deviation in results for the Al5083 
workpiece material as its metallic properties, especially hardness, are considerably 
different to those of the two selected thermoplastics. 
Table 9 Optimum values predicted by GA solver 

Parameter 
Optimised values 

Al5083 Acrylic PET 
A (°) 15 15 15 
B (rpm) 2,677.64 2,430.71 3,854.15 
C (mm/rev) 100 100 298.366 
D (mm) 0.2 0.2 0.387 
Ra (µm) 0.143 0.048 0.612 

Table 10 Optimum and actual surface roughness values 

Validation 
run 

Optimum surface 
roughness value from GA 

(µm) 

Actual average surface roughness 
value from validation experiments 

(µm) 
Error (%) 

Al5083 0.143 0.176 23.08 
Acrylic 0.048 0.049 2.08 
PET 0.612 0.623 1.8 

5 Conclusions 

In the present study, the influence of radial rake angle, spindle speed, feed rate and depth 
of cut on the surface roughness of the three selected workpiece materials produced in the 
CNC end-milling process was presented. The L9 OA was utilised to reduce the number 
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of experimental runs. RSM and ANOVA techniques were employed to establish the 
prediction models. GA tool was used to optimise the selected parameters to achieve 
minimum surface roughness. A summary of the study findings is given below: 

• The developed prediction model has the potential to predict the surface roughness 
when machining Al5083, acrylic and PET within the parameter ranges investigated. 

• Acrylic produced the lowest surface roughness, followed by Al5083 and then PET. 

• For Al5083, the minimum surface roughness was achieved at a radial rake angle of 
15°, spindle speed of 2,677.64 rpm, feed rate of 100 mm/rev and depth of cut of 0.2 
mm. 

• For acrylic, the minimum surface roughness was achieved at a radial rake angle of 
15°, spindle speed of 2,430.71rpm, feed rate of 100 mm/rev and depth of cut of 0.2 
mm. 

• For PET, the minimum surface roughness was achieved at a radial rake angle of 15°, 
spindle speed of 3,854 rpm, feed rate of 298 mm/rev and depth of cut of 0.387 mm. 

• Validation experiments supported the GA results for Al5083, acrylic and PET with 
23.08%, 2.08% and 1.80% error respectively. 

• Noise factors such as tool wear, machine tool vibration and BUE chips significantly 
affected the results for Al5083 but had little effect on acrylic and PET. 

5.1 Scope for future work 

The scope of this work is very wide and leaves opportunity for improvements and 
changes. There are numerous variables at play, and each one can be further examined. In 
this regard, some future modifications that can be made to this study are: 

• Investigation of new parameters, such as coolant flow rate and number of cutting 
edges, which were held during this study. 

• Other angles of cutting tool can be optimised and compared to determine which one 
has the greater effect on surface roughness. 
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