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Abstract: Recently, there has been a lot of interest in identifying structural 
breaks in economic time series. Failing to capture any structural breaks may 
have a pernicious effect on model estimation due to significant forecast  
errors after such breaks and inappropriate tests. Therefore, this study proposed 
a step-indicator saturation (SIS) technique as an extension of the  
general-to-specific (GETS) modelling framework for detecting any structural 
changes in time series. Monte Carlo simulations assessed the performance of 
the SIS in the local level model based on potency and gauge metrics using the 
‘gets’ package in the R programming language. Sequential selection 
outperformed the non-sequential approach in the automatic GETS model 
selection procedure. Accordingly, this study applied the SIS technique to the 
Financial Times Stock Exchange (FTSE) Bursa Malaysia Hijrah Shariah and 
FTSE USA Shariah using a split-half approach and sequential selection. The 
retained indicators in the terminal model were selected based on the sequential 
and non-sequential algorithms. It was found that the retained indicators in both 
indices collided with the financial crises in 2008–2009. Overall, the proposed 
technique offers an effective approach to detect unknown locations, 
magnitudes, and structural break signs in a structural times series framework. 

Keywords: structural breaks; step-indicator saturation; SIS; Monte Carlo; 
model selection; state-space model; general-to-specific; GETS. 
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1 Introduction 

When the mean and variance of a time series are constantly changing over time, the series 
is considered non-stationary, which is a norm to most economic data. Certain occurrences 
like wars, the COVID-19 pandemic, and economic recessions can result in prolonged 
means and variance fluctuations, leading to non-stationary time series. According to 
Castle and Hendry (2019), evolution and sudden shifts are the two crucial sources that 
caused series to be non-stationary. The former is defined as gradual changes or the 
cumulation of past shocks and the latter is defined as a sudden shift called structural 
breaks. Failing to tackle non-stationarity will result in a distortion of the empirical 
model’s parameter estimation or forecast failure. Hendry and Mizon (2011) documented 
that unmodelled structural breaks lead to improbable regressor coefficients. Furthermore, 
unmodelled structural breaks may detrimentally affect forecast performance (Hendry, 
1999). These are the most frequently encountered problems when managing structural 
breaks. Hence, it is imperative to have a better understanding of the algorithm for 
detecting structural breaks. 

The typical approaches mainly used in studies are the Chow (1960) test, Quandt 
likelihood ratio (QLR) test, an extension from Chow test proposed by Quandt (1960), and 
Bai and Perron (1998, 2003) test. Meanwhile, Andrews (1993) focused on a methodology 
to test for a change in single parameter with unknown break point in nonlinear models. 
Recent studies by Rashedi et al. (2020), Dadakas (2022) and Dadakas and Fargher (2021) 
presented alternative procedures for the detection of structural breaks. However, there are 
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several downsides to the existing detection methods. The Chow test is less effective in 
detecting several structural breaks in time series data. Besides, the QLR test is 
computationally expensive, hence time-consuming. Additionally, Antoshin et al. (2008) 
highlighted that when there are more than two structural breaks, Bai and Perron test’s 
sequential algorithm might incorrectly estimate and assess their statistical significance. 
An iterative process is necessary for the detection procedure by Rashedi et al. (2020) 
when combined with the Tukey method and Maximal-overlap discrete wavelet transform 
(MODWT). This method may not yield its full potential when there is insufficient 
number of observations to reach the level of wavelet transform. While Dadakas and 
Fargher (2021) and Dadakas (2022) only focused on the methodology to examine the 
stationarity under the presence of endogenous structural breaks. Hence, there is a 
mounting need to study an approach for detecting the location, magnitude, duration, and 
sign of multiple breaks in time series data. 

In recent years, general-to-specific (GETS) modelling has seen an increase in the use 
of indicator saturation (IS) approaches. Santos et al. (2008) and Johansen and Nielsen 
(2009) demonstrated that the IS algorithm currently performed in Autometrics is highly 
effective in a regression framework. It is used to determine the unascertained number of 
breaks occurring at unascertained locations, magnitude, duration, and signs of structural 
breaks in time series data. The recent advances in IS literature motivated this study. 
Marczak and Proietti (2016) were the first and only to apply IS to a structural time series 
framework using a basic structural model. There had been no known studies or 
publications on the application of IS in the local level model (one of the structural time 
series model). Moreover, no study had attempted to assess the effectiveness of IS 
integration in the state-space model using the R programming language’s ‘gets’ package, 
which consists of facilities for automated GETS modelling and IS techniques for the 
detection and modelling of outliers and structural breaks. Hence, this study aimed to 
close this methodological gap by incorporating step indicators into the model at the local 
level. 

The remainder of this paper is organised as follows: Section 2 highlights IS-based 
past research and the establishment of GETS modelling; Section 3 describes the step 
indicators structure and structural breaks detection procedure; Section 4 elaborates the 
Monte Carlo experiment simulation settings and reports the simulations’ performance on 
the detection power of step-indicator saturation (SIS) approach; Section 5 presents the 
SIS approach applied to the actual stock price; Section 6 provides the conclusions and 
potential future work. 

2 Literature review 

Numerous research has been conducted in recent years employing IS methods to 
meticulously examine structural change modelling (Johansen and Nielsen, 2009; Castle  
et al., 2012, 2015, 2020; Pretis et al., 2016b; Marczak and Proietti, 2016; Doornik et al., 
2020). Hendry (1999) first introduced impulse IS (IIS) as a component of the GETS 
approach when modelling the US real per-capita annual food demand from 1929–1952. 
Furthermore, impulse indicators were included at each observation for testing an 
unknown number of breaks happening at uncertain dates, durations, and magnitudes. 
Besides that, various studies on economic applications have been conducted (Ericsson, 
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2012, 2017; Hendry and Mizon, 2011; Marczak and Proietti, 2016). Continuous 
development led to another extension of IS called SIS, by Doornik et al. (2013) to model 
structural breaks based on step interventions. Computations of IIS and SIS were made 
available in Autometrics by Doornik (2009) and the gets package in R by Pretis et al. 
(2016a). As highlighted earlier, the performance of IS in a structural time series model 
framework has only been investigated by Marczak and Proietti (2016), who utilised basic 
structural time series as a reference model and the GETS approach to identify outliers and 
level shifts; this was the inspiration and starting point for this study. 

Much of the early works in the development of data mining algorithms in GETS 
modelling began with Hoover and Perez (1999), who revisited Lovell (1983) works in 
data mining experiments using limited MATLAB code, called HP1999. The essential 
ingredients of the HP1999 algorithm were the formulation of a general unrestricted model 
(GUM), multiple paths searching strategies, encompassing tests, diagnostic tests, and info 
criterion as a tiebreaker. Krolzig and Hendry (2001) improved this algorithm in PcGets, 
an Ox package, which offers an extension from HP1999 with additional pre-search, 
iterative multiple paths searching strategies and theoretical aspects in model selection. 
Further, Doornik (2009) accomplished tremendous advances in GETS algorithm via 
Autometrics embodied in OxMetrics. The Autometrics algorithm systematically improved 
the multiple paths using a tree-search method and increased the computational speed by 
avoiding the same model estimation and delayed diagnostic testing. 

On the other hand, the most recent development in the GETS algorithm is in the R 
Package made available by Sucarrat and Escribano (2012), AutoSearch. Later, Pretis  
et al. (2018) introduced the gets package as the AutoSearch successor. The key strength 
of the gets package is that it is the only free and open-source software available that 
provides GETS modelling for conditional variance regression and the mean of a 
regression, as well as IS methods using the isat function. Furthermore, the isat function 
provides the impulse, step, and trend indicators for detecting and estimating the outlier 
and structural breaks in time series data. Pretis et al. (2018) demonstrated that the gets 
package could increase the computational speed substantially with turbo = TRUE and 
max.paths = NULL arguments in the isat function. 

In this study, a new perspective was taken to investigate the SIS performance in the 
local level model and combined with the GETS approach. The goal was to integrate SIS 
into the local level model and assess the SIS performance to capture multiple structural 
breaks using Monte Carlo simulations. This is a novel area of research, and the reliability 
of SIS in the local level model is not yet sufficiently studied. No assessment of SIS in the 
local level model had been published before, and this study aimed to fill this gap. This 
study utilised the gets package in R to employ SIS in the local level model. Then, SIS 
empirical application was provided to financial data: Financial Times Stock Exchange 
(FTSE) Bursa Malaysia Hijrah Shariah Index and FTSE USA Shariah. The main interest 
was to evaluate the capability of SIS to capture structural breaks in the stock indices 
corresponding to the 2008 financial crisis. 

3 Research methodology 

Non-stationary data is typically handled by econometricians using a differencing 
approach that decreases integration order. Nevertheless, long-run equilibrium, such as 
data relationships, could not be modelled using this method. Since IS can handle  
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non-stationary data, this study proposed integrating it into the state-space model 
framework. Regression coefficients that change over time, missing or incomplete data 
and multivariate extensions are also supported by the proposed framework. The  
state-space model’s simplest level is the local model. The level component of this model 
fluctuates with time and may be thought of as the intercept in a conventional regression 
model. The level component can also change from a time point to another in a state-space 
model. The following represents the local level model: 

( )2+ 0,t t t t εy μ ε ε NID σ=   (1) 

( )2
+1 + 0,t t t t ωμ μ ω ω NID σ=   (2) 

For t = 1, 2, …,T where εt = observation disturbance or irregular component at time t,  
µt = unobserved level at time t, and ωt = level disturbance at time t. All observations and 
level disturbances are assumed to be mutually and serially independent, and normally 
distributed with zero means (εt) and variances (ωt). Equation (1) is referred to as the 
observation equation, whereas equation (2) is referred to as the state equation. Based on a 
random walk, the transition equation illustrates the fundamental values. In addition, εt is 
defined as noise originating from the fundamentals, assumed to be unrelated to the state 

innovations to µt. The signal-to-noise ratio of variances, 
2

2
,ε

ω

σq
σ

=  measures the signal 

strength in the fundamental value relative to random deviation. Hence, the local level 
model is also known as the random walk plus noise model (Commandeur and Koopman, 
2007). Additionally, the model can be expressed as ARIMA (0,1,1). The first difference 
of equation (1) is as follows: 

1 1 1Δ +t t t t t t ty y y μ μ ε ε− − −= − = = −  (3) 

From equation (2), ωt = µt–1 – µt is substituted into equation (3), yielding: 

1 1Δ + .t t t t t ty y y ω ε ε− −= − = −  (4) 

It is evident that equation (4) is a stationary process and has the same correlogram as in 
ARIMA (0,1,1). Furthermore, the general state-space form of the local level model in 
equation (1) and equation (2) can be represented as αt = µt, ξt = ηt, zt = St = Rt = 1, and 

2 ,ησ=tW  where zt : design vector of size m × 1, αt: state vector of m × 1, St: m × m 
transition matrix, m: number of elements in the state vector, and Rt: an identity matrix of 
order m × m. Furthermore, Wt encompasses the m state disturbances with zero means and 
variances that are unknown. 

3.1 SIS 

SIS is a structural break extension of the IIS literature introduced by Doornik et al. 
(2013). Autometrics define step indicators as 1{t ≤ j}, j = 1, …, T where 1{t ≤ j} = 1 for 
observation up to j and zero otherwise. In contrast, R’s gets package introduced step 
indicators as 1{t ≥ j}, j = 1, …, T. SIS works similarly to IIS in that the indicators act as 
additional variables for each observation. Hence, additional T indicators will be added to 
the model for a univariate local level data series that has T observations. 
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In detail, a unity value will take place from j = t until t = T. Besides, SIS can be 
expressed in vector form as 1 2(1, 1, 1, ..., 1), (0, 1, 1, ..., 1), ..., (0, 0, 0, ..., 1),TI I I′ ′ ′= = =  
where 1I ′  denotes the intercept dummy. The GETS modelling process requires that the 
indicators be in the GUM as regressors and pass the gets package standard diagnostics 
tests (Pretis et al., 2018). Any regressor with a p-value greater than the selected 
significance level (α) will be omitted one by one from the GUM. Each non-significant 
regressor will pass through sets of diagnostic tests in gets, which are autoregressive 
conditional heteroscedasticity (ARCH) in standardised residuals and test for serial 
correlation. Finally, using an information criterion, a final model is selected among 
terminal models. Since SIS acts as a regressor in the GUM, the regression model fits 
perfectly. This happens when the model has a greater number of regressors (N) than 
observations (T). Santos et al. (2008) proposed a partition of m blocks estimation in a 
fully saturated regression model to address the problem of having more regressors than 
observations. Consider a split-half approach where m = 2 blocks and T/2 indicators are 
added for the first half block of observations as follows: 

2
{ }1

+ 1 + 1, 2, ...,
T

t j t j tj
y μ δ ε t T≥=

= =  (5) 

Significant indicators will be selected at α, followed by the addition of 2
TT −  in the 

second block, and the procedure will be repeated to select significant indicators. From 
these two partitions, a final terminal model can be constructed, which includes only the 
most important indicators. A significant indicator is chosen sequentially based on the 
absolute value of t-statistics, |tj| greater than the critical value of t-distribution, and cα at 
the selected α. In the absence of structural breaks in a time series data set, it is expected 
that αT indicators would be retained by chance in the model. By setting 1 ,T−α  it is 

expected that, on average, the model would retain a misclassification of only one 
indicator. The following illustrates the data generating process (DGP) for a univariate 
local level model with step indicators: 

{ }

( 1)+1

+ + , 1, ...,

T i
m

t j t j t
Tj i
m

y μ S δ ε j T

 
 
 

≥
  − 
 

= =  (6) 

where εt ⁓ IID N (0, σε), m is the number of partitions assuming the blocks are equal size, 
Sj is the coefficient of SIS. The matrix notation of DGP in equation (6) can be represented 
as: 

+=y Sδ ε  (7) 

where ε and y are vectors corresponding to T × 1, δ is the matrix coefficient with 
dimension T × 1, and S is the SIS in matrix form with dimension T × T. For univariate 
time series, the SIS matrix can be expressed as follows: 
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1, 2, 3, ,

1,

2,

3,

,

, , , ...,
( (1), (2), (3), ..., ( ))

(0, (2), (3), ..., ( ))
(0, 0, (3), ..., ( ))

(0, 0, 0, ..., ( ))

t t t T t

T
t

T
t

T
t

T
T t

δ δ δ δ
δ δ δ δ δ T
δ δ δ δ T
δ δ δ T

δ δ T

=
=

=
=

=

 
 

S

 (8) 

Since the function of SIS, δ(t) is equal to unity, equation (8) can be represented as: 

1, 2, 3, ,

1,

2,

3,

,

, , , ...,
(1, 1, 1, ..., 1)
(0, 1, 1, ..., 1)
(0, 0, 1, ..., 1)

(0, 0, 0, ..., 1)

t t t T t

T
t

T
t

T
t

T
T t

δ δ δ δ
δ
δ
δ

δ

=
=
=
=

=

 
 

S

 (9) 

Notably, the problem of regressors exceeding observations persists in the SIS 
mechanism. Thus, like the SIS procedure, the block-splitting method is utilised. The 
general structure of step indicators discussed thus far is based on the gets package 
introduced by Pretis et al. (2016a). Nevertheless, the general structure of SIS offered by 
Autometrics and embodied in OxMetrics slightly differs but remains consistent with the 
GETS framework. Specifically, Autometrics presents the indicators as S = 1{t ≤ j}, j = 1, 
…, T, whereas the gets package uses S = 1{t ≥ j}, j = 1, …, T, as shown in equation (9). 

3.2 Structural break detection procedure using SIS 

As a convenience, assume that the detection procedure for a single structural break occurs 
at the local level framework, with the first and second halves of the partition denoted by 
b1 and b2, respectively. Additionally, assume that there is one structural break in local 
level DGP that occurs between t = H1 and t = T with a magnitude λ, such that λ ≠ 0. The 
DGP is denoted by the matrix notation: 

1 +=y Hδ ε  (10) 

where the vector y represents yt – µt, 1Hδ  is a vector with dimension T × 1 with value 
equal to unity for t ≥ H1, zero for t < H1 and ε is distributed identically and independently, 
with zero mean and variance, 2.εσ  Suppose the matrix notation of equation (7) in the first 
block (b1), the expression can be re-written as follows: 

1 1 +=y S δ νb b  (11) 
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where 1bδ  is the SIS vector consisting of step indicators δ1,t to δT/2,t. Substituting  

equation (10) into equation (11) results in the least square estimator of the SIS vector, 1b̂δ  
as follows: 

( )1 11 1

1ˆ T T
b bb bδ −= S S S y  (12) 

The vector 11
T

bbS S  in the first block can be represented as: 

[ ]
1,

2,
1, 2, 2,

2,

2 2 1 2 2 3 2 1
2 1 2 1 2 2 3 2 1
2 2 2 1 2 3 3 2 1

3 3 3 3 2 1
2 2 2 2 2 1
1 1 1 1 1 1

t

t
t t T t

T t

T T T
T T T

δ
T T T

δ
δ δ δ

δ

− − 
 − − −  
 − − − 
   =  
  
  
 
  





       






 (13) 

Then, as the second difference matrix, the inverse of 11
T

bbS S  is obtained: 

( )11

1

1 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0

0 1 2 1 0 0 0 0

0 0 0 0 0 2 1 0
0 0 0 0 0 1 2 1
0 0 0 0 0 0 1 2

T
bb

−

− 
 − − 
 − −
 =  
 −
 

− − 
 − 

S S





        




 (14) 

The expression ( )11 1

1T T
bb b

−S S S  can be computed to obtain: 

( )11 1

1

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1

T T
bb b

−

 
 − 
 −
 =  
 
 

− 
 − 

S S S





        




 (15) 

The forward-difference matrix obtained in equation (15) is in line with Doornik et al. 
(2013) and Castle et al. (2015) even though the SIS structure is different. Next,  
equation (12) can be solved to obtain the least square estimator: 

( ) ( )1 1 1 11 1 1 1

1

1 1ˆ +T T T T
b b H bb b b b

b

δ λ δ

λ ε

− −=

= + ∇

S S S S S S
s

ε  (16) 
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where s is a vector with dimension 1,
2
T ×  consisting of value unity at the location of 

candidate structural break’s starting point, t = H1. The vector 1bε∇  is equal to εt+1 – εt in 
which the vector element is (ε1, ∇ε1, ∇ε2, ∙∙∙, ∇εT/2)T. Equation (16) can be rearranged to 
obtain: 

1 1
ˆ

b bε δ λ∇ = − s  (17) 

Hence, all the elements of 1b̂δ  should be distributed around mean-zero following 1bε∇ , 

except the element at t = H1 takes the value λ. The element at t = H1 in 1b̂δ  can be 

presented as 1 1 1
ˆ + .t H b Hδ λ ε= = ∇  On the other hand, the elements at t ≠ H1 in 1b̂δ  are 

denoted as 1
ˆ .t H tδ ε= = ∇  Referring to Doornik et al. (2013) and Castle et al. (2015), 

1 1
T

b bE ε ε∇ ∇    is equal to 11

12 .t
ε bbσ S S −
    Then, the least square estimator distribution in 

the first block b1 is given as follows: 

( ) ( )( )1 11 1

12ˆ 0, T
b bb bδ λ N σ −− s S S  (18) 

Finally, the significance testing in GETS modelling can eliminate non-significant 
indicators at the chosen α. The procedure discussed above assumes that the structural 
break is present in the first block. Thus, the SIS in the second block is not able to catch 
any breaks. The least square estimator obtained for the second block is given as follows: 

( ) ( )2 2 1 22 2 2 2

1 1ˆ +T T T T
b b H bb b b bδ λ S S S δ S S S ε− −=  (19) 

Note that a few irrelevant indicators may inadvertently retain in during parameter 
estimation in each partition. For example, Doornik et al. (2013) demonstrated that any 
step indicators near the location of structural break have higher potential to retain in the 
model by chance. These spuriously retained indicators and correctly matched indicators 
from both blocks are combined to re-estimate the final terminal model. Then, the DGP of 
the final terminal model is given as follows: 

3 3 +bδ=y S νb  (20) 

where 3bδ  denotes the vector of combined retained SIS from both blocks (b1 and b2). 

Hence, the least square estimator 3
ˆ( )bδ  for the final terminal model in matrix form is 

given as follows: 

( ) ( )
( )

3 3 1 33 3 3 3

33 3

1 1

1

ˆ +T T T T
b b H bb b b b

T T
bb b

δ λ δ

λ ε

− −

−

=

= +

S S S S S S

s S S S

ε
 (21) 

Finally, the estimated DGP distribution in equation (18) can be expressed as: 

( ) ( )( )3 33

12ˆ 0, T
b ε bbδ λ N σ −− s S S  (22) 
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Until this point, it is vital to highlight that the SIS detection mechanism’s efficiency is 
unaffected by any irrelevant indicators retained from any partition, as long as all 
significant indicators are combined in the final terminal model for estimation. Finally, it 
is noteworthy that the main contribution of this section is the results produced in 
equations (20)–(22), which demonstrated that the SIS in the gets package could detect 
structural breaks at unknown locations even though the SIS structure in the gets package 
and Autometrics differs. Furthermore, the least square estimator ˆ( )δ  and its normal error 
terms distribution are unaffected. 

4 Monte Carlo simulations 

This study conducted Monte Carlo simulations to measure the performance of step 
indicators in the local level framework through potency and gauge. Furthermore, SIS 
performance to detect structural breaks in the local level model was assessed through the 
Monte Carlo experiments, initiated by producing a time series from the local level model 
as in equation (1) for T = 120, T = 240, and T = 360 observations, reflecting ten years, 20 
years, and 30 years of monthly time series data. The variance of parameters was σE = 1 
and σω = 0.0005. Replications of experiments were set at M = 1,000 replications. This 
study first considered a benchmark specification, followed by alternative settings to 
examine the SIS procedure’s robustness. Since the local level model consisted of multiple 
sources of disturbances, the approach by Marczak and Proietti (2016) was adopted for 
designing the appropriate structural breaks size. The expression k.PESD represents the 
shift’s magnitude (k: an integer; PESD: prediction error standard deviation of steady-state 
innovation). Then, these structural breaks were contaminated in the reference DGP. 

The benchmark specification for simulation settings are as follows: 

a Number of observations, T = 240. 

b Number of blocks, m = 2, indicating a split-half approach. 

c Significance level, 1 .T=α  

d Structural breaks magnitude of five times PESD. 

e A single structural break occurs in the centre of the sample, but double structural 
breaks occur at [0.25, 0.75] as a percentage of length T. 

f Length of structural breaks, λ = 10. 

g Selection of significant indicators via non-sequential and sequential algorithms. 

Alternatively, the simulation settings were set in several directions: 

a T = 120 and T = 360 observations. 

b Partitions of 4, 6, 8, and 10 blocks to assess the effect of further splits in structural 
breaks detection. 

c Varying significance levels of 0.1%, 1%, and 2.5%. 

d Structural breaks magnitude with k = 3, 5, 7. 
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e Location of structural breaks at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 as a share 
of length T. 

f Varying structural breaks length of λ = 5, 10, 15. 

g Application of sequential selection for selecting significant indicators. 

The sequential selection procedure works by iteratively removing the least significant 
indicators in every partition until only the vital ones are preserved. Doornik et al. (2013) 
and Castle et al. (2015) demonstrated that the sequential selection strategy can improve 
the test power compared with the non-sequential approach by reducing the variance of 
the coefficients. 

4.1 Monte Carlo experiments performance evaluation 

The Monte Carlo experiments performance was evaluated based on potency and gauge 
values. Potency is the proportion of relevant indicators retained in the final terminal 
model, whereas gauge is the proportion of irrelevant indicator variables retained. The 
gauge is also known as false detection rate that can be controlled by reducing α. This 
study followed the general rule of thumb by Pretis et al. (2018) to ensure a low false 
detection rate by setting 1min 0.05, ,T

 =  α  aiming only one irrelevant indicator 

retained by chance in a large sample T or gauge value less than 5% for a small sample. 
Potency and gauge computations depended on the retention rate ( ).jr  Assume that M 
denotes the number of replications of Monte Carlo experiments, n denotes the number of 
relevant indicators, and Rn and RT–n are the sets of time indices for the model’s relevant 
and irrelevant indicators, respectively. 

1

1 1[ 0], 1, ...,
M

j lj
j

r j T
M =

= ≠ =  β  (23) 

1 ,jj
potency r j R

n
=     (24) 

1 ,j T nj
gauge r j R

T n −=
−     (25) 

Meanwhile, lkβ  signifies the impulse indicator’s estimated coefficient, and if It(k) is 

chosen, the variable 1[ 0]lk ≠β  will take a value of one if the argument is true, and zero if 
false. The concepts of potency and gauge can also be explained using the confusion 
matrix, which is widely used in the machine learning literature. The matrix presents a 
concise summary of the results of a Monte Carlo experiment, as depicted in Table 1. 

A is referred to as true positive while D is known as true negative, indicating the 
number of right decisions made. In comparison, B and C signify incorrect decisions in the 
absence and presence of an outlier, respectively. B is also called false positive, while C is 
known as false negative in the machine learning literature. Thus, the potency is denoted 
by the D/Mn ratio. On the other hand, the gauge is denoted by the B/[M(T-n)] ratio. All 
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computations were performed utilising the R’s gets package offered by Pretis et al. 
(2016a). 
Table 1 Confusion matrix for the one outcome of Monte Carlo experiment 

Actual 
Predicted 

Total 
No outlier Outlier 

No outlier A B M(T – n) 
Outlier C D Mn 
Total A+C B+D MT 

The simulations began by contaminating each series with a single structural breaks size  
k = 5 and λ = 10. The significance level varies at 0.1%, 1%, and 2.5% with a  
split-half approach according to the general rule of thumb by Pretis et al. (2018) to 
control the false detection rate. The isat function in the gets package performed 
excellently in non-sequential and sequential path selection with potency above 90% for 
all observations. Close observations on Table 2–Table 5 revealed that the overall potency 
in the sequential selection was consistently higher than non-sequential selection. As 
expected, the sequential selection increased the retention rate, thus improving the test 
power, as proven by Doornik et al. (2013). The findings of this study were also aligned 
with those of Castle et al. (2011, 2015), proving that the sequential selection using 
Autometrics yields higher potency even though the structure of step indicators is different 
in the gets package. 

Table 2 shows the simulation results when the magnitude of structural breaks varies 
with k times PESD. Besides, different values of α were also implemented to measure the 
procedure’s robustness. As expected, a higher α value leads to a higher potency value, 
indicating more tolerant to the probability of the first detection. Hendry and Santos 
(2005) stated that potency relies heavily on the length of a single break in the series 
examined. As shown in Table 3, SIS performed satisfactorily above 90% in both  
non-sequential and sequential selections. Doornik et al. (2013) and Santos et al. (2008) 
demonstrated that partitioning the series into m blocks did not affect the gauge values. 
However, a significant finding of this study was that the potency was consistently 
between 60% and 70% when the observations were split into four and eight blocks. As 
mentioned in Section 3, the DGP in partitioned m blocks was assumed to be of equal size; 
hence the first step indicator was exactly located at the block partitioned. This finding 
was consistent with Marczak and Proietti (2016), who obtained less than 4% potency in 
non-sequential and sequential selections. Additionally, the symmetrical pattern was 
notable in potency at different locations with potency values beyond 90%. 

Table 2 Potency of single structural break, split-half approach, λ = 10, k.PESD, and different α 
values 

 T = 120  T = 240  T = 360 
Size 0.1% 1% 2.5% 0.1% 1% 2.5% 0.1% 1% 2.5% 
3 44.0 54.2 57.3  55.4 69.3 74.8  61.1 74.1 79.6 
5 89.3 92.9 93.3  90.5 93.3 94.4  95.3 94.9 91.8 
7 98.7 98.3 100  98.8 100 100  99.9 100 100 
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Table 3 Potency of single structural break, split-half approach, k = 5, and different lengths in 
non-sequential and sequential selections 

 Non-sequential  Sequential 
Length, λ T = 120 T = 240 T = 360 T = 120 T = 240 T = 360 
5 93.9 97.4 96.2  92.9 97.8 93.2 
10 99.8 93.3 94.5  99.7 95.9 94.1 
15 97.9 92.5 91.2  98.1 94.7 93.8 

Table 4 Potency of two opposite signs of structural breaks located at [0.25, 0.75], k = 5,  
λ = 10, with m splits in non-sequential and sequential selections 

 Non-sequential  Sequential 
Splits, m T = 120 T = 240 T = 360 T = 120 T = 240 T = 360 
2 87.6 94.6 88.0  88.2 96.3 90.9 
4 61.5 73.4 60.7  63.8 67.3 65.9 
6 91.6 92.3 88.1  92.1 93.0 90.2 
8 62.0 73.7 61.8  66.2 67.5 64.3 
10 83.1 94.4 87.7  91.7 96.3 92.2 

Table 5 Potency of single structural break, k = 5, λ = 10, split-half approach, and different 
locations in non-sequential and sequential selections 

 Non-sequential  Sequential 
Locations T = 120 T = 240 T = 360 T = 120 T = 240 T = 360 
0.1 91.5 87.8 90.3  91.1 93.7 92.8 
0.2 91.2 91.8 92.0  93.0 93.6 93.7 
0.3 90.9 91.1 91.3  91.8 91.2 92.3 
0.4 92.9 91.0 90.3  93.8 94.6 92.9 
0.5 93.5 93.8 92.9  96.4 97.9 97.2 
0.6 92.0 92.3 87.3  94.9 94.2 93.9 
0.7 91.8 92.0 87.5  92.4 91.6 90.4 
0.8 91.1 91.5 89.8  92.0 90.9 91.8 
0.9 90.3 89.7 87.2  94.0 93.1 90.4 

Furthermore, it was found that the significance level (α) plays a vital role in ensuring a 
low false detection rate. Overall, the gauge values were clustered around the chosen α, as 
shown in Table 6. This study decided to tighten α below 2.5% to ensure the gauge 
approximated the same magnitude. However, a tight α will reduce the potency for 
estimators with small non-centralities. Setting a looser α, for example, 10%, will lead to 
overfitting. Details of potency and gauge in GETS modelling are further discussed in 
Hendry and Doornik (2014). As expected, the gauge values were consistently lower in 
the sequential selection as compared to non-sequential. Doornik et al. (2013) proved that 
the sequential selection is beneficial to rapidly converge the estimator’s variance and 
drastically improve the outcome of SIS in Autometrics. In addition, the sequential 
selection outperformed non-sequential selection in non-orthogonal problems when  
non-sequential is inappropriate. 
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Table 6 Gauge of single structural break, split-half approach, λ = 10, k.PESD and different α 
values 

 T = 120  T = 240  T = 360 
Size 0.1% 1% 2.5% 0.1% 1% 2.5% 0.1% 1% 2.5% 
3 0.97 1.11 4.76  0.51 1.50 3.49  0.38 1.72 4.18 
5 1.01 1.22 3.21  0.50 1.53 3.29  0.19 1.84 4.10 
7 1.00 1.21 3.19  0.53 1.56 3.02  0.04 1.49 4.19 

Table 7 Gauge of single structural break, split-half approach, k = 5, and different lengths in 
non-sequential and sequential selections 

 Non-sequential  Sequential 
Length, λ T = 120 T = 240 T = 360 T = 120 T = 240 T = 360 
5 0.27 0.23 0.31  0.08 0.10 0.10 
10 0.34 0.27 0.13  0.01 0.01 0.09 
15 0.26 0.27 0.26  0.02 0.01 0.09 

Table 8 Gauge of two opposite signs of structural breaks located at [0.25, 0.75], k = 5, λ = 10, 
with m splits in non-sequential and sequential selections 

 Non-sequential  Sequential 
Splits, m T = 120 T = 240 T = 360 T = 120 T = 240 T = 360 
2 0.55 0.17 0.33  0.04 0.01 0.03 
4 1.51 0.48 0.56  0.02 0.07 0.05 
6 0.36 0.13 0.23  0.02 0.01 0.02 
8 1.45 0.47 0.52  0.10 0.07 0.03 
10 0.69 0.12 0.22  0.01 0.09 0.02 

Table 9 Gauge of single structural breaks, k = 5, λ = 10, split-half approach, and different 
locations in non-sequential and sequential selections 

 Non-sequential  Sequential 
Locations T = 120 T = 240 T = 360 T = 120 T = 240 T = 360 
0.1 1.21 0.86 0.66  0.10 0.03 0.01 
0.2 1.23 0.78 0.59  0.09 0.04 0.01 
0.3 1.21 0.74 0.70  0.08 0.03 0.01 
0.4 1.27 0.89 0.60  0.08 0.04 0.01 
0.5 1.14 0.72 0.62  0.12 0.03 0.03 
0.6 1.28 0.73 0.59  0.09 0.03 0.01 
0.7 1.12 0.75 0.59  0.08 0.03 0.02 
0.8 1.38 0.77 0.56  0.09 0.04 0.01 
0.9 1.19 0.80 0.65  0.09 0.04 0.01 
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5 Empirical applications 

This section discusses the performance of SIS to capture structural changes in FTSE USA 
Shariah and FTSE Bursa Malaysia Hijrah Shariah retrieved from Datastream using the 
gets package in R and Autometrics. The series has been approximately modelled by local 
level using dlm package in R and STAMP in Oxmetrics 8. The monthly data ranged from 
November 2007 to July 2019, with a total of T = 141 observations. The chosen 
significance level was determined by 1 ,T=α  indicating that under the null of no 

outliers, less than one indicator is held spuriously on average. The split-half approach and 
sequential selection were applied to reduce the model’s irrelevant indicator numbers. 

The results of diagnostic tests conducted after applying the structural time series 
model to real data are shown in Table 10. To determine if the data matched the structural 
time series model, both Shariah-compliant stock indexes were first evaluated using the 
Akaike information criterion (AIC) and Bayesian information criterion (BIC). Both stock 
indices were chosen for the use of the IS technique to investigate the presence of outliers 
and structural breaks based on the AIC as a tiebreaker (Commandeur and Koopman, 
2007). For the analysis, return values, rt, of each data were determined from the log 
difference of monthly stock prices. 
Table 10 Diagnostics tests for FTSE USA Shariah Index and FTSE Bursa Malaysia Hijrah 

Shariah Index 

 Statistics FTSE USA Shariah FTSE Bursa Malaysia 
Hijrah Shariah 

Independence DW 1.7587 1.7997 
r(1) 0.1033 0.0952 

Homoscedasticity H(h) H(52) 1.4705 H(60) 0.85517 
Normality N 13.621 7.102 
Information 
criterion 

AIC 8.9637 10.0671 
BIC 9.0023 10.1024 

Table 11 Date of structural breaks detected by SIS in FTSE USA Shariah and FTSE Bursa 
Malaysia Hijrah Shariah 

FTSE USA Shariah  FTSE Bursa Malaysia Hijrah Shariah 
gets package Autometrics gets package Autometrics 
2008 M9 (–0.29) 2008 M9 (0.29)  2008 M2 (–0.13) 2008 M2 (0.13) 
2008 M10 (0.32) 2008 M10 (0.30)  2008 M3 (0.13) 2008 M3 (–0.10) 
2010 M4 (–0.14)   2008 M6 (–0.08) 2008 M6 (0.08) 
2010 M5 (0.14)   2008 M9 (–0.08) 2008 M10 (–0.13) 
2011 M7 (–0.13)   2008 M10 (0.16) 2009 M7 (0.03) 
2011 M8 (0.12)   2009 M7 (–0.05)  
   2011 M9 (0.12)  
   2011 M10 (–0.79)  

Note: *t-statistics value reported in parentheses. 
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Accordingly, residuals in the structural time series model are generally assumed to be 
independent and normally distributed, with the attribute of homoscedasticity. Therefore, 
the current study performed the following diagnostics tests to examine whether the 
residuals meet these respective properties: 

1 Durbin-Watson test 

2 homoscedasticity test 

3 normality test. 

Overall, the results diagnostic tests appear satisfactory for every model. It can be seen 
that most of the values of autocorrelations at lag 1 converge to zero indicating weak 
positive correlation among residuals. Moreover, the Durbin-Watsons statistics values are 
clustered around 2 indicating the same correlation between residuals. The H-statistics 
indicate that the variances of two consecutive and equal parts of the residuals are equal to 
one another. For instance, in Table 10, the test shows that the variance of the 52 elements 
of the residuals is unequal to the variance of the last 52 elements of the residuals. 
Summarising, the assumptions of independence, homoscedasticity and normality are all 
satisfied for each shariah index. When comparing the info criterion values, this study 
holds the rule of thumb: the smaller values denote better fitting models than larger ones. 
Overall, the AIC and BIC values are approximately the same for both shariah indices. 

Figure 1 Fitted and actual SIS values for a structural break generated by Autometrics for FTSE 
USA Shariah index (see online version for colours) 

 

Figure 2 Fitted and actual SIS values for a structural break generated by gets package for FTSE 
USA Shariah index (see online version for colours) 
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Figure 3 Fitted and actual SIS values for a structural break generated by Autometrics for FTSE 
Bursa Malaysia Hijrah Shariah index (see online version for colours) 

 

Figure 4 Fitted and actual SIS values for a structural break generated by gets package for FTSE 
Bursa Malaysia Hijrah Shariah index (see online version for colours) 

 

Table 11 compares the SIS performance between the gets package and Autometrics. 
Despite the difference in structural breaks detected in both algorithms, similar shifts dates 
were detected in September and October 2008 in FTSE USA Shariah, corresponding to 
the 2008 financial crisis. Note that the sign of t-statistics value in the gets package and 
Autometrics are opposite due to different approaches in handling the indicators. The 
former used forward steps for indicator function; hence, positive t-statistics values imply 
an upward step indicator, and negative t-statistics values imply a downward step. On the 
other hand, Autometrics relies on backward steps; hence, the interpretation of t-statistics 
values is opposite-signed as what has been reported. Besides, both algorithms captured 
similar structural breaks in FTSE Bursa Malaysia Hijrah Shariah for the 2008 financial 
crisis. Almost all indicators retained in Autometrics can be captured by the gets package, 
implying that there is an alternative algorithm to detect structural breaks using the GETS 
approach. The key strength of gets package over Autometrics is the ease with which  
user-specified GETS and ISAT techniques for particular issues may be implemented 
using generic functions and procedures. The gets package further provides users with 
appealing features and tools that let them to customise the model estimates, model 
diagnostics, and goodness of fit criteria. 
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6 Conclusions 

Overall, the IS technique in GETS modelling effectively detects unknown locations, 
magnitudes, and signs of structural breaks when considering the local level model in a 
structural time series framework. This study’s findings provided the first evidence 
demonstrating the application and effectiveness of the IS technique in a local level 
framework. The unobserved components constantly evolve over time driven by random 
disturbances. A key strength of SIS is that it can capture multiple breaks even though 
only one or two breaks are used in Monte Carlo simulations, as the potency exceeds 90% 
in most settings. The results revealed that SIS effectively detects structural breaks when 
combined with the sequential selection and split-half approach. Sequential selection has 
been proven to rapidly reduce estimator variances and is essential in reducing the 
terminal model’s number of retained irrelevant indicators, although this algorithm is 
computationally expensive. Several factors that affect the potency and gauge were 
explored. First, the magnitude of shifts plays an important role in shifts detection. 
Evidently, it is easier for SIS to capture larger magnitudes of shifts. Second, the potency 
varies symmetrically, suggesting that detecting structural breaks that are present in the 
middle of a sample is much easier. Finally, the sample partitioning approach also affects 
SIS performance. However, there is still a great deal of work to be done in this area. For 
instance, other critical SIS analysis includes the trend components in the reference model 
since this study only considered level components. 
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