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Abstract: The partitioning of RDF data on a large scale allows generating a set of RDF data 
subgraphs. METIS is a graph partitioning technique that minimises the cost of partitioning. 
METIS applies, among other things, to RDF graphs. However, the semantics introduced in  
the description of RDF data is not taken into account in the partitioning process in METIS.  
For this, we propose in this paper a step of pre-processing RDF data before partitioning  
these data. The objective of this step is to improve the quality of semantic partitioning of RDF 
graphs. The evaluation of the RDF pre-processing step for METIS was performed on real and 
synthetic data. 
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1 Introduction 

The interest in RDF data partitioning is due to the growth of 
data on the web through the Resource Description 
Framework (RDF) (W3C, 2014a). Data partitioning allows 
the processing of large RDF data volumes at the scale of big 
data (Ragab et al., 2021) which is more difficult due to the 
size, heterogeneity and additional complexity provided by 
RDF reasoning. To overcome the challenge of the massive 
RDF data size, the data are represented by graphs. This data 
representation form allows keeping the dependency between 
data to formally deduce new knowledge from the existing 
ones. For this, the knowledge bases of the semantic web are 
generally represented and expressed by RDF triples, 
constituting large graphs that formally describe sets of web 
resources. Thus, this representation provides an intuitive 
interpretation of the resources and the relationships between 
the different resources. However, processing and analysing 
large RDF data graphs and quickly accessing relevant data 
from these graphs is more difficult and complex both in terms 
of execution time and in terms of the memory size. For this 
reason, graph partitioning techniques for partitioning RDF 
data have been introduced to improve their large-scale 
processing. These techniques allow large data sets to be 
distributed on different sites in order to deploy distributed and 
parallel architectures (Kernighan and Lin, 1970). These 
techniques are used when the distance between all the data in 
the set to be partitioned is unknown (Buluc and Hao, 2016). 

Graph partitioning by the multilevel method (Barnard and 
Simon, 1993) has been used for RDF data through METIS 
(Karypis and Kumar, 1998b) which produces balanced 
partitions whose size is similar and the communication cost 
between them is minimised. However, in the semantic web 
context, METIS doesn’t support the preservation of the graph 
semantics during the web data graph partitioning. Therefore, 
the ontology or vocabularies intended to structure RDF 
resources in a partition miss semantics and do not correspond 
to the basic definition of an ontology (Simperl et al., 2011). 
To do this, we propose in this paper an algorithm which 
allows to extend the METIS partitioning to preserve data 
semantics during RDF graph partitioning. We add an 
upstream RDF data processing phase in order to improve the 
partitioning quality, in particular by minimising the semantic 
communication rate between the different partitions. We 
propose an illustrative example of our approach on the 
partitioning result. 

This paper is organised as follows: Section 2 presents the 
state of the question, Section 3 presents the RDF graph 
partitioning by METIS which we illustrate by an example of 
its progress and its limits. We present in Sections 4 and 5 our 
framework for preprocessing RDF for METIS partitioning 
with a detailed scenario. Section 6 presents the evaluation 
results of our approach and we end this paper with a 
conclusion in Section 7. 

2 Related works 

The use of METIS through its multilevel algorithm in RDF 
data processing systems has revealed that it is effective for 

RDF data graph partitioning. These systems require the 
execution of an additional upstream RDF data processing 
phase to improve their large-scale processing. The purpose of 
this phase is to convert the input RDF data into a graph with 
an adequate format with METIS (e.g. Soma and Prasanna, 
2008; Huang et al., 2011; Slavov et al., 2012; Wang  
and Chiu, 2012; Lee and Liu, 2013a, Lee and Liu, 2013b; Lee 
et al., 2013; Zhang et al., 2013; Gurajada et al., 2014; 
Rakhmawati et al., 2014; Bok et al., 2019; Ramesh et al., 
2021; Priyadarshi and Kochut, 2022). These systems execute 
additional operations to support the partitioning of the RDF 
graph by vertex while preserving the partitioning quality. 
These additional operations applied on the RDF data 
constitute the pre-processing phase. 

The operations found include the deletion of data 
represented by (i) tuples involving the schema elements of 
Soma and Prasanna’s approach (2008), (ii) triples whose 
predicate is ‘rdf: type’ or having the type sense in H-RDF-3X 
(Huang et al., 2011), (iii) duplicate vertices and edges in each 
partition in VB-Partitioner (Lee and Liu, 2013b), (iv) literal 
vertices in TriAD (Gurajada et al., 2014) and (v) duplicate 
triples in SPA (Lee et al., 2013). The ignoring operation of 
the edges orientation in the graph during partitioning was 
applied in the method of Slavov et al. (2012) and the search 
for connected components of the RDF graph was introduced 
in the approach of Wang and Chiu (2012). The data 
regrouping such as (i) the subjects set with similar properties 
in an entity class in EAGRE (Zhang et al., 2013), (ii) the 
graph vertices in VB-Partitioner (Lee and Liu, 2013b), (iii) 
RDF triples in SHAPE (Lee and Liu, 2013a), (iv) the use 
frequency over queries in Bok et al. approach (2019) and (v) 
the type of triples in Granite (Ramesh et al., 2021). The 
preprocessing in the system of Rakhmawati et al. (2014) is 
based only on objects identified by URI. Thus, we find the 
indexing of RDF triples in PartKG2Vec (Priyadarshi and 
Kochut, 2022) and the generalisation of the entity graph from 
the adjacency list elements of the RDF graph in Galicia et al. 
approach (Galicia et al., 2019). 

Most results obtained of these systems concerning pre-
processing are interesting, but do not take into consideration 
of semantic aspects of RDF graphs. Note, that partitioning 
SHAPE method (Lee and Liu, 2013a) partially takes into 
account the semantic aspects, but not the rich structural 
aspects of RDF. URI-based data clustering results in  
non-semantic partitioning if many vertices share prefixes 
(Lee and Liu, 2013a). 

3 METIS partitioning of RDF data 

METIS (Karypis and Kumar, 1998b) is a tool that allows 
graph partitioning and consists of a set of algorithms based on 
the multilevel paradigm (Barnard and Simon, 1993). The 
multilevel algorithm is based on the vertices number reducing 
principle through the adjacent vertices pairs grouping. Thus, 
the graph reduction to be partitioned keeps the graph 
topological properties to provide access to a global view. The 
multilevel algorithm is formed from algorithms set based on 
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multilevel dichotomous recursion (multi-k-way) (Karypis and 
Kumar, 1997). It is composed of three very distinct phases 
(Karypis and Kumar, 1998a) which are contraction, 
partitioning and refining. 

METIS has been applied on several data structures, 
including RDF. To do this, the RDF data must be transformed 
into a graph. This operation is fundamental in the RDF data 
processing. 

An RDF graph is the grouping of an RDF document 
statements set on a given vocabulary expressed by triples. It 
describes a model of binary predicates in first-order logic, of 
the form Property (Subject, Object). The RDF graph is 
directed and labelled, in which the vertices represent the 
subjects and objects of a triple, and the edges describe the 
assertions labelled by the predicates. In this paper, we take 
some semantic web definitions that exist in the literature 
(Definition 3.1 and Definition 3.2) in order to apply them in 
our RDF data pre-processing operation. 

Definition 3.1 (RDF triple): Let U be the URI references set, 
B the blank nodes (anonymous resource) set and L the 
literals (strings) set, an RDF triple is the triple (s, p, o) with 
s ∈ (U ∪	B) is the subject, p ∈ U is the predicate and o ∈ (U 
∪	B ∪	L) is the object. The RDF triple is represented by a 
directed graph with a labelled edge such that .PS O   

Definition 3.2 (RDF graph): An RDF graph is a non-empty 
set of RDF triples. It is a multigraph with multiple directed 
edges labelled by the RDF triples predicates, this graph 
contains the RDF triples set. Let an RDF graph denoted 

 , , ,E EG V E L   where ( )V U B L    is the vertices 

set in the graph that identifies the subject or object of an 
RDF triple. The set E V V   is an oriented edges 

multiset. The pair  ,u v E  denotes an edge oriented from 

u to v. E U   is the edge labels set (the predicates) and LE 

is the correspondence set of a label E    and its edge  

(u, v), with E EL E   . An RDF graph 0G  is a subgraph 

of an RDF graph G if 0G G . 

The RDF graph partitioning consists in assigning a set of the 
graph vertices describing a resource via RDF triples to 
different partitions constituting sub-graphs in such a way that 
the partition size is not greater than a given size. The graph 
partitioning allows to reduce the graph browsing time, 
especially for large size graphs. The objective of the RDF 
graph partitioning problem is to compute partitions by 
minimising the edges number ‘predicate’ or the sum of their 
weights that connect partitions, and to minimise the overlaps 
set of different partitions. For that, METIS expresses the 
partitioning result of a vertex set V into k partitions by a 
vector  P v  of length n representing the generated partitions 

number.  P v  is created by METIS such that for any vertex 

v V ,  P v  contains an integer i between 1 and k, 

indicating the vertex assignment v to the partition iP .  P v  

represents the METIS partitioning result; i.e., it presents the 
assignment assertions set of each graph vertex G to a 

particular partition. This assignment determines a mapping 
function between a vertex and its partition. 

The partitioning quality in METIS depends on the graph 
characteristics, it is measured by the partitions size 
(balance) and the cut edges number which guarantee the 
total cost reduction of communications between the 
partitions (edge-cut) (Karypis and Kumar, 1998b). The 
balance determines the partitions stability and is calculated 
by dividing the maximum number of nodes in a partition by 
the average number of nodes per partition (total number of 
nodes in the graph over the number of partitions). The 
communication cost represents the number of nodes iV V  

whose edges bound the partitions (crossing edges between 
partitions). The edge-cut represents the number of edges 
whose incident nodes belong to different partitions. 

The partitioning quality in METIS requires both 
minimising the cut function and balancing the computational 
load between the processors by producing the disjoint part 
balances. 

3.1 RDF data preparation 

We propose in the following example a METIS execution 
application on RDF data. Let’s consider an RDF document in 
Figure 1(a), consisting of 16 triples, including 12 subjects, 11 
objects and 12 predicates to be partitioned by using METIS 
into two partitions. This Figure is formed by triples set of the 
form S P O     constituting the RDF document. The 
METIS partitioning of the RDF document requires its 
representation into a graph (see Figure 1(b)) in an intermediate 
step before the graph transformation into a METIS graph. The 
METIS graph requires a number-based input structure of 
numerical type. The graph resources (subject or object) are 
mapped from Figure 1(b) into integer, see Figure 1(c). 

The METIS graph (see Figure 1(d)) is a text file that 
satisfies the graph representation form in METIS. The latter 
consists of n+1 lines, n being the graph order (see Figure 1(b)), 
the first line of which, called the header line, contains 
information on the graph size and the graph type, while the 
remaining n lines contain information on each graph vertex. 
They represent the adjacent vertices where the edges are 
weighted at 1. Figure 1(d) consists of 14 lines where the first 
line determines that the graph is composed of 13 nodes and 16 
edges and that the graph is unweighted. For example, the 
second line content is 2 1 3 1 4 1, means that nodes 2, 3 and 4 
are the adjacent nodes of node 1 and the edges weight is 1. 

3.2 Application and interpretation of METIS 

When METIS partitions Figure 1(d) into two partitions, it 
returns a file in which it assigns each node to a partition, the 
value 0 represents the node assignment to the first partition 
and the value 1 represents the node assignment to the second 
partition. The partitioning result is shown in Figure 2(a). 

METIS achieves a balanced partitioning (see Figure 2(b)). 
Based on the metrics defined by Karypis and Kumar (1998b), 
the partitioning constraints provided by METIS in our example 
Figure 1(b) are: Edge-cut = 3, Communication volume = 5, 
Balance =1.077 
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Figure 1 Example of the RDF document by METIS (a) RDF document, (b) RDF graph, (c) Mapping and (d) METIS graph 

 

 

 

 

 

 

 

 

 

 

 

 

 Resource type URI or anonymous 

 Resource type literal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vertices number |V|= 13 
Edges number |E|= 16 

  

(a)  (b)  (c)  (d)  

<S1><P1><S2> 
<S1><rdf:type><S3> 
<S1><P6><S4> 
<S3><P5><S6> 
<S3><P4><S5> 
<S3><P10><S4> 
<S4><P4><S5> 
<S4><P3><L7> 
<S8><P1><S2> 
<S8><rdf:type><S3> 
<S8><P2> 

<P3><L10> 
<P7> 

<P8><L13> 
<P9><L12> 

<S6><P11> 
<P9><L12> 
<P8><L13> 

(S1, 1) 
(S2, 2) 
(S3, 3) 
(S4, 4) 
(S5, 5) 
(S6, 6) 
(L7, 7) 
(S8, 8) 
(_, 9) 
(L10, 10) 
(_, 11) 
(L12, 12) 
(L13, 13) 

13 16 001 
2 1 3 1 4 1 
1 1 8 1 
4 1 5 1 6 1 1 1 8 1 
5 1 7 1 1 1 3 1 
3 1 4 1 
11 1 3 1 
4 1 
2 1 3 1 9 1 
10 1 11 1 8 1 
9 1 
12 1 13 1 6 1 9 1 
11 1 
11 1 

Transformation 

 

Figure 2 Partitioning of the example into 2 partitions by METIS (a) Partitioning result and (b) Graph partitioning 
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We note that in Figure 2(b), the cutting the edge labelled by 
rdf:type which is carrying semantics will cause a  
break in the second partition semantics since node S8 is an 
instance of class S3. This partitioning doesn’t keep the 
initial semantics of the Figure 1(b) graph. In fact, METIS 
doesn’t support the nature and type of intra-partition  
edges, and therefore it doesn’t allow for keeping the  
link that defines the data semantics and the ontology 
concept. In addition, effects on inter-partition edges can 
change the meaning of the partitioned ontology. For 
example, partition 1 doesn’t define the meaning of the initial 
defined ontology (see Figure 1). In order to improve this 
partitioning, we propose to keep the data semantics during 
the partitioning. 

4 Framework for RDF pre-processing for METIS 

RDF pre-processing for METIS aims at the semantic 
preservation expressed by the RDFS vocabulary (W3C, 
2014b). To this end, we propose a framework (see Figure 3) 
for pre-processing RDF data to avoid the problem seen in the 
example in Figure 1 and Figure 2. This framework is defined 
by several ordered phases in which we inject semantic 
concepts set needed for pre-processing such as RDF graph 
vocabulary, atom and term RDF. RDF data semantic pre-
processing consists of four phases including transforming the 
RDF document into the initial graph, maintaining the graph 
semantics, generating the graph and finally reducing it. The 
pre-processing RDF data algorithm is presented below. 
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Algorithm:    RDF_Pre-processing 

1. Input: doc_RDF 

2. Output: graph_RDF AG   

3. Begin 

4. 
/*Convert RDF data to a graph 

0G  Conversion (doc_RDF)  

5. 
/* List the semantic concepts to generate the vocabulary of the initial graph  0voc G  

 0voc G   Semantic_Concepts  0G   

6. 
/*Generate the sG  graph based on the semantic concepts  

sG  Generate_graph   0 0,G voc G   

7. 
/*Generate the aggregate graph by grouping the triples 

AG   Generate_aggregate_graph  sG  

8. Return AG  

9. End 

Figure 3 RDF data pre-processing framework 

 
 

4.1 Conversion phase of RDF data into a graph 

The first phase of the framework consists in converting the 
RDF document into the initial RDF graph. For this purpose, 
we propose the Conversion algorithm presented below. This 
algorithm considers an RDF document as input (line1) and 
creates as output an RDF graph (Definition 3.2) G0 which 
consists of four sets 0V , 0E , 0E  and 0EL  (line 4) 

representing respectively the nodes set, the edges set, the edge 
labels set and the set of correspondences between each edge 
and its appropriate label. After creating empty 0G  (line 4), 

we fill in the sets constituting the graph in question. For each 
triple (Definition 3.1) in the RDF document (lines 5 to 7), we 
assign the subject and object of the triple in the set 0V , the 

subject and object pair of the triple in the set 0E , the 

predicate of the triple in the set 0E  and the subject and edge 

pair with the predicate of the triple in the set LE0. In other 
words, each RDF document triple (s, p, o) is converted into 
an edge e E  where  EL e p  and  ,e s o . 

The graph G0 is stored in a list according to a new 
structure proposed in our Definition 4.1, called the RDF 
graph resource list. 

Algorithm: Conversion 

1. Input: doc_RDF 

2. Output: RDF_graph 0G  

3. Begin 

4. 0G  Empty_RDF_graph  0 0 0 0, , ,E EV E L  

5. For each  , ,s p o    doc_RDF do 

6. 0G             0 , , , , , , ,G U s o s o p s o p   

7. End For each  

8. Return 0G  

9. End 

Definition 4.1 (RDF graph resource list): the resource list L 
of the RDF graph G is a chained list of size V  that 

contains all adjacent vertices of each vertex iv V  of G. It 

associates with each vertex iv  a list iL  containing a set of 

pairs of the adjacent vertex u with the edge label ρ such 
that: 
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This list is determined according to the resource type to 
which we add the property value of a triple. The structure of 
the RDF graph resource list classifies the RDF document 
resources by triples (nodes of type subject index the adjacent 
nodes set which are of type object with the edges labels set 
which are of type predicate). We present in the Figure 4 
below the RDF graph resource list appropriate of the 
example proposed in Figure 1(b). 

Figure 4 RDF graph resource list of the example in Figure 1(b) 

S1 S4 P6 
 

 S3 rdf:type 
 

 
 

S2 P1 
 

S3 S4 P10 
 

 S5 P4 
 

 S6 P5 
 

S4 S7 P3 
 

 S5 P4 
 

  

S8 S2 P1 
 

 S3 rdf:type 
 

 NB1 P2 
 

NB1 L10 P3 
 

 NB2 P7 
 

  

NB2 
L12 P9 

 
 L13 P8 

 

  

S6 L2 NB2 
 

     

The space complexity of the Conversion algorithm is of order 

 | |O V E . It depends on the structure of the graph data 

description, which allows indicating the links between the 
vertices. In addition, the RDF graph resource list structure 
provides the incidence vertices list with linear complexity. 

4.2 Listing phase of the semantic concepts 

In the second phase of the RDF data pre-processing framework, 
we propose to inventory the graph semantic concepts in order 
to determine the graph elements that contribute to the resources 
semantic definition   in order to determine the semantic graph. 
The Semantic_Concepts algorithm generates semantic concepts 
based on a set of notions that we propose to use. The semantic 
notions are: semantic description (Definition 4.2), RDF 
vocabulary (Definition 4.3), RDF atom (Definition 4.4), RDF 
atom term (Definition 4.5), RDF atom vocabulary (Definition 
4.6), RDF graph vocabulary (Definition 4.7) and semantic 
RDF graph (Definition 4.8). 

Definition 4.2 (Semantic description): Let  S P O   an 

RDF triples and P  is the predicate set of the specification 
of the RDF model syntax defined in the RDF schema such 
that P P   and P= {Property, Class, subPropertyOf, 
subClassOf, domain, range, type}. A semantic description p 
is a predicate witch define the subject s as an instance of the 
object o, such that p P . 

Definition 4.3 (RDF vocabulary): Let  S P O   is RDF 

triples set, the RDF vocabulary  S P O     is a subset of  

 , ,S P O  such that S S  ,  P P  , O O   and 

p P  , p is a semantic description that semantically 

define an object o O  by the subject s S . 

Definition 4.4 (RDF atom): Let an RDF document 
consisting of triples set  S P O   such that S is the 

subject set, P is the predicate set and O is the object set, an 
RDF atom  OA S P     is an RDF vocabulary such 

that such that S S  ,  P P  , O O   and 

   , ,s p o S P O    , p is a semantic description. 

Definition 4.5 (RDF atom term): Given an RDF atom A, 

 t s ,  t p  and  t o  each represents, respectively the 

subject atom term, the predicate atom term and the object 
atom term set such that: 

    / ,t s s s S A S P O         

    /  ,t p p p P A S P O         

    / ,  t o o o O A S P O         

Definition 4.6 (RDF atom vocabulary): Given 

 A S P O      the RDF atoms set and t(s) is the subject 

atom term set, the atom vocabulary  ivoc A  is defined for 

each  is t s  such that     i ivoc A s P O p P     , 

o O  and   , ,is p o A . The RDF atom vocabulary 

 ivoc A  in an RDF graph represents the smallest  

sub-graph of semantic description to each subject atom term 
of  t s . 

Definition 4.7 (RDF graph vocabulary): Let  ivoc A  is the 

RDF atom vocabulary set of each subject atom term of t(s), 
the vocabulary of an RDF graph G is  voc G  such that 

      i ivoc G Uvoc A s t s    . 

Definition 4.8 (Semantic RDF graph): Given 

 A S P O      an RDF atom, a semantic RDF graph 

G  is an RDF graph generated by the RDF graph 

vocabulary, such that  ,  ,  ,  E EG V E L       where 

  ,  V S E S O       , E P    and    ’EL S O P     . 

We propose, in the Figure 5 below, an example of semantic 
concepts of an RDF document (see Figure 5(a)). The 
graphical representation of the document is shown in  
Figure 5(b). The corresponding basic semantic concepts are 
presented in Figure 5(c) and the appropriate graphical 
representations are shown in Figures 5 (d), 5(e), 5(f), 5(g)  
and 5(h). 
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Figure 5 Example of semantic concepts of an RDF document (a) RDF document, (b) Initial Graph 0G , (c) Corresponding basic semantic 

concepts, (d) voc(A1), (e) voc(A2), (f) voc(A3), (g) voc(A4) and (h) Semantic RDF graph G 

<S1><P3><S2> 
<S2><P1><S3> 
<S2><P1> 
       <P4><S6> 
<S3><P1><S2> 
<S3><P2><S4> 
<S4><P5><S7> 
<S4><rdf:type><S6> 
<S5><P2><S4> 
<S5><P7><S9> 
<S6><rdfs:subClassOf><S8> 
<S7><P6><L1> 
<S7><rdf:type><S6> 
<S9>rdf:range><S7> 

 

A = {(S4, rdf:type, S6), (S6, rdfs:subClassOf, 
S8), (S7, rdf:type, S6), (S9, rdf:range, S7)} 

t(s)= {S4, S6, S7, S9} 
t(p)= {rdf:type, rdfs:subClassOf, rdf:range } 
t(o)= {S6, S8, S6, S7} 
voc1 (A) = {(S4, rdf:type, S6)} 
voc2(A) = {(S6, rdfs:subClassOf, S8)} 
voc3(A) = {(S7, rdf:type, S6)} 
voc4(A) = {(S9, rdf:range, S7)} 
voc(G0) = {(S4, rdf:type, S6), (S6, 

rdfs:subClassOf, S8), (S7, rdf:type, 
S6), (S9, rdf:range, S7)} 

(a) (b) (c) 

  
 

 

 

(d) (e) (f) (g) (h)  

The Semantic_Concepts algorithm receives the RDF graph 

0G  as input (line 1) and generates the RDF graph vocabulary 

 voc G  as output (line 2). To do this, after initialising the 

sets of RDF atoms and RDF atom terms to empty (line 4). We 
search in all the graph for semantic labels (having an RDFS 
description), and for each of them we add to the set initialised 
before the determining elements (1) the nodes and edge labels 
set to the RDF atoms set (line 8), (2) the subject type nodes 
set to the subject atom term set (line 9), (3) the edge labels set 
to the predicate atom terms set (line 10) and (4) the object 
type nodes set to object atom terms set (line 11). After 
processing the whole graph, we generate  ivoc A , the RDF 

atom vocabularies from the RDF atoms (lines 14 to 17). In 
lines 18 to 20, we generate the vocabulary of the initial graph 

 0voc G . 

Algorithm:   Semantic_Concepts 

1. Input: RDF_graph 0G  

2. Output: RDF_graph_vocabulary  0voc G  

3. Begin 

4. A, t(s), t(p), t(o)  {}  

5. For each    0, ,  i j Ev v L   do 

6. If est_RDFS(ρ) then 

7. For each    0, ,   i j Ev v L   do  

8.   , ,  i jA A v v    

9.      it s t s v    

10.     { }t p t p     

11.     { }jt o t o v    

12. End For each 

13. End If 

14. 
For each  iv t s  do /* Vary vi and consider all 

adjacent vj 

15.    ivoc A    

16.       , ,  i i i jvoc A voc A v v    

17. End For each 

18.  0voc G    Empty_ RDF_graph_vocabulary () 

19.  0voc G  union   ivoc A  

20. Return  0voc G  

21. End 

4.3 Graph generation phase based on  
semantic concepts 

The purpose of the graph generation phase in the framework 
is to reduce the initial graph size while preserving the 
semantic aspects. It consists of three consecutive operations 
including (1) removing blank nodes in G0, (2) removing 
literal nodes in G0 and (3) removing atoms based on voc(G0). 
We give illustrative examples in each operation with their 
respective algorithm. Section 5 is for a scenario grouping all 
the framework phases (see Figure 3). For the first operation, 
we refer to the definition of the blank node (Berner-Lee, 
1998) (Definition 4.8). 

Definition 4.9 (Blank Node): A Blank node also called an 
anonymous node or resource is a vertex v in the RDF graph 
v V  which is not identified by a URI such that v B . 
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4.3.1 Removing blank nodes  

The algorithm of the first operation is called 
generate_graph_without_blanks. The latter receives as input 
the RDF graph 0G  (line 1) and returns it as output without 

blank nodes (line 2). To do this, we traverse all nodes iv  in the 

0EL  set (line 4) and treat for each edge the case of terminal 

nodes iv  that are blank (lines 5 to 15). We count the blank 

nodes path from the terminal node jv  (lines 7 to 9). Then, we 

group the edges labels between these blank nodes into the 
source node iv  at line 11 and remove the blank nodes with 

their labels in line 12. At the end, we create an edge between 
the source node iv  and the adjacent non-blank node of the 

terminal node (last white node in the chain) in line 14. 

Algorithm:    Generate_graph_without_blanks 

1. Input: RDF_graph 0G  

2. Output: RDF_graph 0G  

3. Begin 

4. For each    0,  , i j j Ev v L   do 

5. If  jv B  do 

6. k=0 

7. Repeat 

8. 1k k    

9. Until j kv B    

10. For each k 

11.   *i i j j kv v       + is the concatenate 

operator 

12. 
      0 0 ,, , ,j k i k j k j kG G v v v       

   ,  i k j k j kv v     

13. End For each 

14. 
    0 0 , , , ,{} i j k j kG G U v v     

   , , i j k j kv v    

15. End If 
16. End For each 
17. Return 0G  

18. End 

We propose below an example of a graph formed by 4 nodes, 
of which 2 nodes constitute a chain of blank nodes  
(see Figure 6(a)). We show in Figure 6(b), the result of 
removing the blank nodes. The latter consists of the two non-
blank nodes S and O, with S maintaining the blank nodes 
labels P1, P2 and P3. Nodes S and O are connected by the last 
blank node label P3. 

Figure 6 Example of removing blank nodes (a) Example of a 
graph and (b) Result of the removing 

 
(a) (b)   

Passing the information from the blank nodes to an adjacent 
non-blank node keeps the information of the triple  , ,s p o  

since we don’t want to break the semantic link induced by 
the blank node. In addition, removing the blank nodes 
simplifies the graph partitioning while keeping the links 
invoked by the blank nodes in the triples. 

4.3.2 Removing literal nodes  

The removing literal nodes operation consists of removing 
the edges that connect the nodes of the string literals set. 
This operation is presented in the Graph_without_literal 
algorithm. The latter receives the RDF graph G0 returned by 
the Generate_graph_without_blanks algorithm (line 1) and 
returns this graph without literal object nodes (line 2). To do 
this, we go through all the graph edges (line 4) and when the 
terminal node jv  is a literal object (line 5), we add this node 

and the label of the associated edge to the source node iv  

(line 6), then we remove this node and the associated edge 
(line 7). 

Algorithm:   Graph_without_literal 

1. Input: RDF_graph 0G  /* graph without blank node 

2. Output: RDF_graph 0G   

3. Begin 

4. For each   ,  ,i j j Esv v L    do 

5. If  0j Ev L  do 

6.   ,  ,i i i jv v v v     

7.            0 0 , ,  ,   , ,  ,  j i j i jG G v v v v v 

8.   End If 
9. End For each 

10. Return 0G  

11. End 
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We propose in Figure 7 an example of the literal nodes 
removal. The proposed graph (see Figure 7 (a)) consists of 4 
nodes S1, S2 (P3, P4), L1, L2 of which nodes L1 and L2 are 
literal objects and node S2 (P3, P4) is a node resulting from a 
removing of a blank node that was between edges P3 and P4. 
The result of the second operation of removing is shown in 
Figure 7(b). The resulting graph consists of two nodes and an 
edge, where the source node contains the label and literal 
object of the first removed node and the terminal node 
contains the label and literal object of the second removed 
node. 

Figure 7 Example of removing the literal nodes (a) Example of a 
graph and (b) Result of the removing 

 

(a) (b)  

The nodes removing representing literal objects allows them 
to be preserved, since the links to and from the literals must 

not be, in any case, cut in the partitioning. Moreover, this 
operation leads to reductions in METIS execution time and 
respectively in memory space according to the results 
obtained in TriAD (Gurajada et al., 2014) which adopts this 
operation. 

4.3.3 Removing atoms 

The last operation of this phase is the removal of the resources 
semantic descriptions, it is presented in Graph_without_atom 
algorithm. The latter produces the graph sG  (line 3) from the 

RDF graph 0G , result of Graph_without_literal algorithm 

(line 1) and the RDF graph vocabulary  0voc G  which is 

generated by Semantic_concepts algorithm. To do this, we first 
make a copy of the graph 0G  in sG  (line 5) on which we 

proceed to remove the atoms. For this purpose, we traverse all 
the edges labels of the graph (line 6) and enumerate the path of 
the nodes starting from the source node iv  which is composed 

of edges labelled set by a predicate atom term (semantic 
description) in lines 8 to 11. This path is called semantic path. 
Next, we add the path atom information to the source node vi 
(line 12) and remove the nodes from the path if they are not 
source nodes or terminal nodes of an edge labelled with a 
predicate atom term (lines 13 to 17). 

 

Algorithm:   Graph_without_atom 

1. Input : RDF_graph 0G  /* graph without blank node and without literal 

2. RDF_graph_vocabulary  0voc G  

3. Output: RDF_graph sG  

4. Begin 

5. 0sG G  

6. For each   , ,i j j Esv v L    

7. K = 0 

8. Repeat /* Browse the semantic path 

9.  , ,i i i k j k j kv v v v      

10. 1 / *k k k   is the path length 

11. Until   j k t p    et  ,  i k j k Sv v E     

12.          1 1 1 1,  , , ,  ,s s i j k j k i j k j kG G U v v v v           

13. For 1...c k  do 

14. If       , , et j c Esv v L t p      

15.            1 1, , , , , ,s s j c j c j c j c j c j c j cG G v v v v v            

16. End If 

17.    End For 

18. End For each 

19. Return Gs 

20. End 
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Figure 8 Example of graph generation sG , (a) Graph 0G , (b) Vocabulary  0voc G , (c) generation result sG  

 

 

 

 

 

 

(a) (b)  (c)  

(S4, rdf:type, S6) 
(S7, rdf:type, S6) 

(S6, rdfs:subClassOf, S8) 
(S9 rdfs:range S7) 

 

 
 

We propose in the Figure 8 below the generation of the graph 

sG  of the example proposed previously in Figure 5(b). The 

graph 0G  in Figure 8(a) represents the result of the 

Graph_without_literal algorithm and  0voc G  is the RDF 

graph vocabulary (see Figure 8(b)) generated by the 
Semantic_Concepts algorithm. The graph 0G  consists of nine 

nodes S1, S2 (P3, P4), S3, S4, S5, S6, S7 (S7, P6, L1), S8 and 
S9 of which node S2 (P3, P4) is the result of the blank node 
removing between the edges P3 and P4 and node S7 (S7, P6, 
L1) is the result of the literal node L1 removing. The graph 
also consists of eleven edges. This graph consists of four 
semantic paths: (1) the path of nodes S4, S6 and S8, (2) the 
path of nodes S7, S6 and S8, (3) the path of nodes S6 and S8 
and (4) the path of nodes S9, S7, S6 and S8. 

The algorithm Graph_without_atom, after making a 
copy of 0G  in sG , it traverses the semantic paths in which, 

it transfers the nodes of the RDF atoms of each path to the 
appropriate source node. For example, in Figure 8(c) the 
node S6 is extended by the atom (S6, rdfs:subClassOf, S8), 
it is then removed since it is not connected to any other 
(non-semantic) edges.The edges labels that belong to the 
RDF atom terms set of type predicate  t p  define an RDF 

class or an RDF property. Removing these edges allows us 
to keep the triples that determine RDF properties and 
classes. The partitioning of the graph sG  allows a semantic 

partitioning due to the fact that the cutting of the edges 
carrying semantics is discarded by the last operation which 
consists in transferring the properties of the semantic edges 
in the source nodes (see Figure 8). The o-TG (v) 
aggregation is performed when for the edges set, the 
terminal node v is the same (lines 17 to 26). 

4.4 Generation phase of the aggregate graph 

This phase of the framework groups the triples sets of the 
RDF graph in order to minimise their number and 
consequently reduce the graph size to be partitioned by 
METIS. It consists in building the triples groups set from  

the atoms of the RDF graph sG  generated by the 

Graph_without_atom algorithm. These sets are generated 
following the grouping principle (Definition 4.9) proposed in 
SHAPE (Lee and Liu, 2013a) in order to generate the AG  

aggregate graph. 

Definition 4.10 (Triple Group): Given an RDF graph 

 , , ,E EG V E L  , The grouping vertex u denoted s-TG 

(u) of vertex v V  is the triples set in which their subject is 

u with s-TG     ,  , ,| Eu v u V u v      . 

Similarly, the sets o-TG and p-TG of v are defined  

as o-TG     ,  ,| ,Ev u v V u v       and  

p-TG       |, ,u v u v E   , respectively. 

The generation of the aggregate graph consists of grouping 
nodes that do not contain semantic descriptions whose edges 
share the same node (source or terminal) containing a 
semantic description. The generation of the AG  aggregate 

graph is performed by the Generate_aggregate_graph 
algorithm. The latter receives the graph sG  (line 1) from the 

previous phase and generates the aggregate graph AG  as 

output (line 2). To do this, we first copy the content of the 
graph sG  into AG  (line 4), then we go through all the graph 

nodes (line 5) and we apply the aggregation when the node 
contains an atom (lines 6 to 23). The aggregation s-TG (v) is 
performed when for edges set, the source node v is the same 
(lines 7 to 16). In this case, we group the terminal nodes that 
do not contain atoms (lines 7 to 8) and we group all the labels 
in this set when they are different (lines 10 to 12). Then we 
remove all these edges and their terminal nodes (line 13). At 
this point, we generate the edge of the s-TG (v) aggregation 
(line 16). In this case, we group source nodes that do not 
contain atoms (lines 17 to 18) and group all labels in this set 
when they are different (lines 20 to 22). Then, we remove all 
these edges and their source nodes (line 23), thus, we 
generate the edge of the o-TG (v) aggregation (line 26). 
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Algorithm: Generate_aggregate_graph 

1. Input: RDF_graph sG  

2. Output: RDF_graph AG  

3. Begin 

4.  A sG G  

5. Foreach sv V  do 

6. If  v t s  do / * v  contains an atom 

7. For each   , , j j Esv v L   do /* s-TG (v) grouping 

8. If  jv t s   

9.  ' ' ,j jv v v     

10. If ' j    do /* p-TG  ( )  grouping 

11. ' ' j      

12. End If 

13.            , , , , , ,A A j j j j jG G v v v v v    

14. End If 

15. End For each 

16. GA        ' , ' , ', , ' , 'A A i iG G U v v v v v    

17. For each   ,  , i j Esv v L   do /* o-TG(v) grouping 

18. If  iv t s  do 

19.  " " , i iv v v     

20. If " i    do /* p-TG (ρ) grouping 

21. " "  i      

22. End If 

23.            ,  ,  ,  ,  , , A A i i i i iG G v v v v v    

24. End If 

25. End For each 

26.       " " , ", ", , "{ } ,A AG G U v v v v v    

27. End If 

28. End For each 

29. Return AG  

30. End 

 
We propose in Figure 9 an example of aggregate graph 
generation. Let a RDF graph Gs (see Figure 9 (a)) consist of 
nine nodes S1 (S1, rdf:type, S2), S3 (S3, rdf:type, S2), S4, S5 
(S6, P6, L1), S6 (S6 rdf:type, S7), S8 (P7, P8), S9, S10 and 
S11. Nodes S1 (S1, rdf:type, S2), S3 (S3, rdf:type, S2) and S6 
(S6 rdf:type, S7) are the removal result of atoms (S1, rdf:type, 
S2), (S3, rdf:type, S2) and (S6 rdf:type, S7) is generated by 
the Semantic_Concepts algorithm. Node S5 (S6, P6, L1) is 
the removal result of the L1 literal node generated by the 
Graph_without_literal algorithm, and node S8 (P7, P8) is the 

removal result of a blank node between the edges labelled by 
P7 and P8 generated by the Generate_graph_without_blanks 
algorithm. The aggregate graph generation in this example 
(see Figure 9 (b)) groups the adjacent nodes of node S6  
(S6 rdf:type, S7) that do not contain a semantic description. 
In this case, the s-TG (v) and p-TG (v) aggregations are 
applied for nodes S9, S10, since they share the same source 
node and their edges, and are labelled with the same value. 
The o-TG (v) aggregation is applied to nodes S8 (P7, P8) and 
S11 because they have the same terminal node. 
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Figure 9 Example of graph aggregate generation AG  (a) Graph sG  and (b) Aggregation result 

  

(a) (b) 
 

5 METIS partitioning scenario with RDF  
pre-processing 

5.1 RDF pre-processing 

In this section, we propose the complete application defined 
in the RDF data pre-processing framework as an example, to 
do so, we will take the graph of Figure 1(a) and we apply the 
RDF_preprocessing algorithm. The aim of this process is to 
show the impact of the proposed RDF pre-processing on an 
RDF graph compared to partitioning the RDF graph without 
pre-processing. 

The result of phase 1 is identical to that of Figure 1(b) 
since the aim of this phase is to convert the document into a 
graph, but it should be noted that the complexity of this 
algorithm has been improved by means of representing the 
graph by our list structure. 

In the listing phase of the semantic concepts, the graph 
vocabulary must be created to maintain the semantics of the 
RDF document in the RDF graph. The graph vocabulary 

 0voc G  represents the contents of the graph resource list, 

which allows the preservation of the graph semantics while 
the graph is stored in the linked list. The corresponding basic 
semantic concepts are as follows: 

A = (S1, rdf:type, S2), (S2, rdf:type, S3) 

t(s)= {S1, S8} 

t(p)= {rdf:type } 

t(o)= {S3} 

voc(A) = {(S1, rdf:type, S3), (S8, rdf:type, S3)} 

The graph vocabulary  0voc G  is shown in Figure 10(a) 

and the semantic RDF graph is shown in Figure 10(b). 

Figure 10 The semantic concepts of Figure 1(a) (a) The graph 
vocabulary  0voc G  and (b) The semantic RDF graph G 

 

(a) (b) 

(S1, rdf:type, S3) 
(S8, rdf:type, S3) 

 

 

The Graph generation phase based on semantic concepts first 
removes the two blank nodes from the initial graph 0G   

(see Figure 11). Then, it removes the literal nodes L7, L10, 
L12 and L13 (see Figure 12). 

Figure 11 RDF graph without blank nodes from Figure 1(a) 

 

We replace S8 S8 (P2, P3) S8 (P2, P7, P9) S8 (P2, P7, P8) 
with S and S6 S6 (P11, P9) S6 (P11, P8) with 'S  in  
Figure 12. 

Figure 12 0G  graph without blank nodes and without literals 

from Figure 1(a) 

 

The operation of removing atoms generates the graph sG , it 

transfers the atoms (S1, rdf:type, S3) and (S8, rdf:type, S3) 
into nodes S1 and S, respectively. The result of this operation 
is shown in Figure 13. 
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Figure 13 RDF graph sG  from Figure 1(a) 

 

The generation phase of the aggregate graph groups the two 
terminal nodes S1 and S4 (S4, P3, L7) and the edges P1 and 
P6 since their source node contains the RDF atom S1, 
rdf:type, S3. The result of this phase is shown in Figure 14. 

Figure 14  graph AG  from Figure 1(a) 

 

5.2 METIS partitioning 

Once the pre-processing of the RDF data is complete, it is 
necessary to go through the AG  mapping and create the 

METIS graph to partition the data. 
The mapping decodes all elements of the graph GA (nodes 

and edges) as shown in Figure 15(a) and the transformation 
result is shown in Figure 15(b). The representation of the 
RDF graph resource list which mentions the label of the 
edges is presented in Figure 15(b). For example, the first line 
determines that node 1 and 2 are adjacent and that their edge 
is labelled with predicate 7. 

The pre-processing applied by our framework to  
the graph in Figure 1(b) produced a list of size 12  
(see Figure 15(a)) which is smaller than the list produced 
without pre-processing from the initial graph (see Figure 4) 
which is of size 23 knowing that both lists represent the same 
graph. The pre-processing thus makes it possible to reduce 
the size of the METIS graph (see Figure 15(c)). In effect, the 
METIS graph produced by the RDF data pre-processing 
framework consists of six nodes and six edges, while the 
METIS graph (see Figure 1(d)) produced without pre-
processing consists of thirteen nodes and sixteen edges. 

The METIS partitioning of the METIS graph  
(see Figure 15(b)) into two partitions generates the vector 

 P v  (see Figure 16(a)). The latter assigns nodes S3, S5 and 

'S  ( 'S , P11, L12) to partition 0 and nodes S1 (S1, rdf:type, 
S3), S4 (S4, P3, L7) ((S4(S4, P3, L7)) P4) (S2,P1) and S (S, 
P3, L10) (S, P9, L12) (S, P2, L13) (S8, rdf :type, S3) to  
partition 1 (see Figure 16(b)) 

Figure 15 Creation of the METIS graph (a) Mapping, (b) Graph AG  and (c) Graph METIS 

S1(S1, rdf:type, S3) 1 
S4(S4, P3, L7) ((S4(S4, P3, L7)), P4) 2 
S3  3 
S5  4 
S’ (S’, P11, L12)  5 
S (S, P3, L10) (S, P9, L12) (S, P2, 
L13) (S8, rdf:type, S3) 6 
P6, P1  7 
P10  8  
P4  9 
P5  10 
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3 2 8 
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5     
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(a) (b)  (c) 

6 6 001 
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Figure 16 Partitioning the graph into two partitions (a) vector  P v  and (b) graph AG  partitioning 

 

(a) (b)
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0
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1
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Partition 0  Partition 1
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The result obtained (see Figure 16(b)) is different from that 
obtained in Figure 2(b) (Sub-section 3.2) of the same graph 
with the same number of partitions. In the partitioning of 
Figure 16(b), there are two cut edges without the edges 
connecting the blank nodes, the literal values and the edges 
carrying semantic descriptions being cut. In effect, these 
edges do not exist in the METIS graph produced by the 
aggregate graph AG , the final result of the RDF data 

preprocessing framework. These edges are removed  
and preserved in the nodes as indicated in the 
Generate_graph_without_blanks, Graph_without_literal, 
Graph_without_atom and Generate_aggregate_graph 
algorithms. 

We further illustrate below the graph partitioning in 
Figure 15(b) into three and four partitions. The result of the  
partitioning into three partitions generates the vector  P v  

(see Figure 17(a)) assigning nodes S3 and S (S, P3, L10) (S,  
 
 
 

P9, L12) (S, P2, L13) (S8, rdf:type, S3) to partition 0, nodes S5 
and S4 (S4, P3, L7) ((S4 (S4, P3, L7)) P4) (S2, P1) to partition 
1 and nodes 'S  ( 'S , P11, L12) and S1 (S1, rdf:type, S3) to 
partition 2. This partitioning (see Figure 17(b)) causes the 
edges P5, P4, P10 and (P6, P1) to be cut. 

The result of the partitioning into four partitions 
generates the vector  P v  (see Figure 18(a)) assigning node 

S (S, P3, L10) (S, P9, L12) (S, P2, L13) (S8, rdf:type, S3) to 
partition 0, node S1 (S1, rdf:type, S3) to partition 1, nodes 
S4 (S4, P3, L7) ((S4 (S4, P3, L7)) P4) (S2, P1) and nodes 

'S  ( 'S , P11, L12) to partition 2 and nodes S3 and S5 to 
partition 3. This partitioning (see Figure 18(b)) causes the 
edges P5, P4, P10 and (P6, P1) to be cut. 

The graph partitioning in Figure 15(b) into three and 
four partitions is balanced but with a high-communication 
ratio but no break of a semantic description, a link to a 
white node or a link to literal. 

Figure 17 Partitioning the graph into three partitions (a) vector  P v  and (b) graph AG  partitioning 

 

 

 

 

(a)                                           (b) 

2 
1 
0 
1 
2 
0 

Partition 0 Partition 1 Partition 2 

 

Figure 18 Partitioning the graph into four partitions (a) vector  P v  and (b) graph AG  partitioning 
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6 Evaluation 

For the evaluation, we performed our experiments on real and 
synthetic data sets of varying domains and sizes  
(four different sizes for each data set that increase 
proportionally). For the synthetic data, we used three 
representative RDF benchmarks WatDiv ‘Waterloo SPARQL 
Diversity Test Suite’ (http://dsg.uwaterloo.ca/watdiv/), the 
popular LUBM benchmark Lehigh University Benchmark 
(http://swat.cse.lehigh.edu/projects/lubm/index.htm) in Guo 
et al. (2005) and BSBM The Berlin SPARQL Benchmark 
(http://wifo5-03.informatik.uni-mannheim.de/bizer/ 
berlinsparqlbenchmark/V1/spec/index.html#datagenerator). 

The WatDiv data set has a set of resources generated 
according to an e-commerce database schema, including 
information about users, retailers and products. The number 
of RDF triples generated in WatDiv is determined by the 
appropriate ‘scaling factor’ parameter. In our evaluations, we 
have assigned the values 0.5, 1, 10 and 100 for the scaling 
factor to generate approximately 10,000 triples, 100,000 
triples, 1,000,000 triples and 10,000,000 triples, respectively. 

LUBM presents an ontology for an academic domain. To 
exploit the LUBM data set in our evaluation, we used the 
UBA 1.7 generator to generate an ontology covering 10, 50, 
80 and 100 universities, respectively. 

The BSBM data set is built around an e-commerce use 
case in which products set offered by different producers is 
judged by consumers set. We used the number of products as 
a scaling factor to generate the BSBM data set containing 
approximately 50,000 triples, 250,000 triples, 1,000,000 
triples and 5,000,000 triples, respectively. 

We also used the DBpedia real data set 
(https://wiki.dbpedia.org/Datasets). The latter is an academic 
and community-based project for the automatic exploration 
and extraction of data derived from Wikipedia. We used four 
DBpedia data sets containing open domain knowledge about 
sport and sport events. The number of triples in DBpedia 
ranges from 30,000 to 10,000,000 as shown in Table 1. 

We opted to test the RDF data preprocessing framework 
performance using these data sets given the specific 
characteristics of each of these data sets. Data in WatDiv is 
heterogeneous where some is well structured and contains 
few optional attributes, while others are less well structured. 
It contains a more distinct set of predicates than LUBM,  
but with only around 15% of triples containing a  
semantic description. This set contains 12% of  
blank nodes, which allows us to test the impact of the 
Generate_graph_without_blanks (Sub-section 4.3.1) 
algorithm. LUBM is a data set rich in semantic concept, it 
contains about 31% of triples containing a semantic 
description (Atom) but with a reduced number of ‘rdf:type’ 
properties. The data set therefore contains around 32% of 
literal objects and 32% of triples constituting the triple group. 
This allows to evaluate the algorithms: Graph_without_atom 
(Sub-section 4.3.3), Generate_aggregate_graph (Sub-section 
4.4) and Graph_without_literal (Sub-section 4.3.2). The latter 
is also evaluated in the BSBM data set since it contains 55% 
literal objects. The content of the DBpedia data is different 
from one set to another since they are real even if they  
are extracted from the same domain (sport). These data 
generate asymmetric real RDF graphs that are different 
(Moreira et al., 2021). 

We present in the table below, the data sets characteristics 
such as size, number of triples, number of subjects, number of 
predicates, number of objects, percentage of the blank nodes, 
the percentage of literal, the percentage of triples constituting 
the Atom and the percentage of triples constituting triples 
groups. 

The evaluation of the RDF_Preprocessing algorithm was 
carried out on a machine equipped with an Intel core  
i5-5300M processor with 2.3GHz*4, 500 Gb of disks, 16 Gb 
of RAM under Ubuntu 14.04 LT and we used METIS version 
5.1.0 (http://glaros.dtc.umn.edu/gkhome/). 

We present in Figure 19, the triples reduction ratio of our 
framework execution on data sets. 

 
Table 1 RDF data set characteristics 

Data set Size (MB) #Triple #Subjet #Predicate #Object % Blank node % Literal % Atom % Triple group

DBPedia 3 K 4.2 30,318 3955 23 16,425 0 42.84 22.08 13.54 

 20 k 248.7 255,987 5679 159 4594 0 49.54 10.59 16.87 

 600 k 470.6 658,307 59,019 4057 1254,295 0 36.85 18.54 26.70 

 10 M 1392.6 10,058,978 597,264 67,241 981,967 0 38.05 9.54 39.48 

BSBM V1.0 50 K 14.7 50,116 4900 40 11,888 0 55.32 10.32 9.77 

 250 K 74.1 250,492 23,178 40 52,174 0 55.12 17.82 9.89 

 1 M 298.3 1,000,226 92,044 40 201,091 0 55.38 20.09 10.16 

 5 M 1465.9 5,000,453 458,141 40 969,744 0 55.37 19.37 10.29 

WatDiv 10 k 28.5 9335 545 86 1781 12.26 13.57 4.65 3.61 

 100 k 156.4 93,256 5450 86 17,795 12.29 13.29 4.91 3.92 

 1 M 628.5 1,092,358 52,123 86 97,526 12.29 14.54 5.05 4.32 

 10 M 1506.6 10,916,457 521,585 86 1,005,832 12.35 17.07 5.24 4.29 

LUBM 10 107.6 1,045,739 165,439 18 124,612 0 32.36 32.49 32.49 

 50 567.2 5,165,386 815,478 18 607,563 0 31.0 30.16 30.19 

 80 753.5 8,067,027 1,792,587 18 1,299,760 0 32.81 32.06 32.02 

 100 1109.5 10,347,240 1,632,638 18 1,215,002 0 32.05 32.12 32.1 
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Figure 19 Triples number before and after pre-processing 

 
 

The obtained results show that the preprocessing established 
by our framework reduces the triples number in all data sets. 
We note that the reduction rate of triples number in the 
synthetic data sets (LUBM, WatDiv and BSBM) is 
monotonous whatever the number of triples and the size of 
these sets. On the other side, the DBpedia data reduction rate 
is different from one size to another. The triple reduction rate 
recorded in the LUBM, DBpedia, BSBM and WatDiv data 
sets is approximately 97%, 78%, 70% and 47%, respectively. 
The result obtained in LUBM is more important whatever the 
size of these data sets. This rate depends on the number of 
blank nodes, literal objects, triples Atom and triples 
constituting triple group. Blank nodes are deleted by the 
Generate_graph_without_blanks algorithm in only the 
WatDiv database. The number of literal objects deleted by 
Graph_without_literal algorithm is high in BSBM, DBPedia 
and LUBM data sets, but in WatDiv the number of literal 
objects removed is low. Triples Atom are deleted by 
Graph_without_atom algorithm in LUBM which contains a 
large number, and average in DBpedia and BSBM  
contrary to WatDiv which contains few RDF Atom (5%).  
The triples constituting triple group are deleted by 
Generate_aggregate_graph algorithm. The number of these 
deleted triples is high in LUBM (32%), medium in DBpedia 
(24%) and in BSBN and low in WatDiv (4%). 

The reduction of triples is the result of preprocessing 
operations on the RDF graph relating to the nature of nodes  
 

(subject and object) and edges (predicate). To do so, we have 
counted the number of nodes and edges deleted in our 
framework. In Figure 20, we present the number of deleted 
nodes and edges to see the impact of the triple reduction  
on the number of deleted nodes and edges in the initial  
graph 0G . 

The results show that our framework favours the 
reduction of the nodes of the initial graph 0G  (see Figure 

20) in most data sets except LUBM data set. Indeed, nodes 
and edges are deleted throughout the preprocessing process 
according to the content of the data sets following the 
operations of removing blank nodes, literal nodes, atoms 
and triples groups on the initial graph 0G . The results show 

that the algorithms Generate_graph_without_blanks, 
Graph_without_atom and Graph_without_literal favour  
the reduction of the number of nodes and the 
Generate_aggregate_graph algorithm favours the reduction 
of edges independently of the size of the data sets, which 
justifies the result obtained in LUBM. Reminding that 
LUBM through our Framework generates many triples 
groups. 

The number of nodes and edges removed affects the 
METIS graph size which represents the input file to METIS. 
We present in Figure 21 the METIS input size before and 
after the pre-processing as a function of the size of the data 
sets. 

Figure 20 Number of nodes and edges removed in the pre-processing framework 
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Figure 21 METIS graph (METIS Input) size before and after pre-processing (MB) 

 
 

We notice in the results (see Figure 21) that the METIS 
graph size is reduced for all data sets in the RDF data pre-
processing framework. The reduction rate of the METIS 
graph size recorded in the DBpedia, BSBM, WatDiv and 
LUBM data sets is respectively equal to 54%, 53%, 68% 
and 64%. We noticed that this reduction rate depends on the 
data size and the type of each data set. The reduction rate is 
important only when the size of the data sets is large and 
when the data sets contain a considerable number of literal 
objects as for BSBM or of triples groups and RDF Atom as 
for LUBM. 

We thus present in the Figure below (see Figure 22) the 
length of the vector  P v  (METIS output). The length value 

of this vector is determined by the order of the initial graph 0G  

when the partitioning is performed without partitioning. On the 
other hand, when the partitioning is performed after the RDF 
data pre-processing, the length value of the vector  P v  is 

determined by the order of the aggregation graph AG . 

We have noticed that the vector  P v  length is slightly 

reduced in our framework. When the sum of literal objects, 
of triples groups, and RDF Atom removed from a data set 
by Graph_without_literal, Generate_aggregate_graph  
 

and Graph_without_atom algorithms exceeds 27%, the 
reduction in the length of the vector  P v  becomes 

considerable. Consequently, these results show that 
Generate_graph_without_blanks algorithm doesn’t 
sufficiently reduce the length of the vector  P v  and that 

Graph_without_literal, Generate_aggregate_graph and 
Graph_without_atom algorithms contribute to the 
considerable reduction of  P v  when they reduce the 

number of triples of the data sets. 
On the other hand, in order to know the impact of our pre-

processing on the partitioning quality, we launched a 
partitioning of the data sets by varying the partitions number 
to 5, 25, 50 and 100. 

The analysis was done on the number of edges  
cuts of semantic description, the partitioning time and the 
memory size for each number of partitions (see Figures 23, 
24 and 25). 

The number of edges cuts of semantic description after 
our pre-processing is always equal to 0 whatever the data set 
size, the content of the data or the number of partitions. 
Therefore, we present in the Figure 23, the number of cuts of 
these edges before the pre-processing. 

Figure 22 Length of the vector  P v  (METIS output) 
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Figure 23 Number of edges cuts of semantic description 

 
 

We note that when data sets are partitioned without pre-
processing, the number of edges cuts of semantic description 
generally according to the number of partitions. The number 
of edges cuts is small when the number of partitions is equal 
to 5 for all data sets. In this case, the ranking of data sets in 
ascending order of the number of semantic descriptions edges 
is as follows: WatDiv, DBpedia, BSBM and LUBM. On the 
other hand, the number of edges cuts of semantic description 
is high when the number of partitions is equal to 100 for all 
data sets. The ranking of the data sets in descending order of 
the number of edges is as follows: WatDiv, DBpedia, BSBM 
and LUBM. 

We present in Figure 24, the partitioning time of data 
sets before and after pre-processing as a function of the 
number of partitions. 

We note that the partitioning time recorded after pre-
processing is always reduced independently of the specific 
characteristics of these data sets. This is justified by the size 
of the data sets which is reduced following the pre-
processing. Thus, the partitioning time is reduced depending 
on the size of the data sets and the number of partitions. The 
shortest time after pre-processing of DBpedia, BSBM, 
LUBM and WatDiv data sets is recorded when the size of 
these data sets is small and the number of partitions is equal 
to 100. On the other hand, the longest partitioning time before 
pre-processing is recorded when the size of these data sets is 
large and the number of partitions is equal to 5. 

We present in Figure 25 the memory size used in 
partitioning with and without the RDF data pre-processing 
framework as a function of the partitions number. 

Figure 24 Partitioning time in seconds 

 

Figure 25 Maximum memory used ‘MB’ during partitioning 
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The results obtained show that pre-processing reduces the 
memory size used as a function of the number of partitions 
and the size of the data set, but independently of the specific 
characteristics of the data sets. The memory size is reduced a 
little bit when the number of partitions is small (5 partitions) 
in all data sets. The rate of memory reduction increases when 
the number of partitions is large enough (25, 50 and 100 
partitions) and becomes more important when the data set 
size is large enough (see Figure 25). 

Thus, we measured the pre-processing time of our 
framework on LUBM 100 and compared it to the pre-
processing time occupied by the H-RDF-3X system and the 
SHAPE system. 

The results obtained (see Figure 26) show that the 
SHAPE system requires 6 minutes of time and the H-RDF-
3X system 13 minutes of time. Let us remember that these 
systems require a replication step after pre-processing and 
during partitioning. Our system requires 7 minutes of time 
with a step of conservation of the total semantic concepts and 
which will reduce the number of data to replicate. The 
partition generation step is not covered in this paper. 

Figure 26 Pre-processing time of the LUBM 100 data set in 
minutes 
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7 Conclusions 

The RDF data partitioning by METIS generates partitions 
formed a set of closest triples. As METIS doesn’t take into 
account the data semantics, the generated partitions may lose 
semantics compared to the initial graph before partitioning. 
This affects the partitions quality and reduces the query 
processing performance. In addition, METIS doesn’t scale 
well with very large graphs due to their intensive memory 
usage and high computational cost. In fact, the more 
connected graph is the more difficult to partition. 

To do this, we have proposed in this paper an RDF data 
pre-processing framework based on data semantic 
preservation and graph size reduction. The preservation of the 
data semantics was achieved through several algorithms 
aiming at the preservation of anonymous resources and 
semantic concepts listed in the RDF document such as RDF 
atoms, RDF atom terms, RDF atom vocabularies and RDF 
graph vocabulary. The reduction of the graph was achieved 
by removing the literal data, preserving the semantics of the 
data and grouping the data. This reduces both the size of the 
RDF data to be partitioned and the degree of connectivity of 
the data by preserving their semantics. 

We have performed various implementations of our 
framework based on real such as DBpedia and synthetic data 
such as BSBM, WatDiv and LUBM. We evaluated the 
impact of our approach on the ratio of reduced triples, the 
number of nodes and edges removed, the size of the METIS 
input file, the size of the METIS output file, the number of 
edges cuts of semantic description, the partitioning time  
and the memory size used. We also measured the data  
pre-processing time and compared with other systems  
(H-RDF-3X and SHAPE). 

After the pre-processing performed in this paper, our 
perspective is the generation of partitions and the study of the 
performance of SPARQL queries based on large RDF data 
sets since the partitioning quality influences query processing 
performance (Kalogeros et al., 2020). 
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