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Abstract: Fe3O4/NiO composite oxides have been synthesised and 
characterised by various analytical techniques. Fe3O4/NiO was used as the 
catalyst to activate NaHSO3, and supplemented with visible light illumination, 
which formed a novel photo-assisted Fenton-like system in degradation of dye 
in wastewater. By changing the calcination time of the precursor, three 
composite oxides are obtained. In degradation of the azo dye Orange II, several 
experimental results show that Fe3O4/NiO(8h) has the best adsorption and 
catalytic ability, 90% of the dye can be removed within 2 h in the 
Fe3O4/NiO(8h)/NaHSO3 system. Also the mechanism of the degradation is 
discussed. 
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1 Introduction 

Iron is able to activate hydrogen peroxide (H2O2), persulfate (PMS) or bisulfite (BS) in 
the homogeneous systems to produce corresponding active substances to degrade organic 
pollutants (Wang et al., 2019a; Sun et al., 2018; Zou et al., 2014; Bolobajev et al., 2015). 
One of the most classic reactions is Fenton reaction, in this system, Fe2+ reacts with H2O2 
to generate strong oxidising hydroxyl radical (•OH) that can degrade organics rapidly, at 
the same time, Fe2+ is oxidised to Fe3+, and Fe3+ can convert into Fe2+ through a series of 
reactions later (Zhu et al., 2020; Xu et al., 2019; Dou et al., 2018; Sirés et al., 2007). 
However, as the pH increases, Fe2+ not only cannot react with H2O2 to generate •OH, but 
also will produce ferric hydroxide precipitate, causing the loss of Fe2+ that leads to a 
continuous decrease in the reaction rate (Hou et al., 2018; Masomboon et al., 2010). 
Therefore, in order to maintain a steady rate of the reaction, bivalent iron salt will be 
added continuously. But the fluctuation of pH is inevitable, so Fe3+ in the system will 
precipitate continuously and the iron sludge will be on the increase. Similar to the 
traditional Fenton reaction, in the process of Fe2+ activating PMS or PDS, SO4

•– replaces 
•OH to degrade organic pollutants (Yu et al., 2020; Xie et al., 2019; Ni et al., 2018). 
However, its defects are also similar to the Fenton reaction, it is difficult to regenerate 
Fe2+ after converting into Fe3+ (Li et al., 2016). Therefore, the homogeneous process of 
iron cannot be widely promoted. Chen et al. (2012) developed Fe(II)/sulphite for the 
degradation of organic dyes, after comparing with Fe(II)/PMS and Fe(II)/H2O2 , they 
found that Fe(II)/sulphite exceeded the others in the degradation of dyes, and SO4

•– was 
confirmed as the main radical using tert-butanol through quenching experiment, •OH and 
SO5

•– were also detected in the system. This phenomenon shows that the Fe(II)/sulphite 
system is one of the best methods for treating organic wastewater. However, the materials 
in the homogeneous system are difficult to recycle for reuse, and will cause secondary 
pollution, limiting the application of the homogeneous system in industry. 

Studies have found that Fe3O4 has no obvious activation effect on H2O2 and Na2S2O8, 
but it has a certain activation effect on K2S2O8 (Lu et al., 2020; Pervez et al., 2020). 
Fe3O4 is used to activate K2S2O8 to degrade sulfamethoxine, it is found that when the  
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dose of Fe3O4 is high enough, the degradation rate of pollutants is reduced. In addition, 
adding Fe3O4 in batches has a better effect than one-time addition. Fe3O4 not only has 
Fenton-like activity to activate persulfate, but also can act as a photocatalytic material 
(Laipan et al., 2016; Zhao et al., 2015; Kumar et al., 2013). Jia et al. (2015) prepared 
Fe3O4/g-C3N4 nanoparticles (NPs) using an uncomplicated electrostatic self-assembly 
method, and studied the oxidation process in Fenton reaction and Light-Fenton reaction. 
Contrast with the presence of Fe3O4 alone, Fe3O4/g-C3N4 nanoparticles are more efficient 
at degrading Rhodamine B (RhB), increasing by 20% and 90% respectively. The 
improvement of degradation efficiency is mainly due to the heterojunction formed 
between Fe3O4 and g-C3N4, which accelerates the charge transfer and inhibits the 
recombination of electrons and holes. Furthermore, Fe3O4/g-C3N4 material will not 
dissolve in most solvents, making it an excellent heterogeneous material. Xi et al. (2011) 
reported that magnetically Fe3O4/WO3 core-shell visible-light photocatalyst showed 
higher performance compared with pure WO3 or Fe3O4. It is noted that the active 
photocatalyst WO3 with high surface area played an important role in capturing photons 
and converting them to photogenerated charges, and Fe3O4 acted as a charge collector 
which faciliated the charges transfer (Bazarjani et al., 2013). In addition, much attention 
has been focused on nickel oxide (NiO) nanoparticles including synthesis methods and 
photocatalytic performance of it. Hayat et al. (2011) studied that nickel oxide (NiO) 
nanoparticles with spherical shape and well-dispersed structure exhibited high 
photocatalytic performance as the phenol degradation rate could reach up to 97% within 
60 min. Lakshmana et al. (2018) have synthesised CdS/NiO photocatalysts and its 
photocatalytic property was evaluated for H2 generation under the condition of visible 
light irradiation. The NiO (thin shell) is an important active catalyst that induced efficient 
charge carriers transfer from CdS, which accelerated reduction reaction and enhancing 
hydrogen production (Zhang et al., 2021). 

Herein, Fe3O4 is combined with NiO to prepare the Fe3O4/NiO composite material, 
which is applied to activate sodium bisulfite and enhance the photocatalytic activity. The 
Fe3O4/NiO/NaHSO3 system is established to degrade Orange II dye wastewater. The ratio 
of iron and nickel was changed to optimise the degradation properties. Several 
characterisations have been carried out. The experimental conditions are changed to 
determine the influence of various factors, moreover, the active substances are 
determined by quenching experiments. After a comprehensive analysis of each result, the 
reaction mechanism of Fe3O4/NiO/NaHSO3 system has been proposed. 

2 Experimental 

2.1 Chemicals 
Nickel nitrate hexahydrate Ni (NO3)2·6H2O, iron (III) chloride hexahydrate 
(FeCl3·6H2O), Orange II sodium salt, sodium bisulfite (NaHSO3), ethanol, ethylene 
glycol, trisodium citrate (Na3Cit), sodium acetate (NaOAc), ethanol, polyethanol, 
hydrochloric acid were purchased from the Sinopharm Chemical Reagent Co., Ltd. 
Shanghai, China. All the chemicals were analytical grade and were used as received. 
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2.2 Synthesis of Fe3O4/NiO 

2.2.1 Prepration of Fe3O4 
Firstly, 2.7 g iron (III) chloride hexahydrate (FeCl3·6H2O) was fully dissolved in 80 ml 
ethylene glycol. After that 7.2 g sodium acetate (NaOAc), 1.44 g trisodium citrate 
(Na3Cit) and 2 g polyethanol mixed into the solution. The mixed solution was 
continuously stirred for 30 minutes. After that the mixed solution was put in a stainless 
steel reactor lined with polytetrafluoroethylene, and reacted at 200°C for 8 h in an oven. 
After the reaction was completed, the solid product collected was washed with ethanol 
and deionised water several times. The solid product was fully dried in an oven at 60°C 
to obtain Fe3O4. 

2.2.2 Prepration of Fe3o4/NiO composite oxides 
First, 100 mg Fe3O4 was put in 50 ml 0.2 M dilute hydrochloric acid, and then the mixed 
solution was sonicated for 10 min by an ultrasonic machine. After that, the Fe3O4 solid 
was separated and washed with absolute ethanol for use. 1.2 g nickel nitrate hexahydrate 
was fully dissolved in 72 ml ethylene glycol, Fe3O4 solid treated with dilute hydrochloric 
acid and a small amount of deionised water were also added to the solution. After 
sonication for 30 min, the mixed solution was put in a stainless steel reactor lined with 
polytetrafluoroethylene, and reacted at 160°C for 8 h in an oven. After that, the solid 
product was washed with ethanol and deionised water many times. The solid product was 
fully dried in an oven at 60°C to obtain precursor of Fe3O4/NiO composite oxide. Then, 
under the protection of N2, the precursor was heated by the tubular furnace at 350°C for 
object time with a heating rate of 1°C min–1. After calcination and grinding, Fe3O4/NiO 
composite oxide was obtained. The calcination time of the precursor could affect the 
thickness of the incrustation, therefore, the calcination time of the precursor was set to 
2 h, 4 h and 8 h, respectively. Record the synthesised materials as Fe3O4/NiO (2h), 
Fe3O4/NiO (4h) and Fe3O4/NiO (8h). 

2.2.3 Catalytic degradation of Orange II 
Schematic illustration for the synthesis of Fe3O4/NiO/NaHSO3 system is shown in  
Figure 1. The dye Orange II was selected as the target pollutant, the catalytic degradation 
ability of Fe3O4/NiO/NaHSO3 system was studied in different experimental environments 
with or without visible light. The beaker containing 100 ml Orange II solution with a 
concentration of 50 mg L–1 was placed in a home-made photoreactor equipped with 
5×24 W LED lamps, which can create darkness and visible light conditions, respectively. 
At room temperature, 50 mg Fe3O4/NiO powder and 100 mg NaHSO3 were added to the 
dye solution to carry out the degradation reaction, and the magnetic stirrer kept stirring 
during the reaction. At fixed intervals, 5 ml solution was taken out and centrifuged, the 
centrifugal fluid was infiltration through a 0.22 µm filter and then loaded into a cuvette. 
The absorbance of the dye solution was measured at 484 nm with an ultraviolet-visible 
spectrophotometer UV-2450, Shimadzu. 
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Figure 1 Schematic illustration for the synthesis of Fe3O4/NiO/NaHSO3 system (see online 
version for colours) 

 

3 Results and discussion 

3.1 Characterisation 
Figure 2 is the X-ray diffraction pattern of Fe3O4 and Fe3O4/NiO samples. The 
characteristic diffraction peaks for the Fe3O4 and Fe3O4/NiO samples were detected at 2θ 
angles of 30.24°, 35.52°, 43.12°, 57.04° and 62.66°, which are respectively consistent 
with (440), (422), (400), (311) and (220) crystal planes of the Fe3O4 crystal with inverse 
spinel structure (JCPDS No. 19-629). This shows that the prepared two samples contain 
Fe3O4 crystal phase. In addition, no characteristic peak from any impurities was detected, 
indicating that the sample was pure Fe3O4 crystal phase. Compared with Fe3O4, 
Fe3O4/NiO also showed diffraction peaks at 2θ angles of 37.08° (111), 44.64° (200) and 
51.62° (220), mainly corresponding to the diffraction peaks of NiO crystal (JCPDS No. 
71-1179). Therefore, it could be speculated that the Fe3O4/NiO composite oxide was 
successfully synthesised. 

Figure 2 XRD pattern of Fe3O4 and Fe3O4/NiO Fe3O4/NiO (4h) (see online version for colours) 
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The SEM images of Fe3O4/NiO composite oxide at low magnification and high 
magnification are shown in Figure 3. It can be observed that most of the oxide exists like 
spherical nanoparticles of 250 nm. Since Fe3O4 was prepared separately, and nickel 
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nitrate and Fe3O4 were hydrothermally reacted to obtain Fe3O4/NiO, therefore NiO was 
either deposited on Fe3O4 or coexisted with Fe3O4. However, in the SEM images, the 
observed particle size is about 250 nm, and the diameter of the NiO particle is much 
smaller, it can be speculated that NiO coats the surface of Fe3O4 to form a shell structure. 
In addition, the SEM images of the Fe3O4/NiO composite oxide prepared in this 
experiment is similar to the Fe3O4@NiO shell core structure described in the previous 
reports (Kim et al., 2007). Because of its unique structural characteristics, the shell-core 
structure integrates the properties of both external and internal materials, so it is widely 
used in the field of catalysis. Therefore, Fe3O4/NiO composite oxide with excellent 
structure was successfully synthesised. 

Figure 3 SEM images of Fe3o4/NiO 

 

3.2 Degradation of Orange II with Fe3O4/NiO 

3.2.1 Adsorption performance of Fe3O4/NiO for Orange II 
Considering the special structure of Fe3O4/NiO, the adsorption properties of the materials 
were valuated. As shown in Figure 4, the composite materials such as Fe3O4/NiO (2h), 
Fe3O4/NiO (4h) and Fe3O4/NiO (8h) exhibited different properties on the adsorption  
of Orange II at the dark condition. Fe3O4/NiO (8h) had the best adsorption effect on 
Orange II. It was inferred that the precursor of Fe3O4/NiO obtained the optimal 
adsorption structure after calcining for 8 h. As the calcination time increases, the NiO 
shell of the Fe3O4/NiO composite oxide gradually thickens, and then the specific surface 
area of the NiO shell becomes larger and larger, which is more conducive to the dye 
adsorption. In addition, the excellent specific surface area can also increase the 
photocatalytic efficiency and shorten the catalytic degradation time. 

3.2.2 Performance of Fe3O4/NiO/NaHSO3 system for Orange II degradation 
In the dark, 100 mg NaHSO3 and 50 mg Fe3O4/NiO were added to Orange II solution to 
form the Fe3O4/NiO/NaHSO3 system to degrade the dye. As shown in Figure 5, in the 
first 30 min, the degradation efficiency of different composite materials Fe3O4/NiO (2h), 
Fe3O4/NiO (4h) and Fe3O4/NiO (8h) to the dye was almost the same. As the reaction 
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progressed, it was found that the reaction system of Fe3O4/NiO (8h) as the catalyst had 
the degradation rate of 78.2%. 

Figure 4 Adsorption kinetics of Orange II by different composite materials. conditions: Orange II 
50 mg L–1, Fe3O4/NiO 50 mg L–1 (see online version for colours) 
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Figure 5 Degradation of Orange II with Fe3O4/NiO/NaHSO3 system. conditions: Orange II 
50 mg L–1, Fe3O4/NiO 50 mg L–1, naHSO3 100 mg L–1 (see online version for colours) 
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In order to verify the contribution of free radicals in the reaction, several free radical 
inhibitors were added to the Fe3O4/NiO/NaHSO3 system, and the inhibitory effects of 
ethanol (EtOH) and tert-butanol (TBA) was found to be obvious (decrease to 35.5% and 
67.8%), indicating that the main active substance in the system was SO4

•–. This also 
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explains why at the beginning of the synergistic effect of NaHSO3 and Fe3O4/NiO, the 
degradation efficiency of the three materials with different calcination times are so close. 
That is, the iron in the material activates NaHSO3 to generate SO4

•– radicals, but the three 
materials differ only in the calcination time, and the mole ratio of iron to nickel are the 
same between the materials, so the amount of free radicals generated is also 
approximately the same, so the degradation effect is similar. However, as the reaction 
progresses, the adsorption of the core-shell structure of the material with optimised 
calcination time is gradually reflected, so the superiority of Fe3O4/NiO (8h) prepared by 
calcining for 8 h is more prominent. 

3.2.3 Performance of Fe3O4/NiO/NaHSO3 system for Orange II degradation 
under visible light 

Figure 6 shows the degradation process of Orange II by Fe3O4/NiO/NaHSO3 system 
under visible light. As shown in the figure, among the three composite oxide catalysts 
prepared by different calcination times, Fe3O4/NiO (8h) has the best catalytic 
performance. Due to the insufficient calcination time, the specific surface areas of the 
materials calcined by 2 h and 4 h calcination are small, the adsorption effect of these two 
materials are not as good as the material calcined by 8 h. Furthermore, since the small 
specific surface area can not provide enough photocatalytic degradation site, the catalytic 
effects of these two materials in the photo-assisted Fenton system are also inferior to 
Fe3O4/NiO (8h). The optimal system for this experiment is the Fe3O4/NiO (8h)/NaHSO3 
system under visible light, which can degrade 90% of Orange II during the reaction. The 
main degradation mechanism of this experiment is composed of two parts. On the one 
hand, iron activates bisulfite to form a Fenton-like system, which can generate sulphate 
radicals to effectively degrade organic pollutants. On the other hand, NiO with high 
specific surface area is excited by visible light for photocatalysis. In this study, the Shell 
structure Fe3O4/NiO composite oxides had been synthesised and used as the catalyst to 
activate NaHSO3, and supplemented with visible light illumination, which formed a 
novel photo-assisted Fenton-like system in degradation of dye in wastewater. The results 
show that the Shell structure Fe3O4/NiO (8h) has the best adsorption and catalytic ability, 
90% of the dye can be removed within 2 h in the Fe3O4/NiO (8h)/NaHSO3 system. As 
can be seen in Table 1, the degradation efficiency of Orange II can reach 90.0% in 
Fe3O4/NiO/NaHSO3 system within 120 min, which is higher than that of some previous 
studies (Table 1). 

Table 1 Comparison of this work with previous report of similar composites 

Sample Structural Pollutant 
Removal 

(%) 

Reaction 
time 
(min) 

Fe3O4/NiO (This work) Shell structure Orange II 90.0 120 
γ-Fe2O3/CeO2 (Niu et al., 2021) Rod-likemorphology Tetracycline 84.0 120 
Fe3O4 (Leng et al., 2014) Spherical particles Rhodamine B 80.0 120 
Mn-doped SnO2 (Babu et al., 2018) Spherical particles MO dye 90.0 250 
Fe2O3-NiO-Cr2O3 (Ma et al., 2015) Layered structure Methylene blue 80.0 120 
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Figure 6 Degradation of Orange II with Fe3O4/NiO/NaHSO3 system under visible light. 
conditions: Orange II 50 mg L–1, Fe3O4/NiO 50 mg L–1, naHSO3 100 mg L–1  
(see online version for colours) 
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3.3 Mechanism 

The catalytic mechanism of Orange II degradation by Fe3O4/NiO (8h)/NaHSO3 system is 
proposed as follows: 

The inhibitory effect of ethanol (EtOH) and tert-butanol (TBA) demonstrated the 
existence of SO4

•– and •OH. Firstly, HSO3
- was activated by Fe3+, generating Fe2+ and 

SO3
•– (Eq. (1)). Then, SO3

•– could react with O2 dissolved in water to produce SO5
•–, 

which can further react with HSO3
- to form SO3

•– and HSO5
- (equations (2) and (3))  

(Dou et al., 2020). Next, HSO5
- could be activated by Fe2+, accompanying with the 

generation of SO4
•– (equation (4)). Furthermore, SO4

•– could be changed to •OH by 
reaction with OH- (equation (5)). The electron exchange between Ni2+ and Fe3+ in the 
Fe3O4/NiO could accelerate the conversation of Fe3+ to Fe2+, which enhance the 
performance of the catalyst (equation (6)) (Zhang et al., 2017). 

3 2 •
3 3Fe  HSO   Fe   SO   H+ − + − ++ → + +   (1) 

• •
3 2 5SO  O    SO− −+ →   (2) 

• •
5 3 3 5SO   HSO    SO  HSO− − − −+ → +   (3) 

2 • 3
5 4Fe  HSO   SO  Fe  + − − ++ → +   (4) 

• 2
4 4SO  OH  • OH  SO− − −+ → +   (5) 

2 3Ni Fe  + ++ → 3 2 Ni Fe+ ++   (6) 

The efficiency of Orange II degradation reached up to 90% under the visible light 
irridiation from 78.2% in the dark condition, which was attributed to the photocatalytic 



   

 

   

   
 

   

   

 

   

   26 Y. Mei et al.    
 

    
 

   

   
 

   

   

 

   

       
 

ability of NiO. It was reported that nano NiO and Fe3O4 show high photocatalytic ability 
for degradation process (equations (6)–(11)) (Singh et al., 2017; Hayat et al., 2011; Wang 
et al., 2004). Moreover, NiO with high specific surface area is an important active 
catalyst that induced efficient charge carriers transfer from Fe3O4, which leads to rapid 
charge seperation and high degradation efficiency (Lakshmana et al., 2018). 

3 4NiO / Fe O hv  e  h  − ++ → +   (7) 

•
2 2O  e   O  − −+ →   (8) 

2H O OH  H− +→ +   (9) 

•
2O   H  HOO •− ++ →   (10) 

2HOO •   e  HO− −+ →   (11) 

2 2 HOO  H   H O  − ++ →   (12) 

4 Conclusion 

Several Fe3O4/NiO nanocomposites were prepared to study their ability to treat dye 
wastewater. Characterisation analysis shows that Fe3O4/NiO has a core-shell structure. 
Prolonging the calcination time of the precursor can optimise the core-shell structure of 
the material, thereby obtaining Fe3O4/NiO (8h) composite with high adsorption 
performance. Degradation experiments found that Fe3O4/NiO (8h) not only activates 
NaHSO3 to produce SO4

•– radicals to effectively degrade organic matter, but also has 
excellent photocatalytic performance. Under visible light, the degradation effect of 
Fe3O4/NiO (8h)/NaHSO3 system on Orange II is greatly improved, and the removal rate 
reaches 90%. In addition, Fe3O4/NiO (8h) nanocomposite is magnetic, it can be highly 
dispersed in solution, and is also easy to recycle. In summary, Fe3O4/NiO (8h) 
nanocomposite is a catalyst with potential application value. 
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