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Abstract: In the lengthy time period between 2007 and 2019, airborne 
particulate matter (PM10) levels from real-time intensive measurements were 
analysed to determine how the long-term PM10 may vary from the effects of 
both meteorological parameters and different emission sources in the South 
Marmara Region. The main statistical approaches were performed to determine 
how daily measured long-term PM10 varied with the influence of local 
meteorological parameters in the area. According to the regression models, the 
significant contributors were ambient temperature and wind speeds. The local 
sources of PM10 may be considered the main contributors to the peak PM10 
levels in the area. Therefore, spatial analyses were performed to understand the 
main contributor to the PM10 episodes when the highest PM10 were observed 
throughout the years. The cluster and concentration weighted trajectory (CWT) 
analysis approaches showed that the local sources were mostly associated with 
the higher PM10 levels in the study area. 
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1 Introduction 

Air pollution is still one of the most important environmental risk factors threatening 
public health worldwide (WHO, 2016). Globally, anthropogenic air pollutants are the 
primary environmental concern in urban environments. Meteorology, topographic 
properties, and urban settlements are essential factors of various airborne pollutant levels. 

Airborne particulate matter, such as PM10, refers to suspended particles with an 
aerodynamic diameter up to 10 microns in the atmosphere. Urbanised PM10 may occur 
from industrial applications, such as cement plants, iron and steel plants, coal and mine 
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plants, excavation areas, and from traffic activities, including vehicle exhausts, and roads 
are also considered residential heating during cold seasons in the urban environment 
(Bhanarkar et al., 2005; Lothongkum et al., 2008; Abu-Allaban and Abu-Qudais, 2011). 

Airborne PM10 may adversely affect human respiratory systems, specifically related 
to upper and lower respiratory diseases (WHO, 2006; Tecer, 2009; Samoli et al., 2013; 
Stafoggia et al., 2013). Previous studies have shown a relationship between air pollution 
levels and an increase in respiratory symptoms and mortality (Wordley et al., 1997; 
Timonen et al., 2002). There is a significant link between air pollution and respiratory-
associated hospitalisations and admissions to emergency facilities due to the exacerbation 
of respiratory complaints or asthma in adults and children (Olcese and Toselli, 1997; 
Gomzi, 1999; Wong et al., 2000; Brunekreef and Holgate, 2002). 

Statistical analysis has been widely used in previous studies to establish a better 
understanding of PM10 levels or to estimate ambient PM10 levels by considering 
meteorological variations (Aldrin and Haff, 2005; Elminir, 2005; Karaca et al., 2005; 
Vardoulakis and Kassomenos, 2008; Hrust et al., 2009; Munir et al., 2013; Sayegh et al., 
2014). Many studies have generally shown that ambient temperature, relative humidity, 
and wind speed and direction are significant factors affecting local air quality in  
urban environments (Goyal and Rao, 2007; Giri et al., 2008; Owoade et al., 2012; 
Galindo et al., 2015; Zhang et al., 2015; Yin et al., 2016; Kayes et al., 2019). Therefore, 
meteorological parameters are significant factors in the variation in air quality levels in 
urban environments. 

This study aims to draw statistical analyses to investigate the correlation between 
long-term daily monitored airborne PM10 and meteorological parameters, ambient 
temperature, relative humidity, pressure, wind speed, and direction, to analyse the 
seasonal variations of airborne PM10, and to generate a regression model to show how 
meteorological parameters may independently affect airborne PM10 levels in the Balikesir 
province. The present study attempts to provide evidence of any statistical association 
between the long-term (2007–2018) daily monitored PM10 data and hourly measured 
meteorological data in the same location. 

2 Materials and methods 

2.1 Study area 
The Balikesir province is a medium-sized city located in the northwest part of Turkey and 
the south of the Marmara region (Figure 1). The city is considered a 1st degree 
earthquake zone in Turkey, and it has three different climatic zones, including a 
Mediterranean climate at the coast of the Aegean Sea, a moderate climate at the North  
sites and a continental climate at the inner sites. In addition, air pollution has gained more 
importance due to the topographical structure of the Balikesir Province and the decrease 
in current winds in winters (CAAP, 2019). The factors that negatively affect the air 
quality levels in the city are the topographic structure of the downtown area, the 
meteorological conditions, unplanned urbanisation, the poor quality of the fuel used, the 
industry and traffic activities (CAAP, 2019). 

In this study, there is a conventional active air quality monitoring station (AQMS) 
under the responsibility of the Provincial Environment Directorate in the city. The 
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location of the AQMS, the meteorological station at the local airport, and the downtown 
area are illustrated in Figure 1 using the Google Earth Digital Image environment. 

Figure 1 Aerial 3D-view of downtown Balikesir (see online version for colours) 

Turkey

 
Source: Google Earth image© (2019) 

2.2 Data 

In this study, the long-term air quality data, including daily PM10, were measured from 
the local AQMS in the city. Ambient PM10 levels were monitored since June 2007 in the 
downtown area. Additionally, meteorological parameters, including wind speed (WS), 
humidity (RH), and pressure (P), were obtained from the meteorological station at the 
local airbase. Both the locations of the AQMS and the meteorological station are 
presented in Figure 1. 

2.3 Data analysis 

In the scope of this study, a series of statistical analyses were performed to describe the 
long-term variation of ambient PM10 with fluctuations in the meteorological parameters. 
Temporal variations, including frequency histograms and box-plot time series, were 
generated to evaluate the PM10 variations. Spatial variations were made to describe the 
downtown dispersion of ambient PM10 levels. Correlation analyses of PM10 with the 
meteorological variables were performed to define any statistically significant 
correlations among those variables. Regression analyses, including multiple linear 
regression (MLR) and quantile linear regression (QLR) models, were performed to gain a 
better understanding of the effects of meteorological parameters on the variation of 
ambient PM10 in the city. Considering the results obtained from the regression analyses of 
the datasets, non-parametric correlation analyses, including the Theil-Sen correlation 
analysis, which is one of the key trend analyses frequently used in air quality studies, 
were performed and a train analysis showing the long-year changes of air pollutants was 
performed (Tian and Fernandez, 1999; Elbir et al., 2000; Yolsal, 2016). 

In addition to the set of statistical analyses, the Hybrid Single-Particle Lagrangian 
Integrated Trajectory (HYSPLIT) developed by the US National Oceanic and 
Atmospheric Administration (NOOA) was performed to determine the major pathways of 
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regional PM10 that might affect the observed PM10 levels in the study area. In this case, 
the HYSPLIT model was used to determine the major pathways of the peak PM10 levels 
observed from 2007 to 2019. Additionally, a cluster analysis, including cluster 
trajectories, for presenting spatial contributions of the highest PM10 levels, and 
concentration weighted trajectory (CWT) analyses were performed using the web-based 
TrajStat algorithm (Wang et al., 2009) to identify potential source regions. The analysis 
results are presented in detail in the following section. 

3 Results and discussion 

3.1 Statistical analysis of PM10 with meteorological parameters 
The main annual descriptive statistics, such as the mean, confidence intervals for the 
mean, minimum and maximum levels, and the value at 50% of the distribution of the 
PM10 data, referred to as IQR, are presented in Table 1. The long-term data covered  
the period from June 2007to 2019. 

Table 1 Long-term descriptive statistics for ambient PM10 levels 

Descriptive statistics PM10 
Confidence interval for mean* 

Years Mean Lower bound Upper bound Minimum Maximum 
Interquartile 

range 

2007 82(150)a 75 88 20 329 45 
2008 85(150) 79 91 20 364 51 
2009 80(150) 73 86 11 387 48 
2010 76(132) 71 81 14 319 47 
2011 77(114) 71 82 21 346 46 
2012 45(96) 42 48 15 280 20 
2013 48(78) 44 51 12 278 30 
2014 46(60) 43 49 11 178 23 
2015 44(56) 41 48 8 273 27 
2016 42(52) 40 45 12 167 22 
2017 58(48) 54 63 13 240 32 
2018 46(44) 43 49 12 228 21 
2019 34(40) 32 36 9 126 20 

aThe national PM10 limits in parenthesis (RAQAM, 2008). 
*at 95% significant level. 

The annual mean PM10 levels were around 80s µg/m3 in the first few years, and the PM10 
levels were relatively lower in the following years. Notably, the annual mean PM10 levels 
declined by about 40s µg/m3 after 2012. The national limits were repeatedly reduced 
from 2009 onwards during the adjustment period of the European Union (RAQAM, 
2008). Now, the annual ambient PM10 limit has been set as 40 µg/m3 by state officials. 
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As shown in Figure 2, the time series of the long-term PM10 levels indicate that 
ambient PM10 levels are higher especially in winter. Additionally, ambient PM10 levels 
exceed the official limit in winter. The changes in official limits of PM10 are identified by 
the red line in Figure 2. The ambient PM10 levels showed a decreasing trend when natural 
gas was utilised for residential heating in 2010. 

Figure 2 Daily variations of PM10 levels from 2007 through 2019 (see online version for colours) 

 

As a result of the Theil-Sen trend analysis, according to the graphs obtained in the R 
environment using the Carslaw Algorithm (Carslaw, 2019), which facilitates the analysis 
of daily data, and is presented in Figure 3, the red solid lines represent the PM10 forecast 
averages for all years between 2007 and 2019. The dashed red lines represent the 
confidence intervals of the forecast values at the 95% confidence level. 

According to the Theil-Sen trend analysis results presented in Figure 3(a), the PM10 
levels show a decreasing trend from around 70s µg/m3 to 40s µg/m3 in the study period, 
with an average decrease of 3.5 µg/m3 each year. A seasonal trend has also been 
presented in Figure 3(b) using the Theil-Sen algorithm. The winter season had the highest 
PM10 levels among all seasons and the winter season also showed a decreasing trend for 
the studied periods. 

Polar pollution graphs are useful to summarise all available data. In this analysis, a 
polar means of PM10 levels is illustrated using the Carslaw algorithms (Carslaw, 2019), 
indicating that most of the time, the wind was from a north-westerly or north-easterly 
direction during the study period. The mean concentration of PM10 levels by wind speed 
and wind direction are shown in Figure 4, which highlights that the PM10 concentrations 
tended to be the highest for northern winds for most of the period, which were at quarries, 
crushing and screening facilities, briquette houses and marble workshops located in 
various parts of the city. Although these facilities do not have a direct effect on 
residential areas, the local PM10 levels were affected because the activities of these 
facilities have negative effects on the air quality of the city (CAAP, 2019). 
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Figure 3 (a) Overall and (b) seasonal results of Theil-Sen trend analysis for PM10 levels  
(see online version for colours) 
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The analysis of variance (ANOVA) test was performed to determine whether annual or 
seasonal PM10 levels were identical and to also show any significant difference among 
the annual or seasonal PM10 levels during the study period. The ANOVA test indicated 
that there was a significant difference among the annual means at the 95% significance 
level (p = 0.00). In other words, the annual means were not equal. Since the annual means 
were different, the Post-Hoc test (LSD-Least Squared Means) was then performed for 
more detailed comparisons. According to the LSD, the highest annual means of PM10 
levels were observed in 2008. However, there was no significant difference between 2008 
and the annual means of PM10 levels in 2007 (p = 0.31 > 0.05) and 2009 
(p = 0.58 > 0.05). Therefore, 2007, 2008, and 2009 may be considered the years with the 
highest annual PM10 levels observed in the study area. Furthermore, there was no 
significant difference observed in 2012, 2013, 2014, and 2016. According to the ANOVA  
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test, the lowest annual mean PM10 level was measured in 2019 in the study area, with the  
exception of December. A seasonal basis for an ANOVA test was performed and the 
winter seasons had the highest mean of PM10 levels of 81 µg/m3 [77–85 µg/m3 as a 95% 
confidence interval for the mean]. The fall, spring, and summer seasons were ranked by 
the seasonal means of PM10 levels, respectively. 

Figure 4 Polar PM10 levels (µg/m3) by wind speed and wind directions for the study periods  
(see online version for colours) 

 

Correlation analysis was performed to investigate the possible statistical relationships 
between the meteorological parameters that play an essential role in PM10 variations. 
Such correlation analyses are widely used in environmental and air pollution studies 
(Olcese and Toselli, 1997; Elminir, 2005; Celik and Kadi, 2007; Liu et al., 2015; Cakır 
and Abdullah, 2017; Ismail et al., 2018). The correlation analysis results are presented in 
Table 2. 

According to the Pearson correlation analysis, changes in the PM10 levels in 
downtown Balikesir could be correlated with local meteorological parameters, such as 
temperature (T), wind speed (WS) and pressure (P). The highest correlation coefficients 
were found to be temperature (–0.297), with a tendency towards decreasing PM10 levels 
in the case of both increasing ambient temperature and wind speed during the observation 
period. The correlation coefficient between relative humidity and PM10 was not high. 
Thus, the correlations between relative humidity and PM10 levels were weak in this  
study. Elminir (2005) stated that the correlation between air pollutants and relative 
humidity was not significant. Graphical representations of the correlations of the 
observed meteorological parameters with the measured PM10 levels are displayed  
in Figure 5. 
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Table 2 Results of Pearson correlation analysis 

 PM10 rh p t ws 
Pearson Correlation 1 0.049** 0.287** –0.297** –0.268** 
Sig. (p-value)  0.001 0.000 0.000 0.000 

PM10 

N 4566 4566 4566 4566 4566 
Pearson Correlation 0.049** 1 –0.024 –0.321** –0.120** 
Sig. (p-value) 0.001  0.107 0.000 0.000 

Rh 

N 4566 4566 4566 4566 4566 
Pearson Correlation 0.287** –0.024 1 –0.521** 0.027 
Sig. (p-value) 0.000 0.107  0.000 0.067 

P 

N 4566 4566 4566 4566 4566 
Pearson Correlation –0.297** –0.321** –0.521** 1 0.136** 
Sig. (p-value) 0.000 0.000 0.000  0.000 

T 

N 4566 4566 4566 4566 4566 
Pearson Correlation –0.268** –0.120** 0.027 0.136** 1 
Sig. (p-value) 0.000 0.000 0.067 0.000  

ws 

N 4566 4566 4566 4566 4566 

**Correlation is significant at the 0.01 level. 

Figure 5 Correlations of the observed meteorological parameters with the measured PM10 levels 

 

After evaluating the individual correlations, the hierarchical multiple linear regression 
(HLMR) model was applied using a statistical software package (IBM-SPSS, Version 20, 
USA) to predict PM10 variation by adding the meteorological parameters as a predictor. 
In the HLMR model, PM10 was defined as the dependent variable and all meteorological 
parameters were defined as independent predictor variables. The model consists of four 
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independent models, which have been generated by individually adding the independent 
variables into the model. Within the model, the model with the highest R2 value was 
selected as the most appropriate model to explain the dependent variable. 

It is noticeable that the level of predicting PM10 did not significantly change when the 
all-meteorological parameters were added to the model, so the relative humidity (RH) did 
not substantially affect predicting PM10 levels (p = 0.045 ~ 0.05). According to the 
HLMR model, the significant contributors were found to be T (–0.164), WS (–0.255), 
and P (0.208) in the analysis. These findings confirmed the results of previous studies 
that PM10 concentrations showed an increasing trend when the temperature, wind speed, 
and humidity had inversely increased trends (Olcese and Toselli, 1997; Elminir,  
2005; Celik and Kadi, 2007; Ismail et al., 2018). A similar analysis was performed by 
Ismail et al. (2018), who concluded that MLR performed better than principal component 
regression in Malaysia’s industrial areas. Sayegh et al. (2014) also employed both MLR 
and quantile regression models (QRM) on PM10 levels in Makkah, Saudi Arabia. They 
concluded that QRM performed much better than MLR in their study. The authors 
showed that QRM had significantly better results, with minimal errors compared to the 
other models regarding the prediction of ambient PM10 levels. Therefore, QRM was also 
performed in this study to further determine how meteorological parameters may 
influence the PM10 levels in the study area. According to Sayegh et al. (2014), it was 
stated that the QEM had the best model performance based on several factors, such as the 
mean absolute error (MAE). 

In this study, quantiles were set as 0.25, 0.5, and 0.75 in QRM. Therefore, the MAE 
calculated for the first quantile (0.25) was 27.94, the MAE for the second quantile (0.50) 
was 24.65, and the MAE for the third quantile (0.75) was 30.77 in the model. Based on 
the MAE values, the second quantile (0.5) was selected as the best representative model. 

According to QRM results, the wind speed was the most influential parameter on 
ambient PM10 levels in the study area. Also, the other meteorological parameters were 
significantly important (p < 0.05) parameters based on the QRM analysis. A graphical 
view of the QEM is displayed in Figure 6. 

Figure 6 The QRM results at a 0.5 quantile level (see online version for colours) 

 

In Figure 6, the blue shaded area represents confidence intervals of the parameter 
estimates at the 0.5 quantile. The solid line indicates the parameter estimates, the red line 
shows the parameter estimates for the MLR with the same predictors, and the dashed red 
lines denotes the upper and lower intervals for the linear regression with the same 
predictors. In the QRM, temperature (T) and wind speed (WS) had an inverse correlation 
with the PM10 levels, while pressure (P) and relative humidity (RH) had a positive 
correlation. 
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3.2 Spatial analysis of PM10 episodes 

The highest daily airborne PM10 levels were observed during the study years. The highest 
PM10 levels are presented in Table 1 by the descriptive statistics. The highest PM10 levels 
are increased by a combination of natural and anthropogenic activities that occur under 
major meteorological conditions. The HYSPLIT model was developed by the US 
National Oceanic and Atmospheric Administration (NOOA) and Australia’s Bureau of 
Meteorology (Stein et al., 2015; Rolph et al., 2017). The HYPSLIT model is a unique 
modelling tool that can track down either backward or forward movement of air parcels 
within the described times and zones. 

The HYSPLIT model is also a useful tool to better understand the source of local 
airborne pollutants when they reach their peak values. The peak values of the observed 
PM10 levels with related meteorological data are presented in Table 3. 

Table 3 The peak PM10 levels with dates and related meteorological data 

Peak dates PM10 rh p t Wind speed 
11/25/2007 329.02 81.60 1008.54 5.56 0.59 
1/14/2008 363.71 84.37 1011.17 –2.73 0.72 
1/15/2009 387.18 66.88 1006.07 8.40 0.78 
11/6/2010 318.82 78.88 1001.84 11.37 1.46 
1/12/2011 345.89 73.81 1002.30 6.12 1.52 
1/5/2012 279.57 66.09 1030.58 2.05 0.72 
12/27/2013 277.52 66.87 1009.99 5.89 0.59 
1/11/2014 178.09 68.83 1001.65 5.92 0.57 
2/1/2015 272.70 60.74 913.87 18.75 5.62 
1/28/2016 166.50 70.91 1006.14 3.21 0.59 
12/26/2017 239.58 69.04 1007.83 5.47 0.57 
1/30/2018 228.20 69.16 991.51 6.07 0.60 
12/18/2019 125.87 70.45 1017.87 6.2 0.27 

The HYSPLIT analysis was performed for each peak date presented in Table 3, and the 
modelling outputs are illustrated in Figure 7, including annual peaks from 2007 to 2019. 
The peak PM10 levels occurred in the cold seasons, more likely in November, December, 
commonly in January, and for one-case in February. Based on the modelling outputs, the 
majority of the peak PM10 levels may have occurred from local originating sources, such 
as traffic, residential-heating purposes, and also from sea salts from the Aegean Sea in the 
cold seasons. However, there are some cases that are significantly crucial regarding 
regional PM10 transportation that originates from the other sources. For example, in 2008, 
the peak PM10 levels may have occurred due to the high regional transportation of PM10 
originating in South-East Bulgaria, where the intense coal-burning plants are currently 
located in the vicinity. The air parcel movement from Bulgaria may predominantly affect  
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the peak PM10 levels in the study area and are presented by a red dot in Figure 7. Another 
significant regional PM10 transportation can be seen in Figure 5, which reflects a 
substantial desert effect over Egypt during the local PM10 peak in 2015. 

In this study, the HYSPLIT model was used to determine major pathways of the peak 
PM10 levels at 500 m above sea level from 2007 to 2019 (Figure 7). 

Figure 7 Analysis of HYPSLIT backward trajectories for PM10 episodes during the observation 
period (see online version for colours) 

2007 2008 2009

2010 2011 2012

2013 2014 2015

2016 2017 2018

2019  

In general, the long-term PM10 levels may have occurred due to local activities, except 
for a few cases of regional PM10 transportation from outside of the study area. The 
HYSPLIT models also indicate long-distance sources that may have contributed to the  
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high PM10 levels in local areas. Cluster analysis, as described by Wang et al. (2009), was 
performed to determine the PM10 pathways that were associated with the high-level 
clusters for local sources vs. regional sources in the study area. Figure 8 illustrates the 
trajectory of PM10 clusters in a map view. 

Figure 8 Results of trajectory cluster analysis during the observation period (see online version 
for colours) 

 

As presented in Figure 8, the blue-coloured cluster shows the highest PM10 contribution 
and indicates that local sources were highly effective at a rate of approximately 47%. The 
next significant cluster is shown in yellow and represents regional PM10 pathways from 
South-East Europe with a rate of 20%. The other clusters showed that deserts were 
affected in North Africa and also in the Northern part of the Arabian Peninsula with low 
rates of 13%. 

Concentration weighted analysis also indicated computed ambient PM10 
concentration fields to identify source areas of PM10 in the study location. In the CWT 
analyses, each grid cell represents the mean concentration of PM10 on the back trajectory 
based on the arrival time concentration using long-term data between 2007 and 2019.  
The CWT results are presented in Figure 9. 

Figure 9 is useful for identifying major sources of PM10 concentrations for the area. 
The CWT analysis showed that the local sources were mainly associated with higher 
PM10 levels. The significant PM10 pathways may be described as local, the South-East of 
continental Europe and the Northern parts of Africa and the Arabian Peninsula, 
respectively. 
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Figure 9 Results of the CWT analysis for PM10 pathways during the observation period  
(see online version for colours) 

 

4 Conclusion 

The following considerations are made after performing statistical analysis to determine 
the overall effects of local meteorological parameters on the variations of PM10 levels the 
downtown. The annual mean PM10 levels were about 80 µg/m3 between 2007 and 2009, 
and the PM10 levels were relatively lower in the following years. The annual mean PM10 
levels declined to 45 µg/m3 in 2012. The national limits were repeatedly reduced from 
2009 onwards during the adjustment period by the European Union (EU). The set limit of 
the EU was violated until 2018. 

The time series of the long-term PM10 levels identify that ambient PM10 levels were 
significantly higher in winter seasons. There are some cases where ambient PM10 levels 
exceeded the official limit in winter. Therefore, Winter is the main concern for the 
temporal PM10 levels in the city. Furthermore, the Theil-Sen trend analysis showed that 
PM10 levels tended to decrease in both overall and seasonal times during the study period. 

According to the ANOVA Post-Hoc test (LSD), the highest annual means of PM10 
levels were observed in 2008. However, there was no significant difference between 2008 
and the annual means of PM10 levels in 2007 (p = 0.31 > 0.05) and 2009 
(p = 0.58 > 0.05). Therefore, 2007, 2008, and 2009 may be considered the years with the 
highest annual PM10 levels observed in the study area. 

According to the correlation analysis, the highest correlation coefficients were 
determined to be temperature (–0.297), with a tendency towards decreasing PM10 levels 
in case of increasing ambient temperature, wind speed and pressure during the 
observation period. 
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If all meteorological parameters are used, the PM10 level can only be estimated or 
explained as 16%.An HLMR model was used to predict PM10 variation by individually 
adding meteorological parameters as predictors to the model. The highest R2 was 
obtained when the temperature (T), wind speed (WS) and pressure (P) meteorological 
parameters were included in the model as independent variables so that the relative 
humidity (RH) did not significantly affect predicting PM10 levels (p = 0.045 ~ 0.05) 
during the long-term study. 

In addition to the statistical analyses, spatial analyses were performed on the study 
area. Cluster analysis and the CWT approach indicated that local sources were mostly 
associated with the higher PM10 levels during the long-term observation of the study area. 
As the effects of local meteorological parameters remain low in exposing long-term PM10 
levels, the number of representative active AQMSs should be increased in the city center. 
Furthermore, long-range continental dust transport mechanisms should be evaluated in 
detail in further studies. 
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