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Abstract: The joint economic lot size (JELS) model with stochastic demand 
and controllable lead time has received quite some attention in the literature. If 
a lot is shipped in batches from the vendor to the buyer, subsequent shipments 
may be subject to different lead times. Establishing a common safety stock for 
all batch shipments may lead to an inflated stockout risk for early batch 
shipments and an unnecessarily high inventory level for late batch shipments. 
To alleviate this shortcoming, a few authors proposed JELS models that adjust 
the safety stock level over the course of the inventory cycle. Existing works, 
however, do not always correctly establish the relationship between the 
vendor’s and the buyer’s inventory. This technical note adjusts the relationship 
between the buyer’s and the vendor’s inventory and numerically quantifies the 
error’s impact on the expected average inventory as well as on the system’s 
expected total cost. 
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1 Introduction 

The joint economic lot size (JELS) model has attracted the attention of researchers for 
many years. Early works in this area are those of Goyal (1977) and Banerjee (1986), who 
studied a single vendor producing and delivering a single type of product to a single 
buyer. The objective of both papers was to develop a lot size policy that is optimal from a 
system point of view, instead of individually optimising the cost functions of the supply 
chain parties. These seminal papers have frequently been extended in the past, e.g., to the 
case of multiple buyers, (e.g., Joglekar and Tharthare, 1990; Banerjee and Banerjee, 
1994) or vendors, (e.g., Chen and Sarker, 2010; Glock and Kim, 2014), to the case of 
more than two stages, (e.g., Banerjee and Kim, 1995; Kim and Glock, 2013), or to the 
case of stochastic demand, (e.g., Sharafali and Co, 2000; Ben-Daya and Hariga, 2004) or 
stochastic lead time (e.g., Sajadieh and Jokar, 2009; Sajadieh et al., 2009). We refer the 
reader to the review of Glock (2012) for an overview of the JELS literature. 

Ben-Daya and Hariga (2004) proposed a JELS model with stochastic customer 
demand in which the vendor delivers the lot to the buyer in n shipments of size Q. The 
buyer was assumed to use a continuous-review, lot size-reorder point model to replenish 
its inventory. Glock (2009) extended the model to the case of unequal-sized batch 
shipments and Taleizadeh et al. (2010) to the case of multiple products. 

In developing their proposed model, Ben-Daya and Hariga (2004) assumed that the 
lead time of a batch depends on a (lot size-dependent) production time and a  
non-productive transportation time. Hsiao (2008) argued that in this case, the lead time 
for the first batch is longer than the lead time for batches 2, …, n, as the production time 
of batches 2, …, n does not have to be considered in calculating the lead time of these 
batches. He therefore extended Ben-Daya and Hariga’s (2004) model to account for two 
different reorder points, with the first one being valid for the first batch shipment and the 
second one for the remaining batches. The author assumed, however, that a single safety 
stock exists for the entire inventory cycle. 

If we assume that subsequent shipments from a lot have different lead times, then the 
periods during which the system is at risk to suffer a stockout will be different for the 
shipments as well. Instead of establishing a single safety stock that is maintained over the 
entire inventory cycle, the company could establish a larger safety stock for those batches 
that suffer from an elevated stockout risk, and reduce the safety stock for batches 
associated with a shorter risk period. To the best of the authors’ knowledge, multiple 
safety stocks in a JELS model were first discussed by Mou et al. (2017) and then by 
Sarkar and Giri (2022). However, Mou et al. (2017) incorrectly linked the vendor’s and 
the buyer’s inventory, leading to an incorrect expression of the expected total cost of the 
system. Sarkar and Giri (2022) adopted this error. This note thus proposes a correct 
formulation of the inventory trajectories and the expected total cost function of a single 
vendor-single buyer JELS model with batch shipments, stochastic demand, and multiple 
safety stocks. We adopt the scenario investigated by Sarkar and Giri (2022) for this 
purpose, but note that the fundamental relationships put forward in the following are 
valid for other supply chain environments as well. 
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2 A single vendor-single buyer JELS model with batch shipments, 
stochastic demand, and multiple safety stocks 

Sarkar and Giri (2022) investigated a JELS model with a single vendor and a single buyer 
and assumed that demand is stochastic, lead time controllable, and that a backorder price 
discount exists. The lot produced by the vendor was assumed to be delivered in n equal 
batches of size Q to the buyer. The lead time for the first batch was modelled as the sum 
of the production time of the first batch, Q/P, with P being the production rate, and the 
transportation time, T. For batches 2, …, n, the lead time was set equal to the 
transportation time T. Note that this lead time formulation immediately follows from the 
assumption P > D, where D is the average demand rate, and from the assumption that the 
vendor produces and/or ships a batch only when ordered by the buyer. The first 
assumption is necessary to ensure that the vendor is able to meet the customer demand, 
and the second assumption reduces stock holding cost in the system, as keeping inventory 
is more expensive at the buyer than at the supplier. In this scenario, the lead time of the 
first batch consists of the production time Q/P and the transportation time. Then, when 
the remaining shipments are requested by the buyer, the vendor has already accumulated 
sufficient inventory to meet the buyer’s order and can immediately deliver the batch. 
Hence, the lead time for batches 2, …, n coincides with the transportation time. The 
authors further assumed that two replenishment cycles with different lead times have 
different safety stocks. 

In developing their proposed model, the authors incorrectly linked the vendor’s 
inventory to the buyer’s inventory, though. Both in their Figure 2 (please refer to their 
paper for this figure) and in the vendor’s inventory carrying cost included in their 
equation (15), they assumed that the vendor delivers batches, on average, every Q/D units 
of time to the buyer. This is not correct, as it does not correctly reflect the buyer’s 
expected inventory dynamics, which includes, by assumption, two different safety stocks 
between the first replenishment cycle and the other 2, …, n cycles. We will denote by S1 
the safety stock of the first replenishment cycle and by S2 the safety stock of 
replenishment cycles 2, …, n. 

Assume that because of the longer lead time of the first batch, the buyer wishes to 
establish a larger safety stock S1 for this batch. To build up the additional safety stock, the 
buyer has to use a higher reorder point r1, which leads to an earlier issue of the order at 
the vendor. The expected cycle time of this batch consequently is: 

( )1 2
1 .

Q S S
Z

D
 − − =  (1) 

For the remaining batches 2, …, n, the buyer reduces the safety stock to the lower lever 
S2 again. This implies that, in addition to the batch size Q, the buyer also consumes the 
difference between both safety stocks, S1 – S2, in this cycle, leading to a larger expected 
cycle time for the second batch: 

( )2 1
2 .

Q S S
Z

D
 − − =  (2) 
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The cycle times for the remaining batches 3, …, n are, as in the work of Sarkar and Giri 
(2022), Q/D. The expected total cycle time over replenishment cycles 1, …, n can now be 
calculated as follows: 

( ) ( )1 2 2 1
tot + + ( 2) .

Q S S Q S S Q QZ n n
D D D D

   − − − −   = − =  (3) 

It can be observed that the expression of Ztot is valid independently of the relationship 
between S1 and S2, i.e., independently of whether S1 ≤ S2 or S1 > S2. Figure 1 introduces 
the correct inventory patterns for buyer and vendor for the case where two different 
safety stocks are used on the buyer’s side. 

To establish the expected average inventory carrying cost for the buyer, we first 
calculate the area below the inventory curves in the lower part of Figure 1, which gives: 

( ) ( ) ( ) ( )1 2 2 11 2 2 1
1 2

2

+ + +
2 2

+( 2) + .
2

Q S S Q S SQ S S Q S SU S S
D D
Q Qn S
D

   − − − −   − − − −   =       
 −  
 

 (4) 

The expected average inventory of the buyer can now be calculated by dividing  
equation (4) by the expected total cycle time given in equation (3): 

1
2

tot

( 1)+ + .
2B

U Q n SI S
Z n n

−= =  (5) 

The expected average inventory of the vendor can be calculated from Figure 1, for 
example by using the method proposed by Joglekar (1988), as follows: 

( )

( )

( )

2 1
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2 22 1

1 2

2 + + ( 2)
2
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−

     − −     = − −
   

   − −  − −  
−   = − − − −     



  (6) 

We now make the following observation. According to, e.g., Hadley and Whitin (1963), 
the safety stock in an inventory system controlled by means of a continuous review,  
(Q, r) policy in presence of full lost sales is 

[ ]+ ( ) ,S r μ E X r += − −  (7) 

where X is a random variable denoting the lead time demand and µ is its mean, and  
E[X – r)+] is the expected amount of lost sales per cycle. Consequently, if we let β be the 
fraction of shortage that is backordered, then the safety stock becomes 

[ ]+ (1 ) ( ) .S r μ E X r += − − −β  (8) 
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Figure 1 Inventory time plots for a single vendor and a single buyer for the case of two different 
safety stocks at the buyer 
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If we now go back to the model of Sarkar and Giri (2022), we can note that the safety 
stock of the first replenishment cycle and the safety stock of replenishment cycles 2, …, n 
are incorrectly given by their equations (1) and (2), respectively. The correct expressions 
of S1 and S2 are, respectively, 

( )1 1 1
0

+ 1 Ψ ,
1+

xb δS κ σ L σ L κ
b θL

 ′ ′= − ′ 
 (9) 
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( )2 2 2
0

+ 1 Ψ .
1+

xb δS κ σ L σ L κ
b θL

 ′′ ′′= − ′′ 
 (10) 

The expected total cost of the system per time unit can now be calculated as follows: 
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 

 −    − − − −       
  ′− ′ 

  ′′+ − −  ′′  

 (11) 

where S1 and S2 are given by equations (9) and (10), respectively. 

3 Numerical experiments 

Let 1 2
1ˆ ( ),V V

nI I S S
n
− = − − 

 
 with VI  given by equation (6), i.e., V̂I  is the expected 

average inventory of the vendor in the model of Sarkar and Giri (2022). Let vo = (Qo, κ1,o, 
κ2,o, bx,o) be the vector minimising ℜ, for a fixed pair φ = (n, T), and let 

( ) ( ), ,ˆ ˆ ˆ ˆ,V o V o V o V oI I Q I I= = v  and ℜo = ℜ(vo), all evaluated in correspondence to φ. Let 
vM = (QM, κ1,M, κ2,M, bx,M) be the vector minimising the cost function of Sarkar and Giri 
(2022) for fixed φ. Let ℜM = ℜ(vM). 

We carried out numerical experiments to investigate the magnitude of the error made 
by Sarkar and Giri (2022) in evaluating the vendor’s expected average inventory. These 
experiments were performed considering an inventory system with the same data as used 
by Sarkar and Giri (2022) in their Example 1, specifying that one year is the reference 
time unit, with 46 weeks per year and seven days per week, and that one dollar is the 
reference monetary unit. We assume that the values of the stockholding cost rate adopted 
by Sarkar and Giri (2022) are expressed in [$/unit/year] and that the value given for the 
standard deviation of the demand rate is relevant for one week (these aspects were not 
fully clear in their paper). Transportation time data are taken from Sarkar and Giri (2022), 
too. 

To evaluate the impact of the error in the model of Sarkar and Giri (2022) on the 
system’s behaviour, we introduce the following error metrics: 

1PE 100,M o
C

o

ℜ − ℜ= ×
ℜ

 (12) 

, ,

,

ˆ
PE 100.V o V o

I
V o

I I
I
−

= ×  (13) 
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The results of these experiments are shown in Tables 1 and 2. Note that we considered 
values of n larger than 1 because, for n = 1, both models give the same result. 

We can first observe that the model of Sarkar and Giri (2022) leads to a substantial 
error compared to the correct model presented in this paper. The percentage error 
regarding costs, PEC1, ranges from a minimum value of 2.44 to a maximum value of 
11.67. Moreover, PEC1 becomes larger for higher values of n. Increasing values of T give 
a larger PEC1. 

The percentage error made by Sarkar and Giri (2022) in evaluating the expected 
average inventory of the vendor, PEI, ranges from a minimum of 5.26 to a maximum of 
160.01. We also observe that PEI shows a similar behaviour than PEC1 with respect to 
changes in n and T. It is noteworthy that the expected average inventory of the vendor, 
corresponding to the optimal solution for a fixed φ, is overestimated in the model of 
Sarkar and Giri (2022). In other words, in all considered problem instances, we have  
S1 < S2 or, equivalently, κ1 < κ2. 
Table 1 Percentage error between ℜM and ℜo for different values of T and n 

 PEC1 
 n 
T [day] 2 3 4 5 6 7 8 9 10 
56 3.14 5.45 7.11 8.35 9.32 10.09 10.72 11.23 11.67 
42 2.92 5.10 6.66 7.82 8.72 9.43 10.00 10.47 10.86 
28 2.63 4.64 6.07 7.12 7.92 8.54 9.04 9.44 9.77 
21 2.44 4.32 5.66 6.63 7.36 7.92 8.36 8.71 8.99 

Table 2 Percentage error between , ,ˆ andV o V oI I  for different values of T and n 

 PE1 
 n 
T [day] 2 3 4 5 6 7 8 9 10 
56 42.66 78.60 104.85 123.74 137.18 146.61 153.08 157.36 160.01 
42 28.48 55.54 74.83 88.43 98.01 104.73 109.38 112.53 114.58 
28 13.36 32.70 46.36 55.91 62.62 67.37 70.73 73.08 74.71 
21 5.06 20.69 31.74 39.42 44.83 48.67 51.42 53.38 54.78 

3.1 Additional experiments 

In this subsection, we present numerical experiments carried out to compare the model 
we developed with a simpler model that originates from it, and that is obtained assuming 
two different reorder points, but a single safety stock, as in Hsiao (2008). Equating S1 
with S2 [see equations (9) and (10)], we get, e.g., κ2 as a function of κ1 (note that this 
equation can only be solved numerically). Then, substituting this value of κ2 in  
equation (11), and setting S1 = S2 in the same equation, we obtain the cost model for the 
case with different reorder points, but identical safety stocks. 
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Let vH = (QH, κ1,H, bx,H) be the minimum-cost solution for the model with identical 
safety stocks for a fixed φ, and let ℜH be the corresponding minimum cost. The 
comparison is made assuming the same problem instance as in the previous experiments 
and considering the following quantity: 

2PE 100.H o
C

o

ℜ − ℜ= ×
ℜ

 (14) 

The results are given in Table 3 and demonstrate the benefits originating from the 
adoption of different safety stocks. In fact, the model with identical safety stocks results 
in a higher cost than the one with different safety stocks. In the considered instance, the 
percentage cost difference spans from 0.03% to 9.07%, and it increases with T and n. 
Table 3 Percentage difference between ℜH and ℜo for different values of T and n 

 PEC2 
 n 
T [day] 2 3 4 5 6 7 8 9 10 
56 0.86 2.41 3.88 5.15 6.21 7.11 7.87 8.51 9.07 
42 0.52 1.76 3.05 4.19 5.17 6.00 6.71 7.32 7.84 
28 0.16 0.97 1.96 2.91 3.75 4.48 5.11 5.66 6.13 
21 0.03 0.52 1.28 2.06 2.79 3.43 3.99 4.48 4.91 

4 Conclusions 

Despite the popularity JELS models with stochastic demand have enjoyed in the past, 
only a few authors acknowledged that an adjustment of the safety stock during the 
inventory cycle can lower the expected total cost of the supply chain. The few works that 
exist in this area incorrectly linked the buyer’s and the vendor’s inventories, however, 
leading to an incorrect approximation of the expected total system cost. The work at hand 
provided the correct expression for the expected average inventory of the vendor to 
correct these inconsistencies. 

In numerical experiments, we estimated the magnitude of the error in the model of 
Sarkar and Giri (2022) both with respect to the minimum cost and the expected average 
inventory of the vendor. Depending on the problem setting, the numerical experiments 
showed that the error in the minimum cost can exceed 10%, and that the error in correctly 
estimating the average inventory of the vendor can be well above 100%. In a comparison 
of our model to an alternative setup with different reorder points, but a common safety 
stock for all batch shipments, we found that using multiple safety stocks can reduce the 
total cost by up to 9%, again depending on the parameter settings. 

Future research could further investigate how adjustments of the safety stock over 
time affect both the service level and the expected total costs of a supply chain. 
Interesting scenarios to investigate would be the case where products deteriorate, such 
that items in the safety stock need to be replaced from time to time, or the case where 
inventory is subject to shrinkage. We leave these and other extensions of our work for 
future research. 
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