

International Journal of Metadata, Semantics and
Ontologies

ISSN online: 1744-263X - ISSN print: 1744-2621
https://www.inderscience.com/ijmso

Pre-processing of RDF data for METIS partitioning

Siham Benhamed, Safia Nait-Bahloul

DOI: 10.1504/IJMSO.2023.10059687

Article History:
Received: 06 December 2022
Last revised: 08 June 2023
Accepted: 25 July 2023
Published online: 05 December 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijmso
https://dx.doi.org/10.1504/IJMSO.2023.10059687
http://www.tcpdf.org

152 Int. J. Metadata, Semantics and Ontologies, Vol. 16, No. 2, 2023

Copyright © 2023 Inderscience Enterprises Ltd.

Pre-processing of RDF data for METIS partitioning

Siham Benhamed*
LITIO Laboratory,
University Oran 1, Ahmed Ben Bella,
Oran, Algeria
and
Department of Computing and Mathematics,
University Abdelhamid Ibn Badis – Mostaganem,
Mostaganem, Algeria
Email: siham.benhamed@univ-mosta.dz
*Corresponding author

Safia Nait-Bahloul
LITIO Laboratory,
Department of Computer Science,
University Oran 1, Ahmed Ben Bella,
Oran, Algeria
Email: nait-bahloul.safia@univ-oran1.dz

Abstract: The partitioning of RDF data on a large scale allows generating a set of RDF data
subgraphs. METIS is a graph partitioning technique that minimises the cost of partitioning.
METIS applies, among other things, to RDF graphs. However, the semantics introduced in
the description of RDF data is not taken into account in the partitioning process in METIS.
For this, we propose in this paper a step of pre-processing RDF data before partitioning
these data. The objective of this step is to improve the quality of semantic partitioning of RDF
graphs. The evaluation of the RDF pre-processing step for METIS was performed on real and
synthetic data.

Keywords: RDF data; RDF graph; pre-processing; graph partitioning; METIS.

Reference to this paper should be made as follows: Benhamed, S. and Nait-Bahloul, S. (2023)
‘Pre-processing of RDF data for METIS partitioning’, Int. J. Metadata Semantics and
Ontologies, Vol. 16, No. 2, pp.152–171.

Biographical notes: Siham Benhamed is a PhD student working as a Teacher at University of
Abdlhamid Ibn Badis – Mostaganem, Algeria. The PhD program, she followed her core courses
in Computer Science at The Faculty of Exact and Applied Sciences of Oran 1 Ahmed Ben Bella
University, Algeria. She received her Diploma of Engineer degree in Computer Sciences and a
Magister diploma from Oran 1 Ahmed Ben Bella University. From these studies, she developed
an interest in the performance optimisation in the web semantic domain. Currently, she is
working on a Research Project within the LITIO Laboratory at Oran 1 Ahmed Ben Bella
University, Algeria, that explore the benefit of the graph partitioning of the RDF data to improve
the quality of the partitioning of graphs RDF at the semantic level.

Safia Nait-Bahloul obtained her Doctorate degree in Computer Science from the University of
Oran. Since 2011, she has been a Member of the LITIO Laboratory at the University of Oran,
which was accredited in 2009. She manages a Research Team in the LITIO Laboratory on Data
Engineering and Web Technology. Since 2008, she has also been responsible for an academic
Master’s degree in Information Systems and Web Technology. Her research interests include
advanced aspects of databases, web technology and unsupervised classification. Her work has
been published in several journals and conference proceedings. She has supervised several
Doctoral and Master’s candidates and Undergraduate Projects in the field of information
research, clustering, MDA and security (access control).

 Pre-processing of RDF data for METIS partitioning 153

1 Introduction

The interest in RDF data partitioning is due to the growth of
data on the web through the Resource Description
Framework (RDF) (W3C, 2014a). Data partitioning allows
the processing of large RDF data volumes at the scale of big
data (Ragab et al., 2021) which is more difficult due to the
size, heterogeneity and additional complexity provided by
RDF reasoning. To overcome the challenge of the massive
RDF data size, the data are represented by graphs. This data
representation form allows keeping the dependency between
data to formally deduce new knowledge from the existing
ones. For this, the knowledge bases of the semantic web are
generally represented and expressed by RDF triples,
constituting large graphs that formally describe sets of web
resources. Thus, this representation provides an intuitive
interpretation of the resources and the relationships between
the different resources. However, processing and analysing
large RDF data graphs and quickly accessing relevant data
from these graphs is more difficult and complex both in terms
of execution time and in terms of the memory size. For this
reason, graph partitioning techniques for partitioning RDF
data have been introduced to improve their large-scale
processing. These techniques allow large data sets to be
distributed on different sites in order to deploy distributed and
parallel architectures (Kernighan and Lin, 1970). These
techniques are used when the distance between all the data in
the set to be partitioned is unknown (Buluc and Hao, 2016).

Graph partitioning by the multilevel method (Barnard and
Simon, 1993) has been used for RDF data through METIS
(Karypis and Kumar, 1998b) which produces balanced
partitions whose size is similar and the communication cost
between them is minimised. However, in the semantic web
context, METIS doesn’t support the preservation of the graph
semantics during the web data graph partitioning. Therefore,
the ontology or vocabularies intended to structure RDF
resources in a partition miss semantics and do not correspond
to the basic definition of an ontology (Simperl et al., 2011).
To do this, we propose in this paper an algorithm which
allows to extend the METIS partitioning to preserve data
semantics during RDF graph partitioning. We add an
upstream RDF data processing phase in order to improve the
partitioning quality, in particular by minimising the semantic
communication rate between the different partitions. We
propose an illustrative example of our approach on the
partitioning result.

This paper is organised as follows: Section 2 presents the
state of the question, Section 3 presents the RDF graph
partitioning by METIS which we illustrate by an example of
its progress and its limits. We present in Sections 4 and 5 our
framework for preprocessing RDF for METIS partitioning
with a detailed scenario. Section 6 presents the evaluation
results of our approach and we end this paper with a
conclusion in Section 7.

2 Related works

The use of METIS through its multilevel algorithm in RDF
data processing systems has revealed that it is effective for

RDF data graph partitioning. These systems require the
execution of an additional upstream RDF data processing
phase to improve their large-scale processing. The purpose of
this phase is to convert the input RDF data into a graph with
an adequate format with METIS (e.g. Soma and Prasanna,
2008; Huang et al., 2011; Slavov et al., 2012; Wang
and Chiu, 2012; Lee and Liu, 2013a, Lee and Liu, 2013b; Lee
et al., 2013; Zhang et al., 2013; Gurajada et al., 2014;
Rakhmawati et al., 2014; Bok et al., 2019; Ramesh et al.,
2021; Priyadarshi and Kochut, 2022). These systems execute
additional operations to support the partitioning of the RDF
graph by vertex while preserving the partitioning quality.
These additional operations applied on the RDF data
constitute the pre-processing phase.

The operations found include the deletion of data
represented by (i) tuples involving the schema elements of
Soma and Prasanna’s approach (2008), (ii) triples whose
predicate is ‘rdf: type’ or having the type sense in H-RDF-3X
(Huang et al., 2011), (iii) duplicate vertices and edges in each
partition in VB-Partitioner (Lee and Liu, 2013b), (iv) literal
vertices in TriAD (Gurajada et al., 2014) and (v) duplicate
triples in SPA (Lee et al., 2013). The ignoring operation of
the edges orientation in the graph during partitioning was
applied in the method of Slavov et al. (2012) and the search
for connected components of the RDF graph was introduced
in the approach of Wang and Chiu (2012). The data
regrouping such as (i) the subjects set with similar properties
in an entity class in EAGRE (Zhang et al., 2013), (ii) the
graph vertices in VB-Partitioner (Lee and Liu, 2013b), (iii)
RDF triples in SHAPE (Lee and Liu, 2013a), (iv) the use
frequency over queries in Bok et al. approach (2019) and (v)
the type of triples in Granite (Ramesh et al., 2021). The
preprocessing in the system of Rakhmawati et al. (2014) is
based only on objects identified by URI. Thus, we find the
indexing of RDF triples in PartKG2Vec (Priyadarshi and
Kochut, 2022) and the generalisation of the entity graph from
the adjacency list elements of the RDF graph in Galicia et al.
approach (Galicia et al., 2019).

Most results obtained of these systems concerning pre-
processing are interesting, but do not take into consideration
of semantic aspects of RDF graphs. Note, that partitioning
SHAPE method (Lee and Liu, 2013a) partially takes into
account the semantic aspects, but not the rich structural
aspects of RDF. URI-based data clustering results in
non-semantic partitioning if many vertices share prefixes
(Lee and Liu, 2013a).

3 METIS partitioning of RDF data

METIS (Karypis and Kumar, 1998b) is a tool that allows
graph partitioning and consists of a set of algorithms based on
the multilevel paradigm (Barnard and Simon, 1993). The
multilevel algorithm is based on the vertices number reducing
principle through the adjacent vertices pairs grouping. Thus,
the graph reduction to be partitioned keeps the graph
topological properties to provide access to a global view. The
multilevel algorithm is formed from algorithms set based on

154 S. Benhamed and S. Nait-Bahloul

multilevel dichotomous recursion (multi-k-way) (Karypis and
Kumar, 1997). It is composed of three very distinct phases
(Karypis and Kumar, 1998a) which are contraction,
partitioning and refining.

METIS has been applied on several data structures,
including RDF. To do this, the RDF data must be transformed
into a graph. This operation is fundamental in the RDF data
processing.

An RDF graph is the grouping of an RDF document
statements set on a given vocabulary expressed by triples. It
describes a model of binary predicates in first-order logic, of
the form Property (Subject, Object). The RDF graph is
directed and labelled, in which the vertices represent the
subjects and objects of a triple, and the edges describe the
assertions labelled by the predicates. In this paper, we take
some semantic web definitions that exist in the literature
(Definition 3.1 and Definition 3.2) in order to apply them in
our RDF data pre-processing operation.

Definition 3.1 (RDF triple): Let U be the URI references set,
B the blank nodes (anonymous resource) set and L the
literals (strings) set, an RDF triple is the triple (s, p, o) with
s ∈ (U ∪	B) is the subject, p ∈ U is the predicate and o ∈ (U
∪	B ∪	L) is the object. The RDF triple is represented by a
directed graph with a labelled edge such that .PS O

Definition 3.2 (RDF graph): An RDF graph is a non-empty
set of RDF triples. It is a multigraph with multiple directed
edges labelled by the RDF triples predicates, this graph
contains the RDF triples set. Let an RDF graph denoted

 , , ,E EG V E L where ()V U B L is the vertices

set in the graph that identifies the subject or object of an
RDF triple. The set E V V is an oriented edges

multiset. The pair ,u v E denotes an edge oriented from

u to v. E U is the edge labels set (the predicates) and LE

is the correspondence set of a label E and its edge

(u, v), with E EL E . An RDF graph 0G is a subgraph

of an RDF graph G if 0G G .

The RDF graph partitioning consists in assigning a set of the
graph vertices describing a resource via RDF triples to
different partitions constituting sub-graphs in such a way that
the partition size is not greater than a given size. The graph
partitioning allows to reduce the graph browsing time,
especially for large size graphs. The objective of the RDF
graph partitioning problem is to compute partitions by
minimising the edges number ‘predicate’ or the sum of their
weights that connect partitions, and to minimise the overlaps
set of different partitions. For that, METIS expresses the
partitioning result of a vertex set V into k partitions by a
vector P v of length n representing the generated partitions

number. P v is created by METIS such that for any vertex

v V , P v contains an integer i between 1 and k,

indicating the vertex assignment v to the partition iP . P v

represents the METIS partitioning result; i.e., it presents the
assignment assertions set of each graph vertex G to a

particular partition. This assignment determines a mapping
function between a vertex and its partition.

The partitioning quality in METIS depends on the graph
characteristics, it is measured by the partitions size
(balance) and the cut edges number which guarantee the
total cost reduction of communications between the
partitions (edge-cut) (Karypis and Kumar, 1998b). The
balance determines the partitions stability and is calculated
by dividing the maximum number of nodes in a partition by
the average number of nodes per partition (total number of
nodes in the graph over the number of partitions). The
communication cost represents the number of nodes iV V

whose edges bound the partitions (crossing edges between
partitions). The edge-cut represents the number of edges
whose incident nodes belong to different partitions.

The partitioning quality in METIS requires both
minimising the cut function and balancing the computational
load between the processors by producing the disjoint part
balances.

3.1 RDF data preparation

We propose in the following example a METIS execution
application on RDF data. Let’s consider an RDF document in
Figure 1(a), consisting of 16 triples, including 12 subjects, 11
objects and 12 predicates to be partitioned by using METIS
into two partitions. This Figure is formed by triples set of the
form S P O constituting the RDF document. The
METIS partitioning of the RDF document requires its
representation into a graph (see Figure 1(b)) in an intermediate
step before the graph transformation into a METIS graph. The
METIS graph requires a number-based input structure of
numerical type. The graph resources (subject or object) are
mapped from Figure 1(b) into integer, see Figure 1(c).

The METIS graph (see Figure 1(d)) is a text file that
satisfies the graph representation form in METIS. The latter
consists of n+1 lines, n being the graph order (see Figure 1(b)),
the first line of which, called the header line, contains
information on the graph size and the graph type, while the
remaining n lines contain information on each graph vertex.
They represent the adjacent vertices where the edges are
weighted at 1. Figure 1(d) consists of 14 lines where the first
line determines that the graph is composed of 13 nodes and 16
edges and that the graph is unweighted. For example, the
second line content is 2 1 3 1 4 1, means that nodes 2, 3 and 4
are the adjacent nodes of node 1 and the edges weight is 1.

3.2 Application and interpretation of METIS

When METIS partitions Figure 1(d) into two partitions, it
returns a file in which it assigns each node to a partition, the
value 0 represents the node assignment to the first partition
and the value 1 represents the node assignment to the second
partition. The partitioning result is shown in Figure 2(a).

METIS achieves a balanced partitioning (see Figure 2(b)).
Based on the metrics defined by Karypis and Kumar (1998b),
the partitioning constraints provided by METIS in our example
Figure 1(b) are: Edge-cut = 3, Communication volume = 5,
Balance =1.077

 Pre-processing of RDF data for METIS partitioning 155

Figure 1 Example of the RDF document by METIS (a) RDF document, (b) RDF graph, (c) Mapping and (d) METIS graph

 Resource type URI or anonymous

 Resource type literal

Vertices number |V|= 13
Edges number |E|= 16

(a) (b) (c) (d)

<S1><P1><S2>
<S1><rdf:type><S3>
<S1><P6><S4>
<S3><P5><S6>
<S3><P4><S5>
<S3><P10><S4>
<S4><P4><S5>
<S4><P3><L7>
<S8><P1><S2>
<S8><rdf:type><S3>
<S8><P2>

<P3><L10>
<P7>

<P8><L13>
<P9><L12>

<S6><P11>
<P9><L12>
<P8><L13>

(S1, 1)
(S2, 2)
(S3, 3)
(S4, 4)
(S5, 5)
(S6, 6)
(L7, 7)
(S8, 8)
(_, 9)
(L10, 10)
(_, 11)
(L12, 12)
(L13, 13)

13 16 001
2 1 3 1 4 1
1 1 8 1
4 1 5 1 6 1 1 1 8 1
5 1 7 1 1 1 3 1
3 1 4 1
11 1 3 1
4 1
2 1 3 1 9 1
10 1 11 1 8 1
9 1
12 1 13 1 6 1 9 1
11 1
11 1

Transformation

Figure 2 Partitioning of the example into 2 partitions by METIS (a) Partitioning result and (b) Graph partitioning

(a) (b)

0

1

0

0

0

0

0

1

1

1

1

1

Partition 0 Partition 1

We note that in Figure 2(b), the cutting the edge labelled by
rdf:type which is carrying semantics will cause a
break in the second partition semantics since node S8 is an
instance of class S3. This partitioning doesn’t keep the
initial semantics of the Figure 1(b) graph. In fact, METIS
doesn’t support the nature and type of intra-partition
edges, and therefore it doesn’t allow for keeping the
link that defines the data semantics and the ontology
concept. In addition, effects on inter-partition edges can
change the meaning of the partitioned ontology. For
example, partition 1 doesn’t define the meaning of the initial
defined ontology (see Figure 1). In order to improve this
partitioning, we propose to keep the data semantics during
the partitioning.

4 Framework for RDF pre-processing for METIS

RDF pre-processing for METIS aims at the semantic
preservation expressed by the RDFS vocabulary (W3C,
2014b). To this end, we propose a framework (see Figure 3)
for pre-processing RDF data to avoid the problem seen in the
example in Figure 1 and Figure 2. This framework is defined
by several ordered phases in which we inject semantic
concepts set needed for pre-processing such as RDF graph
vocabulary, atom and term RDF. RDF data semantic pre-
processing consists of four phases including transforming the
RDF document into the initial graph, maintaining the graph
semantics, generating the graph and finally reducing it. The
pre-processing RDF data algorithm is presented below.

156 S. Benhamed and S. Nait-Bahloul

Algorithm: RDF_Pre-processing

1. Input: doc_RDF

2. Output: graph_RDF AG

3. Begin

4.
/*Convert RDF data to a graph

0G Conversion (doc_RDF)

5.
/* List the semantic concepts to generate the vocabulary of the initial graph 0voc G

 0voc G Semantic_Concepts 0G

6.
/*Generate the sG graph based on the semantic concepts

sG Generate_graph 0 0,G voc G

7.
/*Generate the aggregate graph by grouping the triples

AG Generate_aggregate_graph sG

8. Return AG

9. End

Figure 3 RDF data pre-processing framework

4.1 Conversion phase of RDF data into a graph

The first phase of the framework consists in converting the
RDF document into the initial RDF graph. For this purpose,
we propose the Conversion algorithm presented below. This
algorithm considers an RDF document as input (line1) and
creates as output an RDF graph (Definition 3.2) G0 which
consists of four sets 0V , 0E , 0E and 0EL (line 4)

representing respectively the nodes set, the edges set, the edge
labels set and the set of correspondences between each edge
and its appropriate label. After creating empty 0G (line 4),

we fill in the sets constituting the graph in question. For each
triple (Definition 3.1) in the RDF document (lines 5 to 7), we
assign the subject and object of the triple in the set 0V , the

subject and object pair of the triple in the set 0E , the

predicate of the triple in the set 0E and the subject and edge

pair with the predicate of the triple in the set LE0. In other
words, each RDF document triple (s, p, o) is converted into
an edge e E where EL e p and ,e s o .

The graph G0 is stored in a list according to a new
structure proposed in our Definition 4.1, called the RDF
graph resource list.

Algorithm: Conversion

1. Input: doc_RDF

2. Output: RDF_graph 0G

3. Begin

4. 0G Empty_RDF_graph 0 0 0 0, , ,E EV E L

5. For each , ,s p o doc_RDF do

6. 0G 0 , , , , , , ,G U s o s o p s o p

7. End For each

8. Return 0G

9. End

Definition 4.1 (RDF graph resource list): the resource list L
of the RDF graph G is a chained list of size V that

contains all adjacent vertices of each vertex iv V of G. It

associates with each vertex iv a list iL containing a set of

pairs of the adjacent vertex u with the edge label ρ such
that:

 Pre-processing of RDF data for METIS partitioning 157

,

{ | |/ 1, and

, ,

}

, , , ,

i

i E

i i E

L L i V

L u u V

v u E v u L

This list is determined according to the resource type to
which we add the property value of a triple. The structure of
the RDF graph resource list classifies the RDF document
resources by triples (nodes of type subject index the adjacent
nodes set which are of type object with the edges labels set
which are of type predicate). We present in the Figure 4
below the RDF graph resource list appropriate of the
example proposed in Figure 1(b).

Figure 4 RDF graph resource list of the example in Figure 1(b)

S1 S4 P6

 S3 rdf:type

S2 P1

S3 S4 P10

 S5 P4

 S6 P5

S4 S7 P3

 S5 P4

S8 S2 P1

 S3 rdf:type

 NB1 P2

NB1 L10 P3

 NB2 P7

NB2
L12 P9

 L13 P8

S6 L2 NB2

The space complexity of the Conversion algorithm is of order

 | |O V E . It depends on the structure of the graph data

description, which allows indicating the links between the
vertices. In addition, the RDF graph resource list structure
provides the incidence vertices list with linear complexity.

4.2 Listing phase of the semantic concepts

In the second phase of the RDF data pre-processing framework,
we propose to inventory the graph semantic concepts in order
to determine the graph elements that contribute to the resources
semantic definition in order to determine the semantic graph.
The Semantic_Concepts algorithm generates semantic concepts
based on a set of notions that we propose to use. The semantic
notions are: semantic description (Definition 4.2), RDF
vocabulary (Definition 4.3), RDF atom (Definition 4.4), RDF
atom term (Definition 4.5), RDF atom vocabulary (Definition
4.6), RDF graph vocabulary (Definition 4.7) and semantic
RDF graph (Definition 4.8).

Definition 4.2 (Semantic description): Let S P O an

RDF triples and P is the predicate set of the specification
of the RDF model syntax defined in the RDF schema such
that P P and P= {Property, Class, subPropertyOf,
subClassOf, domain, range, type}. A semantic description p
is a predicate witch define the subject s as an instance of the
object o, such that p P .

Definition 4.3 (RDF vocabulary): Let S P O is RDF

triples set, the RDF vocabulary S P O is a subset of

 , ,S P O such that S S , P P , O O and

p P , p is a semantic description that semantically

define an object o O by the subject s S .

Definition 4.4 (RDF atom): Let an RDF document
consisting of triples set S P O such that S is the

subject set, P is the predicate set and O is the object set, an
RDF atom OA S P is an RDF vocabulary such

that such that S S , P P , O O and

 , ,s p o S P O , p is a semantic description.

Definition 4.5 (RDF atom term): Given an RDF atom A,

 t s , t p and t o each represents, respectively the

subject atom term, the predicate atom term and the object
atom term set such that:

 / ,t s s s S A S P O

 / ,t p p p P A S P O

 / , t o o o O A S P O

Definition 4.6 (RDF atom vocabulary): Given

 A S P O the RDF atoms set and t(s) is the subject

atom term set, the atom vocabulary ivoc A is defined for

each is t s such that i ivoc A s P O p P ,

o O and , ,is p o A . The RDF atom vocabulary

 ivoc A in an RDF graph represents the smallest

sub-graph of semantic description to each subject atom term
of t s .

Definition 4.7 (RDF graph vocabulary): Let ivoc A is the

RDF atom vocabulary set of each subject atom term of t(s),
the vocabulary of an RDF graph G is voc G such that

 i ivoc G Uvoc A s t s .

Definition 4.8 (Semantic RDF graph): Given

 A S P O an RDF atom, a semantic RDF graph

G is an RDF graph generated by the RDF graph

vocabulary, such that , , , E EG V E L where

 , V S E S O , E P and ’EL S O P .

We propose, in the Figure 5 below, an example of semantic
concepts of an RDF document (see Figure 5(a)). The
graphical representation of the document is shown in
Figure 5(b). The corresponding basic semantic concepts are
presented in Figure 5(c) and the appropriate graphical
representations are shown in Figures 5 (d), 5(e), 5(f), 5(g)
and 5(h).

158 S. Benhamed and S. Nait-Bahloul

Figure 5 Example of semantic concepts of an RDF document (a) RDF document, (b) Initial Graph 0G , (c) Corresponding basic semantic

concepts, (d) voc(A1), (e) voc(A2), (f) voc(A3), (g) voc(A4) and (h) Semantic RDF graph G

<S1><P3><S2>
<S2><P1><S3>
<S2><P1>
 <P4><S6>
<S3><P1><S2>
<S3><P2><S4>
<S4><P5><S7>
<S4><rdf:type><S6>
<S5><P2><S4>
<S5><P7><S9>
<S6><rdfs:subClassOf><S8>
<S7><P6><L1>
<S7><rdf:type><S6>
<S9>rdf:range><S7>

A = {(S4, rdf:type, S6), (S6, rdfs:subClassOf,
S8), (S7, rdf:type, S6), (S9, rdf:range, S7)}

t(s)= {S4, S6, S7, S9}
t(p)= {rdf:type, rdfs:subClassOf, rdf:range }
t(o)= {S6, S8, S6, S7}
voc1 (A) = {(S4, rdf:type, S6)}
voc2(A) = {(S6, rdfs:subClassOf, S8)}
voc3(A) = {(S7, rdf:type, S6)}
voc4(A) = {(S9, rdf:range, S7)}
voc(G0) = {(S4, rdf:type, S6), (S6,

rdfs:subClassOf, S8), (S7, rdf:type,
S6), (S9, rdf:range, S7)}

(a) (b) (c)

(d) (e) (f) (g) (h)

The Semantic_Concepts algorithm receives the RDF graph

0G as input (line 1) and generates the RDF graph vocabulary

 voc G as output (line 2). To do this, after initialising the

sets of RDF atoms and RDF atom terms to empty (line 4). We
search in all the graph for semantic labels (having an RDFS
description), and for each of them we add to the set initialised
before the determining elements (1) the nodes and edge labels
set to the RDF atoms set (line 8), (2) the subject type nodes
set to the subject atom term set (line 9), (3) the edge labels set
to the predicate atom terms set (line 10) and (4) the object
type nodes set to object atom terms set (line 11). After
processing the whole graph, we generate ivoc A , the RDF

atom vocabularies from the RDF atoms (lines 14 to 17). In
lines 18 to 20, we generate the vocabulary of the initial graph

 0voc G .

Algorithm: Semantic_Concepts

1. Input: RDF_graph 0G

2. Output: RDF_graph_vocabulary 0voc G

3. Begin

4. A, t(s), t(p), t(o) {}

5. For each 0, , i j Ev v L do

6. If est_RDFS(ρ) then

7. For each 0, , i j Ev v L do

8. , , i jA A v v

9. it s t s v

10. { }t p t p

11. { }jt o t o v

12. End For each

13. End If

14.
For each iv t s do /* Vary vi and consider all

adjacent vj

15. ivoc A

16. , , i i i jvoc A voc A v v

17. End For each

18. 0voc G Empty_ RDF_graph_vocabulary ()

19. 0voc G union ivoc A

20. Return 0voc G

21. End

4.3 Graph generation phase based on
semantic concepts

The purpose of the graph generation phase in the framework
is to reduce the initial graph size while preserving the
semantic aspects. It consists of three consecutive operations
including (1) removing blank nodes in G0, (2) removing
literal nodes in G0 and (3) removing atoms based on voc(G0).
We give illustrative examples in each operation with their
respective algorithm. Section 5 is for a scenario grouping all
the framework phases (see Figure 3). For the first operation,
we refer to the definition of the blank node (Berner-Lee,
1998) (Definition 4.8).

Definition 4.9 (Blank Node): A Blank node also called an
anonymous node or resource is a vertex v in the RDF graph
v V which is not identified by a URI such that v B .

 Pre-processing of RDF data for METIS partitioning 159

4.3.1 Removing blank nodes

The algorithm of the first operation is called
generate_graph_without_blanks. The latter receives as input
the RDF graph 0G (line 1) and returns it as output without

blank nodes (line 2). To do this, we traverse all nodes iv in the

0EL set (line 4) and treat for each edge the case of terminal

nodes iv that are blank (lines 5 to 15). We count the blank

nodes path from the terminal node jv (lines 7 to 9). Then, we

group the edges labels between these blank nodes into the
source node iv at line 11 and remove the blank nodes with

their labels in line 12. At the end, we create an edge between
the source node iv and the adjacent non-blank node of the

terminal node (last white node in the chain) in line 14.

Algorithm: Generate_graph_without_blanks

1. Input: RDF_graph 0G

2. Output: RDF_graph 0G

3. Begin

4. For each 0, , i j j Ev v L do

5. If jv B do

6. k=0

7. Repeat

8. 1k k

9. Until j kv B

10. For each k

11. *i i j j kv v + is the concatenate

operator

12.
 0 0 ,, , ,j k i k j k j kG G v v v

 , i k j k j kv v

13. End For each

14.
 0 0 , , , ,{} i j k j kG G U v v

 , , i j k j kv v

15. End If
16. End For each
17. Return 0G

18. End

We propose below an example of a graph formed by 4 nodes,
of which 2 nodes constitute a chain of blank nodes
(see Figure 6(a)). We show in Figure 6(b), the result of
removing the blank nodes. The latter consists of the two non-
blank nodes S and O, with S maintaining the blank nodes
labels P1, P2 and P3. Nodes S and O are connected by the last
blank node label P3.

Figure 6 Example of removing blank nodes (a) Example of a
graph and (b) Result of the removing

(a) (b)

Passing the information from the blank nodes to an adjacent
non-blank node keeps the information of the triple , ,s p o

since we don’t want to break the semantic link induced by
the blank node. In addition, removing the blank nodes
simplifies the graph partitioning while keeping the links
invoked by the blank nodes in the triples.

4.3.2 Removing literal nodes

The removing literal nodes operation consists of removing
the edges that connect the nodes of the string literals set.
This operation is presented in the Graph_without_literal
algorithm. The latter receives the RDF graph G0 returned by
the Generate_graph_without_blanks algorithm (line 1) and
returns this graph without literal object nodes (line 2). To do
this, we go through all the graph edges (line 4) and when the
terminal node jv is a literal object (line 5), we add this node

and the label of the associated edge to the source node iv

(line 6), then we remove this node and the associated edge
(line 7).

Algorithm: Graph_without_literal

1. Input: RDF_graph 0G /* graph without blank node

2. Output: RDF_graph 0G

3. Begin

4. For each , ,i j j Esv v L do

5. If 0j Ev L do

6. , ,i i i jv v v v

7. 0 0 , , , , , , j i j i jG G v v v v v

8. End If
9. End For each

10. Return 0G

11. End

160 S. Benhamed and S. Nait-Bahloul

We propose in Figure 7 an example of the literal nodes
removal. The proposed graph (see Figure 7 (a)) consists of 4
nodes S1, S2 (P3, P4), L1, L2 of which nodes L1 and L2 are
literal objects and node S2 (P3, P4) is a node resulting from a
removing of a blank node that was between edges P3 and P4.
The result of the second operation of removing is shown in
Figure 7(b). The resulting graph consists of two nodes and an
edge, where the source node contains the label and literal
object of the first removed node and the terminal node
contains the label and literal object of the second removed
node.

Figure 7 Example of removing the literal nodes (a) Example of a
graph and (b) Result of the removing

(a) (b)

The nodes removing representing literal objects allows them
to be preserved, since the links to and from the literals must

not be, in any case, cut in the partitioning. Moreover, this
operation leads to reductions in METIS execution time and
respectively in memory space according to the results
obtained in TriAD (Gurajada et al., 2014) which adopts this
operation.

4.3.3 Removing atoms

The last operation of this phase is the removal of the resources
semantic descriptions, it is presented in Graph_without_atom
algorithm. The latter produces the graph sG (line 3) from the

RDF graph 0G , result of Graph_without_literal algorithm

(line 1) and the RDF graph vocabulary 0voc G which is

generated by Semantic_concepts algorithm. To do this, we first
make a copy of the graph 0G in sG (line 5) on which we

proceed to remove the atoms. For this purpose, we traverse all
the edges labels of the graph (line 6) and enumerate the path of
the nodes starting from the source node iv which is composed

of edges labelled set by a predicate atom term (semantic
description) in lines 8 to 11. This path is called semantic path.
Next, we add the path atom information to the source node vi
(line 12) and remove the nodes from the path if they are not
source nodes or terminal nodes of an edge labelled with a
predicate atom term (lines 13 to 17).

Algorithm: Graph_without_atom

1. Input : RDF_graph 0G /* graph without blank node and without literal

2. RDF_graph_vocabulary 0voc G

3. Output: RDF_graph sG

4. Begin

5. 0sG G

6. For each , ,i j j Esv v L

7. K = 0

8. Repeat /* Browse the semantic path

9. , ,i i i k j k j kv v v v

10. 1 / *k k k is the path length

11. Until j k t p et , i k j k Sv v E

12. 1 1 1 1, , , , ,s s i j k j k i j k j kG G U v v v v

13. For 1...c k do

14. If , , et j c Esv v L t p

15. 1 1, , , , , ,s s j c j c j c j c j c j c j cG G v v v v v

16. End If

17. End For

18. End For each

19. Return Gs

20. End

 Pre-processing of RDF data for METIS partitioning 161

Figure 8 Example of graph generation sG , (a) Graph 0G , (b) Vocabulary 0voc G , (c) generation result sG

(a) (b) (c)

(S4, rdf:type, S6)
(S7, rdf:type, S6)

(S6, rdfs:subClassOf, S8)
(S9 rdfs:range S7)

We propose in the Figure 8 below the generation of the graph

sG of the example proposed previously in Figure 5(b). The

graph 0G in Figure 8(a) represents the result of the

Graph_without_literal algorithm and 0voc G is the RDF

graph vocabulary (see Figure 8(b)) generated by the
Semantic_Concepts algorithm. The graph 0G consists of nine

nodes S1, S2 (P3, P4), S3, S4, S5, S6, S7 (S7, P6, L1), S8 and
S9 of which node S2 (P3, P4) is the result of the blank node
removing between the edges P3 and P4 and node S7 (S7, P6,
L1) is the result of the literal node L1 removing. The graph
also consists of eleven edges. This graph consists of four
semantic paths: (1) the path of nodes S4, S6 and S8, (2) the
path of nodes S7, S6 and S8, (3) the path of nodes S6 and S8
and (4) the path of nodes S9, S7, S6 and S8.

The algorithm Graph_without_atom, after making a
copy of 0G in sG , it traverses the semantic paths in which,

it transfers the nodes of the RDF atoms of each path to the
appropriate source node. For example, in Figure 8(c) the
node S6 is extended by the atom (S6, rdfs:subClassOf, S8),
it is then removed since it is not connected to any other
(non-semantic) edges.The edges labels that belong to the
RDF atom terms set of type predicate t p define an RDF

class or an RDF property. Removing these edges allows us
to keep the triples that determine RDF properties and
classes. The partitioning of the graph sG allows a semantic

partitioning due to the fact that the cutting of the edges
carrying semantics is discarded by the last operation which
consists in transferring the properties of the semantic edges
in the source nodes (see Figure 8). The o-TG (v)
aggregation is performed when for the edges set, the
terminal node v is the same (lines 17 to 26).

4.4 Generation phase of the aggregate graph

This phase of the framework groups the triples sets of the
RDF graph in order to minimise their number and
consequently reduce the graph size to be partitioned by
METIS. It consists in building the triples groups set from

the atoms of the RDF graph sG generated by the

Graph_without_atom algorithm. These sets are generated
following the grouping principle (Definition 4.9) proposed in
SHAPE (Lee and Liu, 2013a) in order to generate the AG

aggregate graph.

Definition 4.10 (Triple Group): Given an RDF graph

 , , ,E EG V E L , The grouping vertex u denoted s-TG

(u) of vertex v V is the triples set in which their subject is

u with s-TG , , ,| Eu v u V u v .

Similarly, the sets o-TG and p-TG of v are defined

as o-TG , ,| ,Ev u v V u v and

p-TG |, ,u v u v E , respectively.

The generation of the aggregate graph consists of grouping
nodes that do not contain semantic descriptions whose edges
share the same node (source or terminal) containing a
semantic description. The generation of the AG aggregate

graph is performed by the Generate_aggregate_graph
algorithm. The latter receives the graph sG (line 1) from the

previous phase and generates the aggregate graph AG as

output (line 2). To do this, we first copy the content of the
graph sG into AG (line 4), then we go through all the graph

nodes (line 5) and we apply the aggregation when the node
contains an atom (lines 6 to 23). The aggregation s-TG (v) is
performed when for edges set, the source node v is the same
(lines 7 to 16). In this case, we group the terminal nodes that
do not contain atoms (lines 7 to 8) and we group all the labels
in this set when they are different (lines 10 to 12). Then we
remove all these edges and their terminal nodes (line 13). At
this point, we generate the edge of the s-TG (v) aggregation
(line 16). In this case, we group source nodes that do not
contain atoms (lines 17 to 18) and group all labels in this set
when they are different (lines 20 to 22). Then, we remove all
these edges and their source nodes (line 23), thus, we
generate the edge of the o-TG (v) aggregation (line 26).

162 S. Benhamed and S. Nait-Bahloul

Algorithm: Generate_aggregate_graph

1. Input: RDF_graph sG

2. Output: RDF_graph AG

3. Begin

4. A sG G

5. Foreach sv V do

6. If v t s do / * v contains an atom

7. For each , , j j Esv v L do /* s-TG (v) grouping

8. If jv t s

9. ' ' ,j jv v v

10. If ' j do /* p-TG () grouping

11. ' ' j

12. End If

13. , , , , , ,A A j j j j jG G v v v v v

14. End If

15. End For each

16. GA ' , ' , ', , ' , 'A A i iG G U v v v v v

17. For each , , i j Esv v L do /* o-TG(v) grouping

18. If iv t s do

19. " " , i iv v v

20. If " i do /* p-TG (ρ) grouping

21. " " i

22. End If

23. , , , , , , A A i i i i iG G v v v v v

24. End If

25. End For each

26. " " , ", ", , "{ } ,A AG G U v v v v v

27. End If

28. End For each

29. Return AG

30. End

We propose in Figure 9 an example of aggregate graph
generation. Let a RDF graph Gs (see Figure 9 (a)) consist of
nine nodes S1 (S1, rdf:type, S2), S3 (S3, rdf:type, S2), S4, S5
(S6, P6, L1), S6 (S6 rdf:type, S7), S8 (P7, P8), S9, S10 and
S11. Nodes S1 (S1, rdf:type, S2), S3 (S3, rdf:type, S2) and S6
(S6 rdf:type, S7) are the removal result of atoms (S1, rdf:type,
S2), (S3, rdf:type, S2) and (S6 rdf:type, S7) is generated by
the Semantic_Concepts algorithm. Node S5 (S6, P6, L1) is
the removal result of the L1 literal node generated by the
Graph_without_literal algorithm, and node S8 (P7, P8) is the

removal result of a blank node between the edges labelled by
P7 and P8 generated by the Generate_graph_without_blanks
algorithm. The aggregate graph generation in this example
(see Figure 9 (b)) groups the adjacent nodes of node S6
(S6 rdf:type, S7) that do not contain a semantic description.
In this case, the s-TG (v) and p-TG (v) aggregations are
applied for nodes S9, S10, since they share the same source
node and their edges, and are labelled with the same value.
The o-TG (v) aggregation is applied to nodes S8 (P7, P8) and
S11 because they have the same terminal node.

 Pre-processing of RDF data for METIS partitioning 163

Figure 9 Example of graph aggregate generation AG (a) Graph sG and (b) Aggregation result

(a) (b)

5 METIS partitioning scenario with RDF
pre-processing

5.1 RDF pre-processing

In this section, we propose the complete application defined
in the RDF data pre-processing framework as an example, to
do so, we will take the graph of Figure 1(a) and we apply the
RDF_preprocessing algorithm. The aim of this process is to
show the impact of the proposed RDF pre-processing on an
RDF graph compared to partitioning the RDF graph without
pre-processing.

The result of phase 1 is identical to that of Figure 1(b)
since the aim of this phase is to convert the document into a
graph, but it should be noted that the complexity of this
algorithm has been improved by means of representing the
graph by our list structure.

In the listing phase of the semantic concepts, the graph
vocabulary must be created to maintain the semantics of the
RDF document in the RDF graph. The graph vocabulary

 0voc G represents the contents of the graph resource list,

which allows the preservation of the graph semantics while
the graph is stored in the linked list. The corresponding basic
semantic concepts are as follows:

A = (S1, rdf:type, S2), (S2, rdf:type, S3)

t(s)= {S1, S8}

t(p)= {rdf:type }

t(o)= {S3}

voc(A) = {(S1, rdf:type, S3), (S8, rdf:type, S3)}

The graph vocabulary 0voc G is shown in Figure 10(a)

and the semantic RDF graph is shown in Figure 10(b).

Figure 10 The semantic concepts of Figure 1(a) (a) The graph
vocabulary 0voc G and (b) The semantic RDF graph G

(a) (b)

(S1, rdf:type, S3)
(S8, rdf:type, S3)

The Graph generation phase based on semantic concepts first
removes the two blank nodes from the initial graph 0G

(see Figure 11). Then, it removes the literal nodes L7, L10,
L12 and L13 (see Figure 12).

Figure 11 RDF graph without blank nodes from Figure 1(a)

We replace S8 S8 (P2, P3) S8 (P2, P7, P9) S8 (P2, P7, P8)
with S and S6 S6 (P11, P9) S6 (P11, P8) with 'S in
Figure 12.

Figure 12 0G graph without blank nodes and without literals

from Figure 1(a)

The operation of removing atoms generates the graph sG , it

transfers the atoms (S1, rdf:type, S3) and (S8, rdf:type, S3)
into nodes S1 and S, respectively. The result of this operation
is shown in Figure 13.

164 S. Benhamed and S. Nait-Bahloul

Figure 13 RDF graph sG from Figure 1(a)

The generation phase of the aggregate graph groups the two
terminal nodes S1 and S4 (S4, P3, L7) and the edges P1 and
P6 since their source node contains the RDF atom S1,
rdf:type, S3. The result of this phase is shown in Figure 14.

Figure 14 graph AG from Figure 1(a)

5.2 METIS partitioning

Once the pre-processing of the RDF data is complete, it is
necessary to go through the AG mapping and create the

METIS graph to partition the data.
The mapping decodes all elements of the graph GA (nodes

and edges) as shown in Figure 15(a) and the transformation
result is shown in Figure 15(b). The representation of the
RDF graph resource list which mentions the label of the
edges is presented in Figure 15(b). For example, the first line
determines that node 1 and 2 are adjacent and that their edge
is labelled with predicate 7.

The pre-processing applied by our framework to
the graph in Figure 1(b) produced a list of size 12
(see Figure 15(a)) which is smaller than the list produced
without pre-processing from the initial graph (see Figure 4)
which is of size 23 knowing that both lists represent the same
graph. The pre-processing thus makes it possible to reduce
the size of the METIS graph (see Figure 15(c)). In effect, the
METIS graph produced by the RDF data pre-processing
framework consists of six nodes and six edges, while the
METIS graph (see Figure 1(d)) produced without pre-
processing consists of thirteen nodes and sixteen edges.

The METIS partitioning of the METIS graph
(see Figure 15(b)) into two partitions generates the vector

 P v (see Figure 16(a)). The latter assigns nodes S3, S5 and

'S ('S , P11, L12) to partition 0 and nodes S1 (S1, rdf:type,
S3), S4 (S4, P3, L7) ((S4(S4, P3, L7)) P4) (S2,P1) and S (S,
P3, L10) (S, P9, L12) (S, P2, L13) (S8, rdf :type, S3) to
partition 1 (see Figure 16(b))

Figure 15 Creation of the METIS graph (a) Mapping, (b) Graph AG and (c) Graph METIS

S1(S1, rdf:type, S3) 1
S4(S4, P3, L7) ((S4(S4, P3, L7)), P4) 2
S3 3
S5 4
S’ (S’, P11, L12) 5
S (S, P3, L10) (S, P9, L12) (S, P2,
L13) (S8, rdf:type, S3) 6
P6, P1 7
P10 8
P4 9
P5 10

1 2 7

2 4 9

3 2 8

 4 9

 5 10

4

5

6 2 8

(a) (b) (c)

6 6 001
2 1
4 1 1 1 6 1 3 1
2 1 4 1 5 1
3 1 2 1
3 1
2 1

Figure 16 Partitioning the graph into two partitions (a) vector P v and (b) graph AG partitioning

(a) (b)

0
0
1
1
0

Partition 0 Partition 1

 Pre-processing of RDF data for METIS partitioning 165

The result obtained (see Figure 16(b)) is different from that
obtained in Figure 2(b) (Sub-section 3.2) of the same graph
with the same number of partitions. In the partitioning of
Figure 16(b), there are two cut edges without the edges
connecting the blank nodes, the literal values and the edges
carrying semantic descriptions being cut. In effect, these
edges do not exist in the METIS graph produced by the
aggregate graph AG , the final result of the RDF data

preprocessing framework. These edges are removed
and preserved in the nodes as indicated in the
Generate_graph_without_blanks, Graph_without_literal,
Graph_without_atom and Generate_aggregate_graph
algorithms.

We further illustrate below the graph partitioning in
Figure 15(b) into three and four partitions. The result of the
partitioning into three partitions generates the vector P v

(see Figure 17(a)) assigning nodes S3 and S (S, P3, L10) (S,

P9, L12) (S, P2, L13) (S8, rdf:type, S3) to partition 0, nodes S5
and S4 (S4, P3, L7) ((S4 (S4, P3, L7)) P4) (S2, P1) to partition
1 and nodes 'S ('S , P11, L12) and S1 (S1, rdf:type, S3) to
partition 2. This partitioning (see Figure 17(b)) causes the
edges P5, P4, P10 and (P6, P1) to be cut.

The result of the partitioning into four partitions
generates the vector P v (see Figure 18(a)) assigning node

S (S, P3, L10) (S, P9, L12) (S, P2, L13) (S8, rdf:type, S3) to
partition 0, node S1 (S1, rdf:type, S3) to partition 1, nodes
S4 (S4, P3, L7) ((S4 (S4, P3, L7)) P4) (S2, P1) and nodes

'S ('S , P11, L12) to partition 2 and nodes S3 and S5 to
partition 3. This partitioning (see Figure 18(b)) causes the
edges P5, P4, P10 and (P6, P1) to be cut.

The graph partitioning in Figure 15(b) into three and
four partitions is balanced but with a high-communication
ratio but no break of a semantic description, a link to a
white node or a link to literal.

Figure 17 Partitioning the graph into three partitions (a) vector P v and (b) graph AG partitioning

(a) (b)

2
1
0
1
2
0

Partition 0 Partition 1 Partition 2

Figure 18 Partitioning the graph into four partitions (a) vector P v and (b) graph AG partitioning

(a) (b)

0
1
3
3
1
2

Partition 0 Partition 1 Partition 2 Partition 3

166 S. Benhamed and S. Nait-Bahloul

6 Evaluation

For the evaluation, we performed our experiments on real and
synthetic data sets of varying domains and sizes
(four different sizes for each data set that increase
proportionally). For the synthetic data, we used three
representative RDF benchmarks WatDiv ‘Waterloo SPARQL
Diversity Test Suite’ (http://dsg.uwaterloo.ca/watdiv/), the
popular LUBM benchmark Lehigh University Benchmark
(http://swat.cse.lehigh.edu/projects/lubm/index.htm) in Guo
et al. (2005) and BSBM The Berlin SPARQL Benchmark
(http://wifo5-03.informatik.uni-mannheim.de/bizer/
berlinsparqlbenchmark/V1/spec/index.html#datagenerator).

The WatDiv data set has a set of resources generated
according to an e-commerce database schema, including
information about users, retailers and products. The number
of RDF triples generated in WatDiv is determined by the
appropriate ‘scaling factor’ parameter. In our evaluations, we
have assigned the values 0.5, 1, 10 and 100 for the scaling
factor to generate approximately 10,000 triples, 100,000
triples, 1,000,000 triples and 10,000,000 triples, respectively.

LUBM presents an ontology for an academic domain. To
exploit the LUBM data set in our evaluation, we used the
UBA 1.7 generator to generate an ontology covering 10, 50,
80 and 100 universities, respectively.

The BSBM data set is built around an e-commerce use
case in which products set offered by different producers is
judged by consumers set. We used the number of products as
a scaling factor to generate the BSBM data set containing
approximately 50,000 triples, 250,000 triples, 1,000,000
triples and 5,000,000 triples, respectively.

We also used the DBpedia real data set
(https://wiki.dbpedia.org/Datasets). The latter is an academic
and community-based project for the automatic exploration
and extraction of data derived from Wikipedia. We used four
DBpedia data sets containing open domain knowledge about
sport and sport events. The number of triples in DBpedia
ranges from 30,000 to 10,000,000 as shown in Table 1.

We opted to test the RDF data preprocessing framework
performance using these data sets given the specific
characteristics of each of these data sets. Data in WatDiv is
heterogeneous where some is well structured and contains
few optional attributes, while others are less well structured.
It contains a more distinct set of predicates than LUBM,
but with only around 15% of triples containing a
semantic description. This set contains 12% of
blank nodes, which allows us to test the impact of the
Generate_graph_without_blanks (Sub-section 4.3.1)
algorithm. LUBM is a data set rich in semantic concept, it
contains about 31% of triples containing a semantic
description (Atom) but with a reduced number of ‘rdf:type’
properties. The data set therefore contains around 32% of
literal objects and 32% of triples constituting the triple group.
This allows to evaluate the algorithms: Graph_without_atom
(Sub-section 4.3.3), Generate_aggregate_graph (Sub-section
4.4) and Graph_without_literal (Sub-section 4.3.2). The latter
is also evaluated in the BSBM data set since it contains 55%
literal objects. The content of the DBpedia data is different
from one set to another since they are real even if they
are extracted from the same domain (sport). These data
generate asymmetric real RDF graphs that are different
(Moreira et al., 2021).

We present in the table below, the data sets characteristics
such as size, number of triples, number of subjects, number of
predicates, number of objects, percentage of the blank nodes,
the percentage of literal, the percentage of triples constituting
the Atom and the percentage of triples constituting triples
groups.

The evaluation of the RDF_Preprocessing algorithm was
carried out on a machine equipped with an Intel core
i5-5300M processor with 2.3GHz*4, 500 Gb of disks, 16 Gb
of RAM under Ubuntu 14.04 LT and we used METIS version
5.1.0 (http://glaros.dtc.umn.edu/gkhome/).

We present in Figure 19, the triples reduction ratio of our
framework execution on data sets.

Table 1 RDF data set characteristics

Data set Size (MB) #Triple #Subjet #Predicate #Object % Blank node % Literal % Atom % Triple group

DBPedia 3 K 4.2 30,318 3955 23 16,425 0 42.84 22.08 13.54

 20 k 248.7 255,987 5679 159 4594 0 49.54 10.59 16.87

 600 k 470.6 658,307 59,019 4057 1254,295 0 36.85 18.54 26.70

 10 M 1392.6 10,058,978 597,264 67,241 981,967 0 38.05 9.54 39.48

BSBM V1.0 50 K 14.7 50,116 4900 40 11,888 0 55.32 10.32 9.77

 250 K 74.1 250,492 23,178 40 52,174 0 55.12 17.82 9.89

 1 M 298.3 1,000,226 92,044 40 201,091 0 55.38 20.09 10.16

 5 M 1465.9 5,000,453 458,141 40 969,744 0 55.37 19.37 10.29

WatDiv 10 k 28.5 9335 545 86 1781 12.26 13.57 4.65 3.61

 100 k 156.4 93,256 5450 86 17,795 12.29 13.29 4.91 3.92

 1 M 628.5 1,092,358 52,123 86 97,526 12.29 14.54 5.05 4.32

 10 M 1506.6 10,916,457 521,585 86 1,005,832 12.35 17.07 5.24 4.29

LUBM 10 107.6 1,045,739 165,439 18 124,612 0 32.36 32.49 32.49

 50 567.2 5,165,386 815,478 18 607,563 0 31.0 30.16 30.19

 80 753.5 8,067,027 1,792,587 18 1,299,760 0 32.81 32.06 32.02

 100 1109.5 10,347,240 1,632,638 18 1,215,002 0 32.05 32.12 32.1

 Pre-processing of RDF data for METIS partitioning 167

Figure 19 Triples number before and after pre-processing

The obtained results show that the preprocessing established
by our framework reduces the triples number in all data sets.
We note that the reduction rate of triples number in the
synthetic data sets (LUBM, WatDiv and BSBM) is
monotonous whatever the number of triples and the size of
these sets. On the other side, the DBpedia data reduction rate
is different from one size to another. The triple reduction rate
recorded in the LUBM, DBpedia, BSBM and WatDiv data
sets is approximately 97%, 78%, 70% and 47%, respectively.
The result obtained in LUBM is more important whatever the
size of these data sets. This rate depends on the number of
blank nodes, literal objects, triples Atom and triples
constituting triple group. Blank nodes are deleted by the
Generate_graph_without_blanks algorithm in only the
WatDiv database. The number of literal objects deleted by
Graph_without_literal algorithm is high in BSBM, DBPedia
and LUBM data sets, but in WatDiv the number of literal
objects removed is low. Triples Atom are deleted by
Graph_without_atom algorithm in LUBM which contains a
large number, and average in DBpedia and BSBM
contrary to WatDiv which contains few RDF Atom (5%).
The triples constituting triple group are deleted by
Generate_aggregate_graph algorithm. The number of these
deleted triples is high in LUBM (32%), medium in DBpedia
(24%) and in BSBN and low in WatDiv (4%).

The reduction of triples is the result of preprocessing
operations on the RDF graph relating to the nature of nodes

(subject and object) and edges (predicate). To do so, we have
counted the number of nodes and edges deleted in our
framework. In Figure 20, we present the number of deleted
nodes and edges to see the impact of the triple reduction
on the number of deleted nodes and edges in the initial
graph 0G .

The results show that our framework favours the
reduction of the nodes of the initial graph 0G (see Figure

20) in most data sets except LUBM data set. Indeed, nodes
and edges are deleted throughout the preprocessing process
according to the content of the data sets following the
operations of removing blank nodes, literal nodes, atoms
and triples groups on the initial graph 0G . The results show

that the algorithms Generate_graph_without_blanks,
Graph_without_atom and Graph_without_literal favour
the reduction of the number of nodes and the
Generate_aggregate_graph algorithm favours the reduction
of edges independently of the size of the data sets, which
justifies the result obtained in LUBM. Reminding that
LUBM through our Framework generates many triples
groups.

The number of nodes and edges removed affects the
METIS graph size which represents the input file to METIS.
We present in Figure 21 the METIS input size before and
after the pre-processing as a function of the size of the data
sets.

Figure 20 Number of nodes and edges removed in the pre-processing framework

168 S. Benhamed and S. Nait-Bahloul

Figure 21 METIS graph (METIS Input) size before and after pre-processing (MB)

We notice in the results (see Figure 21) that the METIS
graph size is reduced for all data sets in the RDF data pre-
processing framework. The reduction rate of the METIS
graph size recorded in the DBpedia, BSBM, WatDiv and
LUBM data sets is respectively equal to 54%, 53%, 68%
and 64%. We noticed that this reduction rate depends on the
data size and the type of each data set. The reduction rate is
important only when the size of the data sets is large and
when the data sets contain a considerable number of literal
objects as for BSBM or of triples groups and RDF Atom as
for LUBM.

We thus present in the Figure below (see Figure 22) the
length of the vector P v (METIS output). The length value

of this vector is determined by the order of the initial graph 0G

when the partitioning is performed without partitioning. On the
other hand, when the partitioning is performed after the RDF
data pre-processing, the length value of the vector P v is

determined by the order of the aggregation graph AG .

We have noticed that the vector P v length is slightly

reduced in our framework. When the sum of literal objects,
of triples groups, and RDF Atom removed from a data set
by Graph_without_literal, Generate_aggregate_graph

and Graph_without_atom algorithms exceeds 27%, the
reduction in the length of the vector P v becomes

considerable. Consequently, these results show that
Generate_graph_without_blanks algorithm doesn’t
sufficiently reduce the length of the vector P v and that

Graph_without_literal, Generate_aggregate_graph and
Graph_without_atom algorithms contribute to the
considerable reduction of P v when they reduce the

number of triples of the data sets.
On the other hand, in order to know the impact of our pre-

processing on the partitioning quality, we launched a
partitioning of the data sets by varying the partitions number
to 5, 25, 50 and 100.

The analysis was done on the number of edges
cuts of semantic description, the partitioning time and the
memory size for each number of partitions (see Figures 23,
24 and 25).

The number of edges cuts of semantic description after
our pre-processing is always equal to 0 whatever the data set
size, the content of the data or the number of partitions.
Therefore, we present in the Figure 23, the number of cuts of
these edges before the pre-processing.

Figure 22 Length of the vector P v (METIS output)

 Pre-processing of RDF data for METIS partitioning 169

Figure 23 Number of edges cuts of semantic description

We note that when data sets are partitioned without pre-
processing, the number of edges cuts of semantic description
generally according to the number of partitions. The number
of edges cuts is small when the number of partitions is equal
to 5 for all data sets. In this case, the ranking of data sets in
ascending order of the number of semantic descriptions edges
is as follows: WatDiv, DBpedia, BSBM and LUBM. On the
other hand, the number of edges cuts of semantic description
is high when the number of partitions is equal to 100 for all
data sets. The ranking of the data sets in descending order of
the number of edges is as follows: WatDiv, DBpedia, BSBM
and LUBM.

We present in Figure 24, the partitioning time of data
sets before and after pre-processing as a function of the
number of partitions.

We note that the partitioning time recorded after pre-
processing is always reduced independently of the specific
characteristics of these data sets. This is justified by the size
of the data sets which is reduced following the pre-
processing. Thus, the partitioning time is reduced depending
on the size of the data sets and the number of partitions. The
shortest time after pre-processing of DBpedia, BSBM,
LUBM and WatDiv data sets is recorded when the size of
these data sets is small and the number of partitions is equal
to 100. On the other hand, the longest partitioning time before
pre-processing is recorded when the size of these data sets is
large and the number of partitions is equal to 5.

We present in Figure 25 the memory size used in
partitioning with and without the RDF data pre-processing
framework as a function of the partitions number.

Figure 24 Partitioning time in seconds

Figure 25 Maximum memory used ‘MB’ during partitioning

170 S. Benhamed and S. Nait-Bahloul

The results obtained show that pre-processing reduces the
memory size used as a function of the number of partitions
and the size of the data set, but independently of the specific
characteristics of the data sets. The memory size is reduced a
little bit when the number of partitions is small (5 partitions)
in all data sets. The rate of memory reduction increases when
the number of partitions is large enough (25, 50 and 100
partitions) and becomes more important when the data set
size is large enough (see Figure 25).

Thus, we measured the pre-processing time of our
framework on LUBM 100 and compared it to the pre-
processing time occupied by the H-RDF-3X system and the
SHAPE system.

The results obtained (see Figure 26) show that the
SHAPE system requires 6 minutes of time and the H-RDF-
3X system 13 minutes of time. Let us remember that these
systems require a replication step after pre-processing and
during partitioning. Our system requires 7 minutes of time
with a step of conservation of the total semantic concepts and
which will reduce the number of data to replicate. The
partition generation step is not covered in this paper.

Figure 26 Pre-processing time of the LUBM 100 data set in
minutes

0

2

4

6

8

10

12

14

Frameworke SHAPE H-RDF-3X

Time

7 Conclusions

The RDF data partitioning by METIS generates partitions
formed a set of closest triples. As METIS doesn’t take into
account the data semantics, the generated partitions may lose
semantics compared to the initial graph before partitioning.
This affects the partitions quality and reduces the query
processing performance. In addition, METIS doesn’t scale
well with very large graphs due to their intensive memory
usage and high computational cost. In fact, the more
connected graph is the more difficult to partition.

To do this, we have proposed in this paper an RDF data
pre-processing framework based on data semantic
preservation and graph size reduction. The preservation of the
data semantics was achieved through several algorithms
aiming at the preservation of anonymous resources and
semantic concepts listed in the RDF document such as RDF
atoms, RDF atom terms, RDF atom vocabularies and RDF
graph vocabulary. The reduction of the graph was achieved
by removing the literal data, preserving the semantics of the
data and grouping the data. This reduces both the size of the
RDF data to be partitioned and the degree of connectivity of
the data by preserving their semantics.

We have performed various implementations of our
framework based on real such as DBpedia and synthetic data
such as BSBM, WatDiv and LUBM. We evaluated the
impact of our approach on the ratio of reduced triples, the
number of nodes and edges removed, the size of the METIS
input file, the size of the METIS output file, the number of
edges cuts of semantic description, the partitioning time
and the memory size used. We also measured the data
pre-processing time and compared with other systems
(H-RDF-3X and SHAPE).

After the pre-processing performed in this paper, our
perspective is the generation of partitions and the study of the
performance of SPARQL queries based on large RDF data
sets since the partitioning quality influences query processing
performance (Kalogeros et al., 2020).

References

Barnard, S.T. and Simon, H.D. (1993) ‘A fast multilevel
implementation of recursive spectral bisection for partitioning
unstructured problems’, Proceedings of the 6th SIAM
Conference on Parallel Processing for Scientific Computing,
pp.711–718.

Benlic, A.U. and Hao, J.K. (2013) ‘Breakout local search for the
quadratic assignment problem’, Applied Mathematics and
Computation, Vol. 219, No. 9, pp.4800–4815.

Berner-Lee, T. (1998) What the Semantic Web can Represent, W3C
1998.

Bok, K., Kim, J. and Yoo, J. (2019) ‘Dynamic partitioning
supporting load balancing for distributed RDF graph stores’,
Symmetry, Vol. 11, No. 7, Article number 926.

Galicia, J., Mesmoudi, A., Bellatreche, L. and Ordonez, C. (2019)
‘Reverse partitioning for SPARQL queries: principles and
performance analysis’, Proceedings of the International
Conference on Database and Expert Systems
Applications Springer, Cham, pp.174–183.

Guo, Y., Pan, Z. and Heflin, J. (2005) ‘LUBM: a benchmark for
OWL knowledge base systems’, Journal of Web Semantics,
Vol. 3, Nos. 2/3, pp.158–182.

Gurajada, S., Seufert, S., Miliaraki, I. and Theobald, M.
(2014) ‘TriAD: a distributed shared-nothing RDF engine based
on asynchronous message passing’, Proceedings of the ACM
SIGMOD International Conference on Management of Data,
pp.289–300.

Huang, J., Abadi, D.J. and Ren, K. (2011) ‘Scalable SPARQL
querying of large RDF graphs’, Proceedings of the VLDB
Endowment, Vol. 4, No. 11, pp.1123–1134.

Kalogeros, E., Gergatsoulis, M. and Damigos, M. (2020)
‘Document-based RDF storage method for parallel evaluation
of basic graph pattern queries’, International Journal of
Metadata, Semantics and Ontologies, Vol. 14, No. 1, pp.63–80.

Karypis, G. and Kumar, V. (1997) ‘A coarse-grain parallel
formulation of multilevel k-way graph-partitioning algorithm’,
Proceedings of the 8th SIAM Conference on Parallel
Processing for Scientific Computing, Philadelphia, USA.

Karypis, G. and Kumar, V. (1998a) Metis: A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices,
University of Minnesota, version 4.0, University of Minnesota,
Department of Computer Science/Army HPC Research Center,
Minneapolis.

 Pre-processing of RDF data for METIS partitioning 171

Karypis, G. and Kumar, V. (1998b) ‘Multilevel algorithms for
multi-constraint graph partitioning’, Proceedings of the
ACM/IEEE Conference on Supercomputing.

Kernighan, B.W. and Lin, S. (1970) ‘An efficient heuristic
procedure for partitioning graphs’, The Bell System Technical
Journal, Vol. 49, No. 2, pp.291–307.

Lee, K. and Liu, L. (2013) ‘Scaling queries over big RDF graphs
with semantic hash partitioning’, Proceedings of the VLDB
Endowment, Vol. 14, No. 6, pp.1894–1905.

Lee, K. and Liu, L. (2013), ‘Efficient data partitioning
model for heterogeneous graphs in the cloud’, Proceedings
of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
pp.1–12.

Lee, K., Liu, L., Tang, Y., Zhang, Q. and Zhou, Y. (2013)
‘Efficient and customizable data partitioning framework for
distributed big RDF data processing in the
cloud’, Proceedings of the IEEE Sixth International
Conference on Cloud Computing, pp.327–334.

Moreira, J., Neto, E.C. and Barbosa, L. (2021) ‘Analysis of
structured data on Wikipedia’, International Journal of
Metadata, Semantics and Ontologies, Vol. 15, No. 1,
pp.71–86.

Priyadarshi, A. and Kochut, K.J. (2022) ‘PartKG2Vec: embedding
of partitioned knowledge graphs’, Proceedings of the
International Conference on Knowledge Science, Engineering
and Management, Springer, Cham, pp.359–370.

Ragab, M., Awaysheh, F.M. and Tommasini, R. (2021)
‘Bench-ranking: a first step towards prescriptive performance
analyses for big data frameworks’, Proceedings of the
IEEE International Conference on Big Data (Big Data),
IEEE Computer Society, Los Alamitos, CA, USA,
pp.241–251.

Rakhmawati, N.A., Karnstedt, M., Hausenblas, M. and Decker, S.
(2014) ‘On metrics for measuring fragmentation of federation
over SPARQL endpoints’, Proceedings of the 10th International
Conference on Web Information Systems and Technologies
WEBIST, pp.119–126.

Ramesh, S., Baranawal, A. and Simmhan, Y. (2021) ‘Granite: a
distributed engine for scalable path queries over temporal
property graphs’, Journal of Parallel and Distributed Computing
(JPDC), Vol. 151, pp.94–111.

Simperl, E., Sarasua, C., Ungrangsi, R. and Bürger, T. (2011)
‘Ontology metadata for ontology reuse’, International Journal of
Metadata, Semantics and Ontologies, Vol. 1, Nos. 1/1,
pp.11–111.

Slavov, V., Rao, P., Barenkala, D. and Paturi, S. (2012) ‘Towards
RDF query processing on the intel SCC’, Proceedings of the 6th
Many-core Applications Research Community (MARC)
Symposium, pp.7–12.

Soma, R. and Prasanna, V.K (2008) A Data Partitioning Approach for
Parallelizing Rule Based Inferencing for Materialized Owl
Knowledge Bases, Technical Report, University of Southern
California.

W3C (2014a) RDF 1.1 concepts and abstract syntax. Available online
at: https://www.w3.org/TR/rdf11-concepts/

W3C (2014b) RDF Schema 1.1. Available online at:
http://www.w3.org/TR/rdf-schema/

Wang, R. and Chiu, K. (2012) ‘A graph partitioning approach to
distributed RDF stores’, Proceedings of the IEEE 10th
International Symposium on Parallel and Distributed Processing
with Applications ISPA, pp.411–418.

Zhang, X., Chen, L., Tong, Y. and Wang, M. (2013) ‘EAGRE:
towards scalable I/O efficient SPARQL query evaluation on the
cloud’, Proceedings of the IEEE 29th International Conference
on Data Engineering ICDE, pp.565–576.

