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Abstract: Facial attribute manipulation gained a lot of attention when deep
learning algorithms made amazing achievements during the last few years.
Facial attribute manipulation is the process of combining or removing desired
facial characteristics for a given image. Recently, generative adversarial
networks (GANs) and encoder-decoder architecture have been used to tackle
this problem, with promising results. We present a comprehensive overview
of deep facial attribute analysis from the perspectives of manipulation using
exemplars in this study. The model construction approaches, datasets, and
performance evaluation measures that are frequently utilised are discussed.
Following this, a review of various homogeneous and heterogeneous
exemplar-based facial attribute manipulation algorithms is presented in
detail. Furthermore, several other facial attribute-related issues and related
applications in the real world, are also discussed. Lastly, we go over some of
the issues that can arise as well as some interesting future research directions.
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1 Introduction

One of the most powerful descriptors for personality attribution is facial features.
Computer vision researchers have focused on extracting and exploiting attributes in face
recognition. Facial attribute modification aims to change one or more features of a
given face image, to generate a fresh face with attributes that we want, and retaining
other information like the subject’s hair color, gender, etc. The challenge in facial
attribute modification is precisely modifying a given image from a source to a target
attribute domain while preserving attribute-independent information. Strict geometric
constraints and facial attribute correlations must be followed when creating a facial
image which is difficult to accomplish. Face attribute editing becomes complicated
as a result of these factors. Previous research has concentrated on developing an
encoder-decoder architecture for retrieving input image representation and rebuilding
it using target attribute vectors as guidance. Generative adversarial networks (GANs)
(Goodfellow et al., 2014; Mirza and Osindero, 2014; Chen et al., 2016) and variational
autoencoders (VAEs) (Kingma and Welling, 2013; Huang et al., 2018a, 2018b) serve as
the backbones for the construction of facial attribute manipulation approaches based on
generative models. Figure 1 illustrates some examples of facial attribute modifications.
Facial attribute modification can be categorised as model-based which constructs a
model without any conditional inputs, and during training learn a set of parameters
that solely relate to one attribute extra condition-based methods considers reference
images as input conditions that alter multiple attributes instantaneously. On the other
hand, extra conditional reference examples exchange specified attributes with the source
image during image translation. As a result, attribute transfer using reference images
can reveal more detailed characteristics about the source image and provide accurate
attribute-modified images (Zhou et al., 2017a; Xiao et al., 2018; Ma et al., 2018). This
approach has sparked the interest of many current researchers. Because the generated
images include greater facial information and are more lifelike. Figure 2 shows the
classification hierarchy of facial attribute manipulation.

In the literature, there have been many facial attribute manipulation methods used
in generating faces with required attributes and retaining the other attribute-independent
details. Recently many works have provided promising results for facial attribute
transfer. It is observed that model-based methods cannot change multiple attributes in a
single training process which led to higher computation time. To overcome this issue,
vector-based methods were developed where multiple attributes could be changed at the
same time but the main drawback was that they cannot promise that the other details
that are not related to the modified qualities will stay the same. Now, face attribute
manipulation using the exemplar method has become a research trend as they have the
capability of manipulating multiple attributes simultaneously and also preserving the
irrelevant attributes.
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Figure 1 Examples of facial attribute modifications, (a) removing glasses (b) adding bangs
(c) removing smile (see online version for colours)

(a) (b) (c)

Source: Xiao et al. (2018)

Figure 2 Classification hierarchy of facial attribute manipulation (see online version
for colours)

Facial attribute manipulation can be between either homogeneous or heterogeneous
images. Homogeneous images are those in which facial attributes are manipulated
between two realistic images and heterogeneous images are those in which facial
attribute manipulation happens between realistic and portrait images or sketch images.
The latter is one of the latest and most challenging. In this paper, we will be discussing
the various face attribute manipulation methods in detail which helps in opening the
minds of the researchers to explore this domain.

This paper discusses the various face attribute manipulation methods developed
using deep learning which helps in analysing their strength and weakness. Details of
different datasets and metrics used for evaluation are presented in Section 2. Section 3
explains the different approaches used in facial attribute manipulation and Section 4
depicts the possible challenges and opportunities that might arise in performing facial
attribute manipulation. Finally, the conclusion is provided in Section 5.
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2 Model construction, datasets and metrics

2.1 Model construction

2.1.1 Variational autoencoder

A VAE is an architecture that combines an encoder and a decoder and is trained to
reduce the reconstruction error between encoded-decoded data and the original data.
However, we modify the encoding-decoding procedure somewhat to incorporate some
regularisation of the latent space: instead of encoding an input as a single point, we
encode it as a distribution throughout the latent space. The input is represented as a
latent space distribution. From that distribution, a point from the latent space is sampled.
The reconstruction error can be calculated after the sampled point has been decoded
as specified in equation (1). Finally, the network propagates the reconstruction error
backward. A ‘reconstruction term’ is part of the loss function that is minimised when
training a VAE. The Kulback-Leibler (KL) divergence between the returned distribution
and a typical Gaussian is the regularisation term. The generator samples the variables x
parameterised by θ with given latent variables z (p0(x|z)).

LV AE = EZ qϕ(z|x) log pθ(x|z)−DKL(q0(z|x) ∥ p(z)) (1)

2.1.2 Generative adversarial network

GANs are generative models that are trained to generate the input distribution as
accurately as possible. Instead of predicting a label’s given features, GAN’s ultimate
goal is to predict features given a label. A GAN consists of a generator, G that
generates new data points from some random uniform distribution z obeying a prior
noise distribution z∼p(z). The goal is to produce a similar type of fake results from
inputs, while Discriminator, D identifies the fake data produced by G from the real data.
The generator seeks to persuade the discriminator that the input given by G is genuine.
Then G learns to produce a similar type of training data input similar to min-max game
(Goodfellow et al., 2014).

min
G

max
D

LGAN = Ex∼pdata(x) log(D(x)) + Ez∼pz(x) log(1−D(G(z))) (2)

2.2 Datasets

This section discusses some of the publicly available datasets for facial attribute
modification, as indicated in Table 1. Based on the annotations, the datasets may be
divided into four categories: multiple attributes, identity, age, and pose and expression.
Table 2 lists the various facial features of the face that are examined for manipulation
by various datasets.
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Table 1 Different datasets available for facial attribute modification

Sl. no. Category Dataset Year Available
annotations

#
samples

#
identities

1 Multiple
attribute

FaceTracer (Kumar et al.,
2008)

2008 Facial attribute,
Expression

15,000 15,000

2 PubFig (Kumar et al.,
2009)

2009 NA 58,797 200

3 YouTube Faces (Wolf
et al., 2011)

2011 Identity, pose,
expression,
illumination

3,245 1,595

4 CelebA (Liu et al., 2015) 2015 40 facial attributes+
5 landmarks

202,599 10,177

5 CelebA-HQ (Karras et al.,
2017)

2017 40 facial attributes+
5 landmarks

30,000 30,000

6 UMA-AED (Ranjan et al.,
2017)

2018 40 facial attributes,
illumination, pose,
age, skin color

2,800 NA

7 FFHQ (Karras et al.,
2019)

2019 Ethnicity,
background, age

52,000 NA

8 CelebAMask-HQ (Lee
et al., 2020)

2020 19 facial component
masks

30,000 30,000

9 Identity LFW/LFWA (Huang
et al., 2007)

2007 Identity, 40 facial
attributes

13,233 5,749

10 IJB-A (Klare et al., 2015) 2015 Identity 5,712 500
11 CFP (Sengupta et al.,

2016)
2016 Identity, Landmarks 7,000 500

12 IMDb-Face (Wang et al.,
2018a)

2018 Identity 1,700,000 59,000

13 Age FGNET (Fu et al., 2014) 2014 Age 1,002 82
14 CACD (Chen et al., 2014) 2014 Age 163,446 2,000
15 IMDB-WIKI (Rothe et al.,

2018)
2015 Age, gender, identity 523,051 20,284

16 Face Aging (Liu et al.,
2017)

2017 Age 15,030 15,030

17 AgeDB (Moschoglou
et al., 2017)

2017 Age 16,488 568

18 PPB (Buolamwini and
Gebru, 2018)

2017 Gender, age 1,270 1,270

19 UTKFace 2017 Age, gender, 68
landmarks

20,000 20,000

20 CLF (Deb et al., 2018) 2018 Age 3,682 919
21 FairFace (Kärkkäinen and

Joo, 2019)
2019 Race, gender, age 108,501 108,501

22 Pose and MVF-HQ (Fu et al., 2014) 2009 Pose, expression 120,283 479
23 expression MultiPIE (Gross et al.,

2010)
2010 Pose, expression 750,000 337

24 RaFD (Langner et al.,
2010)

2010 Expression, pose,
gaze direction

8,040 67

25 FaceWarehouse (Cao
et al., 2013)

2013 3D expression 3,000 150

2.2.1 Multiple attribute

This collection of datasets contains several attributes that have been labelled for
the manipulation of the facial attribute. Celeb-Faces Attributes (CelebA) Dataset is
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constructed from images selected from Celeb-Faces (Liu et al., 2015). It consists of
10,177 people with 202,599 face images along with 5 landmark locations. Each image
has been annotated with 40 attributes. The images in the dataset cover large variations
in poses and backgrounds. CelebA-HQ (Karras et al., 2017) consists of 30,000 images
of high resolutions which are selected from the CelebA Dataset based on CelebA-HQ.
Segmentation masks of 19 facial attributes exist for each image of the CelebA dataset
which was annotated manually with the size of 512 × 512. To name a few the facial
attributes and accessories considered during segmentation are skin, ears, lips, nose,
eyes, hair, eyebrows, mouth, necklace, eyeglasses, earrings, and others. University of
Maryland Attribute Evaluation Dataset (UMA-AED) (Hand et al., 2018a) has been
created by considering 40 attributes and HyperFace as face detector (Ranjan et al.,
2017). The UMD-AED dataset is utilised as an assessment dataset and contributes to
class-imbalance learning for deep face attribute estimation. It’s made up of 2800 pictures
of people’s faces that have been annotated with a subset of 40 CelebA and LFWA
traits. Because each attribute has 50 positive and negative samples, not every attribute
is labelled in every image. UMD-AED includes a lot of variations, such as various
image quality, distinct illuminations and postures, diverse age ranges, and different skin
colors. YouTube Faces Dataset (with attribute labels). The original YouTube dataset
is a database of face videos created to research the topic of unrestricted video face
recognition. There are 3,425 recordings in the data collection, with 1,595 different
individuals in them. There are approximately 2.15 videos accessible for each subject.
The smallest video clip is 48 frames long, while the largest is 6,070 frames long, with
an average of 181.3 frames. A total of 620,000 frame images (Wolf et al., 2011) are
used for performing face verification. For the problem of video-based face attribute
prediction, (Hand et al., 2018b) expanded it further. Flickr-Faces-HQ Dataset (FFHQ)
(Karras et al., 2019) which is a face database consisting of high-quality images was
considered a benchmark for GANs. The image was in PNG format and the resolution
of the images was 1,024 × 1,024. The images considered were of varying ethnicity,
background, and age along with different accessories such as hats, eyeglasses, etc. and
also the face images were aligned. CelebAMask-HQ (Lee et al., 2020) is a variant of
CelebA-HQ that includes a mask photo for each image in CelebA-HQ. The mask image
identifies 19 face components, including the ears, earrings, eyeglasses, eyes, brows,
cloth, hair, hat, lip, mouth, nose, neck, necklace, and skin. Similar to these we have
FaceTracer (Kumar et al., 2008), and PubFig (Kumar et al., 2009) datasets which contain
details of various facial attributes.

2.2.2 Identity

The identity datasets are appropriate for face recognition and identity verification
applications since each identity is represented by several distinct face photos. The
Labeled Faces in the Wild (LFW) database (Huang et al., 2007) consists of 13,233
cropped frontal face images. A total of 5,749 single images of people and 1,680
multiple images of people are collected from online sources. 40 attributes were extracted
automatically by (Liu et al., 2015) and five facial landmarks were annotated which
leaded to LFWA dataset (Wolf et al., 2010). The IARPA Janus Benchmark A (IJB-A)
(Klare et al., 2015) database was created to add more obstacles to the face recognition
job by gathering facial photos with a wide range of position, illumination, expression,
resolution, and occlusion changes. IJB-A is created by gathering an average of 11.4
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images and 4.2 videos from 500 Identities, totaling 5,712 images and 2,085 movies.
Celebrities in frontal-profile (CFP) (Sengupta et al., 2016), is another face dataset that
contains 7,000 face pictures from 500 individuals. The IMDb-Face (Wang et al., 2018a)
dataset is a large-scale, noise-controlled dataset used for face recognition research. The
dataset includes around 1.7 million faces and 59 k identities that were painstakingly
cleaned from a total of 2.0 million raw photos. The IMDb website served as the source
for all photographs.

2.2.3 Age

To create age-invariant face recognition and verification systems, datasets, in this case,
have been labelled with the ages of the people. FGNet (Fu et al., 2014) is a dataset
for estimating age and recognising faces across ages which is made up of 1,002 photos
of 82 persons ranging in age from 0 to 69, with a 45-year age gap. The Cross-Age
Celebrity (CACD) (Chen et al., 2014) Dataset is a collection of 163,446 photos from
2,000 celebrities gathered from the internet. The names of celebrities and the years
(2004–2013) are used as keywords to gather the photographs from search engines.
AgeDB (Moschoglou et al., 2017) has photos of 16,488 renowned people, including
actors/actresses, writers, scientists, politicians, and others. Regarding the identification,
age, and gender attributes, each photograph is tagged. With an average of 29 photos
per subject, there are 568 different distinct subjects in total. IMDB-WIKI (Rothe et al.,
2018) is the largest freely available training dataset of face photos labelled with gender
and age. The dataset contains a total of 523,051 face photos, including 460,723 from
Wikipedia and 20,284 from IMDb’s celebrity database. Face Aging (Liu et al., 2017),
PPB (Buolamwini and Gebru, 2018), UTKFaces (Zhang et al., 2017), CLF (Deb et al.,
2018), and FairFaces (Kärkkäinen and Joo, 2019) are among the other age datasets.

2.2.4 Pose and expression

The Multi-View Face (MVF-HQ) (Fu et al., 2014) database contains 120,283 photos
with a resolution of 6,000 × 4,000 from 479 different identities with various positions,
expressions, and illuminations. MVF-HQ has a substantially larger scale and resolution
than publicly accessible high-resolution face manipulation databases. More than 750,000
photos of 337 people are included in the CMU Multi-PIE (Gross et al., 2010) face
database. Subjects were scanned using 15 view angles and 19 different lighting situations
while presenting a variety of facial expressions and high-quality frontal photos. The
Radboud Faces Database (RaFD) (Langner et al., 2010) is a collection of images of 67
models, comprising Caucasian men and women, Caucasian children, both boys and girls,
and Moroccan Dutch men, who are shown with eight different emotional expressions,
including anger, disgust, fear, happiness, sadness, surprise, contempt, and neutral. Each
emotion was depicted with three different gaze directions, and all photographs were
captured from five different camera positions at the same time. FaceWarehouse (Cao
et al., 2013) is a 3D facial expression database that contains the facial geometry of 150
people of various ages and cultural backgrounds.
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Table 2 Facial features of the face that are examined for manipulation by various datasets

Various facial features that are examined for manipulation

5 o’clock shadow Colour photo Middle aged Senior
Arched eyebrows Curly hair Mouth closed Shiny skin
Asian Double chin Mouth slightly open Sideburns
Attractive Environment Mouth wide open Smiling
Baby Eyeglasses Moustache Soft lighting
Bags under eyes Face black Narrow eyes Straight hair
Bald Flash No beard Strong nose mouth lines
Bangs Flushed face No eyewear Sunglasses
Big lips Forehead square Obstructed Teeth not visible
Big nose Frowning Oval face Teeth visible
Black hair Fully visible forehead Pale skin Wavy hair
Blond hair Goatee Pointy nose Wearing earrings
Blurry Gray hair Posed photo Wearing hat
Brown eyes Harsh lightening Receding hairline Wearing lipstick
Brown hair Heavy makeup Rosy cheeks Wearing necklace
Bushy eyebrows High cheekbones Round face Wearing necktie
Child Indian Round jaw White eyes open
Chubby Male Semi obscured forehead Young

2.3 Metrics

Facial attribute manipulation metrics can be of two types, qualitative where evaluations
are performed based on statistical surveys and quantitative refers to how well the
facial details and related information are preserved after attribute manipulation. More
information on these two metrics is explained below.

2.3.1 Qualitative metrics

In most generative tasks, the most natural way to qualitatively evaluate the quality of
generated images is to conduct a statistical survey. Subjects vote on created images with
attractive visual quality based on predetermined guidelines, and researchers make results
based on the statistics of votes.

For example, (Choi et al., 2018) quantitatively evaluate the performance of generated
images in a survey format using ‘Amazon Mechanical Turk (AMT)’. Workers are
given an input image and told to pick the best-generated images based on subjective
reality, attribute transformation quality, and original identity retention. To verify human
effort, each individual is presented with a certain series of questions. Zhang et al.
(2017) conducted a statistical survey in which volunteers were asked to determine
which of their suggested conditional adversarial autoencoder (CAAE) or current works
produced the better effect. Sun et al. (2021) ask participants to rate a variety of
deep FAM techniques based on subjective reality, quality of transmitted features, and
individual trait retention. The average rank (between 1 and 7) of each strategy is then
calculated. Lample et al. (2017) evaluate two factors quantitatively: naturalness, which
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reflects the quality of generated images, and precision, which measures the degree of
attribute flipping mirrored in the generation. Wei et al. (2020) evaluated the results by
conducting a survey using Amazon Turk. They compared the quality of the images
generated using STGAN (Liu et al., 2019) and MagGAN (Wei et al., 2020). Three
volunteers were instructed to select the best image which highlights the changed attribute
without compromising the quality of the image and also preserving the identity. Chu
et al. (2020), Zhang et al. (2020) and Kwak et al. (2020) also performed qualitative
analysis by comparing the generated images from the respective models with other
state-of-the-art techniques.

2.3.2 Quantitative metrics

Some of the commonly used metrics for comparing the original images and generated
images based on distribution difference measures are ‘Fréchet inception distance (FID)’
(Heusel et al., 2017), ‘peak signal to noise ratio (PSNR)’ (Wang et al., 2018b), and
‘structure similarity index (SSIM)’ (Wang et al., 2004). Multi-class classification is
performed on the generated images to measure the attribute manipulation accuracy
rate (He et al., 2019) using ResNet variants. FID returns the distance between the
distributions of original and generated images, PSNR quantifies the quality of the
generated images by evaluating the difference between the pixels, and SSIM assesses
the structure falsification and the uniqueness distance.

2.3.2.1 Fréchet inception distance

As real-world sample statistics are not taken into account when comparing them to
sample statistics from synthetic ones in inception score’s (IS) (Salimans et al., 2016),
FID (Heusel et al., 2017) was created. For assessing the effectiveness of GANs, FID is
used to measure the quality of generated images which is also known as Wasserstein-2
distance. Using the Inception V3 model, features are extracted from the last pooling
layer just before the classification layer. Multivariate Gaussian is obtained by evaluating
the mean and covariance of these activations. The Fréchet distance is then used to
calculate the distance between these two distributions. It gets its name from the fact
that it employs activation’s from the Inception V3 model to summarise each image.
Better-quality photos are indicated by lower FIDs; conversely, lower-quality images
are indicated by higher scores, and the connection between the two may be linear.
Let mr, mg, Cr, and Cg represent the feature-wise mean and covariance of the real
and generated feature vectors and Tr represents the trace linear algebraic operation.
∥mr −mg∥2 represents the sum squared mean difference between the two mean vectors.
Then the score d2 is evaluated as given in equation (3). FID has been used as the
evaluation metric in Zhu et al. (2019a), Zhang et al. (2019), Ying et al. (2019),
Viazovetskyi et al. (2020), Tan et al. (2020), Li et al. (2021), Kowalski et al. (2020),
Guo et al. (2019), Esser et al. (2020), Chu et al. (2020), Collins et al. (2020), Abdal et al.
(2021), Xiao et al. (2018), Yin et al. (2019), Guo et al. (2019), Lee et al. (2020), Guo
et al. (2021), Romero et al. (2021), Dalva et al. (2022), Sun et al. (2022), Phusomsai
and Limpiyakorn (2020), Yang et al. (2020b), Deng et al. (2020), Luo et al. (2022), Shi
et al. (2022) and Parihar et al. (2022).

d2((mr, Cr), (mg, Cg)) = ∥mr −mg∥2 + Tr(Cr + Cg +−2(CrCg)
1/2) (3)
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2.3.2.2 Peak signal to noise ratio

The mean squared error (MSE) is the most straightforward way to define PSNR (Wang
et al., 2018b). MSE is defined as the difference between a noise-free monochromatic
image x and its noisy approximation y of size m× n and given by equation (4). The
lower the value of MSE, the lower the error.

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[X(i, j)− Y (i, j)]
2 (4)

PSNR is defined in equation (5). As a result, while the PSNR is high, the generated
images are of high quality, and when the PSNR is low, the two images are clearly
distinguished from one another. Some of the papers which have used this metric are
Chen et al. (2020), Guan et al. (2020), Li et al. (2021), Liu et al. (2019), Ning et al.
(2021, 2020), Song et al. (2020), Tewari et al. (2020), Wei et al. (2020), Zhang et al.
(2020) and Shiri et al. (2019)

PSNR = 10 log10
(
MAX2

X

MSE

)
(5)

2.3.2.3 Structural similarity index

An image quality metric that evaluates the visual impact of three image characteristics:
luminance (l), contrast (c), and structure (s) (Wang et al., 2004). It is one of the most
widely used metrics in many studies. Let x and y be the two images being compared
and µx, µy , σx, σy , and σxy are the means, standard deviations, and cross-covariance
for images x and y. The mathematical evaluation of luminance, contrast, and structure
are defined in equations (6), (7) and (8) respectively. Numerous studies, including Chen
et al. (2020), Guan et al. (2020), Li et al. (2021), Liu et al. (2019), Ning et al. (2021,
2020), Song et al. (2020), Tewari et al. (2020), Wang et al. (2021), Shiri et al. (2019)
and Deng et al. (2020), use this metric.

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(6)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(7)

s(x, y) =
σxy + C3

σxσy + C3
(8)

Cis and Kis are small constants which is defined as Ci = (KiL
2) where L is the

dynamic range of pixels and Ki << 1(1 ≤ i ≤ 3).
Equation (9) gives the multiplicative combination of the three terms resulting in the

overall index SSIM. To simplify the expression, if we assume, α = β = γ = 1 and
C3 = C2/2, we can get, equation (10).

SSIM(x, y) = [l(x, y)]
α · [c(x, y)]β · [s(x, y)]γ (9)
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SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(10)

The other variations of the structural similarity index are mean-SSIM (MSSIM) and
multi-scale-SSIM (MS-SSIM). As the name suggests, MSSIM applies the metric
regionally using the circular-symmetric Gaussian Weighing function and then takes
the mean overall which is defined in the equation (11). A low-pass filter is used
in MS-SSIM to downscale the input images by a factor of 2 after they have been
filtered. The original images are indexed as scale 1, and the maximum scale is indexed
as scale M , reached after M − 1 iterations. Each scale’s (j) contrast and structural
components are determined as cj(x, y) and sj(x, y), respectively. Only for the scale M ,
the luminance component is evaluated as lM (x, y). Finally, the MS-SSIM is evaluated
as defined in equation (12) where αM , βj and γj adjusts the relative importance of the
various components.

MSSIM(x, y) =
1

M

M∑
j=1

SSIM(xj , yj) (11)

MS − SSIM(x, y) = [lM (x, y)]
αM ·

M∏
j=1

[cj(x, y)]
βj [sj(x, y)]

αj (12)

3 Facial attribute manipulation approaches

Facial attribute manipulation is a process of manipulating the attributes of the source
image with the target image which is also called image-to-image transformation. During
the transformation, only the facial attributes are taken into consideration rather than
identifying photo-realistic images. During the transformation, either a single attribute
or multiple attributes can be modified. This section discusses various deep-learning
facial attribute manipulation approaches on homogeneous and heterogeneous images.
Homogeneous images are those where the source and the target images belong to
the same category, i.e., both images are considered to be realistic images. Whereas
heterogeneous images are those where the source and target images belong to different
categories. For example, the source image can be either a sketch or a portrait image,
and the target image would be a realistic image. Tables 3 and 4 provides a summary of
the various homogeneous and heterogeneous facial attribute manipulation approaches,
advantages, disadvantages, and different datasets used for evaluating their performance
of them have been discussed.

3.1 Facial attribute manipulation approaches using homogeneous images

The first example (exemplar)-based facial attribute manipulation method GENEGAN
was proposed by Zhou et al. (2017a) as shown in Figure 3. During the manipulation
process, the attribute-appropriate information from the source image to the target
image is transferred and the attribute-inappropriate information is preserved. The main
drawback of this approach is that only one attribute can be altered by one manipulation
process.
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Table 3 Overview of homogeneous facial attribute manipulation approaches

Methods Description Datasets
Gene-GAN (Zhou
et al., 2017a)

Recombing the latent representation information
of two paired attribute images for swapping
specific attributes.

CelebA (Liu et al.,
2015)

ELEGANT (Xiao
et al., 2018)

Exchanging latent encoding with GAN for
transferring multiple face attributes
(ELEGANT) and doing image generation by
exemplars as well as producing high-quality
generated images.

CelebA (Liu et al.,
2015)

Instance-level
facial attributes
transfer with
geometry-aware
flow (Yin et al.,
2019)

Automatically learns an attribute transfer
module and an attribute removal module and
jointly operates in a cycle-consistency manner
to learn from abundant unpaired data.

CelebA (Liu et al.,
2015) and

CelebA-HQ (Karras
et al., 2017)

MulGAN (Guo
et al., 2019)

Attribute labels constraint are applied to the
predefined region of the latent feature space
and an attribute classification loss is employed.

CelebA (Liu et al.,
2015)

FaceShifter (Li
et al., 2019)

Attribute labels constraint is applied to the
predefined region of the latent feature space
and an attribute classification loss is employed.

CelebA-HQ (Karras
et al., 2017), FFHQ

(Karras et al.,
2019) and

VGGFace (Parkhi
et al., 2015)

MaskGAN (Lee
et al., 2020)

Dense mapping network (DMN) learns style
mapping between a free-form user-modified
mask and a target image, enabling diverse
generation results. Editing behaviour simulated
training (EBST) models the user editing
behaviour on the source mask.

AffectNet
(Mollahosseini
et al., 2017)

Facial expression
manipulation
(Wang et al.,
2021)

U-Net-based generator with multi-attention gate
for facial expression manipulation.

AffectNet
(Mollahosseini
et al., 2017)

STD-GAN (Guo
et al., 2021)

Instance-level facial attribute transfer with style
extracting. Weakly supervised attribute style
learning with only binary annotations.

CelebA (Liu et al.,
2015)

Facial expression
manipulation
(Ling et al., 2020)

Conditional GAN model employed a multi-level
attention mechanism that helped in expression
manipulation and identity preservation.

CelebA-HQ (Karras
et al., 2017) and
CelebAMask-HQ

Mask-adversarial
autoencoder (Sun
et al., 2021)

VAE-GAN framework modifies a minimum
number of pixels in the feature maps of an
encoder and allows changing the attribute
strength continuously without hindering global
information.

CelebA (Liu et al.,
2015)

SMILE (Romero
et al., 2021)

A multi-attribute image-to-image transformation
method for both fine-grained and more global
attributes in the semantic space for both
random and exemplar-guided synthesis.

CelebA-HQ (Karras
et al., 2017) and
CelebA-Mask
FFHQ (Karras
et al., 2019)
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Table 3 Overview of homogeneous facial attribute manipulation approaches (continued)

Methods Description Datasets
VecGAN (Dalva
et al., 2022)

An image-to-image translation system for
modifying facial attributes by factoring latent
space.

CelebA-HQ (Karras
et al., 2017)

PattGAN (Sun
et al., 2022)

The disentangled representation of face
attributes from binary attribute labels utilises
the disentangled representation of attributes to
assist facial attribute editing.

CelebA (Liu et al.,
2015)

Large-pose facial
makeup (Li and
Tu, 2023)

Makeup transfer approach based on generative
adversarial networks (GAN) by adopting
CycleGAN.

Makeup transfer (Li
et al., 2018)

3D GAN
inversion with
pose optimisation
(Ko et al., 2023)

A 3D-GAN inversion technique that
incrementally improves an image’s latent code
and 3D camera posture.

CelebA-HQ (Karras
et al., 2017) and
FFHQ (Karras
et al., 2019)

FastSwap (Yoo
et al., 2023)

A simple one-stage system using a triple
adaptive normalisation (TAN) block to maintain
the identity, pose, and attributes of the inputs.

VoxCeleb2 (Chung
et al., 2018)

IA-FaceS (Huang
et al., 2023)

A bidirectional approach for disentangled face
attribute modification in addition to flexible,
controllable component editing.

CelebA-HQ (Karras
et al., 2017) and
FFHQ (Karras
et al., 2019)

SC-GAN (Li
et al., 2023b)

A generative adversarial network based on
subspace clustering.

CelebA (Liu et al.,
2015)

DyStyle (Li et al.,
2023a)

An approach to execute nonlinear and adaptive
manipulation of latent codes for flexible and
precise attribute control.

FFHQ (Karras
et al., 2019) and
MetFace (Karras
et al., 2020)

The ELEGANT model was suggested by Xiao et al. (2018) where multiple facial
attributes could be modified in one manipulation process as the encodings of various
attributes are available in latent space. Residual learning (He et al., 2016) was
incorporated for training the images and multi-scale discriminators (Shen and Liu, 2017)
were used for improving the quality of the images. The architecture of the proposed
model has been depicted in Figure 4.

Yin et al. (2019) presented an instance-level facial attribute transfer using
geometry-aware flow as shown in Figure 5. Facial landmarks are considered geometric
guidance for learning the flows automatically. The main advantage of this method is
that even though there are huge translation gaps between the poses of the source and
target images, the flow can manage strongly. Also, these flows can be applied directly
to high-resolution images as they are invariant to scale. Additionally to this, to resolve
the appearance gaps, and enhance the quality of the attribute-manipulated image, a
refinement sub-network is designed. Finally, attribute transfer and removal modules are
designed such that features are learned on ample unpaired facial images.

For transferring multiple facial attributes simultaneously, Guo et al. (2019)
developed a novel deep learning method using an encoder-decoder generative network
as depicted in Figure 6. The main three components of this model are the generator
which is responsible for editing the facial attributes, the attribute classifier is responsible
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for extracting the attribute-related details from the images and the discriminator is
responsible for the generation of photo-realistic images. The network partitions the
latent encodings into attribute-relevant and irrelevant along channel dimensions. The
attribute-relevant encodings are again partitioned to different attributes where each
partition information maps to individual attributes. The attribute labels constraint is
then applied directly to the predefined attribute-related blocks in the latent feature
space. Before being transmitted to the decoder, binary attribute labels are used to filter
predefined attribute-related blocks which own the original attribute label information.
Then the classifier makes the model learn the attribute information from the images
which helps in the generation of images. Finally, downsampling is applied to reduce the
loss and improve the quality of the images generated.

Figure 3 Architecture of GENEGAN (see online version for colours)

Source: Zhou et al. (2017a)

For extracting multi-level target face attributes, Li et al. (2019) propose an attributes
encoder and a generator model using adaptive attentional denormalisation (AAD) layers
to for integrating the identity and the attributes. Also, heuristic error acknowledging
refinement of network (HEAR-Net), occlusion challenge has been taken care of by
recovering anomaly regions in a self-supervised way without any manual annotations.
The architecture of the proposed model has been depicted in Figure 7.

In most of the facial attribute manipulation methods, attribute manipulation could
be done only on a predefined set of attributes and there was no facility for interactive
attribute manipulation. One of the main findings proposed by Lee et al. (2020) is that
in MaskGAN semantic masks are a good intermediate representation for flexible face
alteration while maintaining integrity. It consists of two components, dense mapping
network (DMN) learns how to translate an unrestricted user-modified mask to a target
image, allowing for a wide range of generation results, and editing behaviour simulated
training (EBST) models user editing behaviour, making the whole architecture more
resistant to varied manipulated inputs. Attribute transfer and style copy are the main
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two aspects that have been evaluated and have shown better performance. The main
drawback was that during face attribute manipulation texture related details could not
be controlled. The framework of the proposed model is shown in Figure 8.

Figure 4 Model of ELEGANT for multiple facial attribute manipulation (see online version
for colours)

Source: Xiao et al. (2018)

Figure 5 Architecture of instance-level attribute transfer for facial attribute manipulation
(see online version for colours)

Source: Yin et al. (2019)

Ling et al. (2020) demonstrated a U-Net-based architecture for facial expression editing
that employs a multi-scale fusion mechanism based on relative action units and primarily
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addresses facial muscle movements. The model was evaluated using both network-based
and human-based approaches. Human-based evaluation metrics included expression
fulfillment, relative realism, and identity-preserving ability, whereas network-based
evaluation metrics included IS, average content distance (ACD), and expression distance
(ED). The framework of the proposed model is shown in Figure 9.

Figure 6 MulGAN encoder-decoder generative network for facial attribute manipulation
(see online version for colours)

Source: Guo et al. (2019)

Figure 7 Faceshifter architecture (see online version for colours)

Source: Li et al. (2019)

Fidelity is been one of the limitations in the existing facial attribute manipulation
methods. To overcome this limitation (Guo et al., 2021) proposed an instance-level
facial attribute transfer that not only transfers facial attributes but also transfers style
attributes from the source image to the target image using binary attribute annotations.
The procedure for accomplishing instance-level face attribute transfer consists of two
steps: first, the original characteristics from the target image are removed, then the
style attributes taken from the source image are added. A module for untangling styles
information from the source image is designed which is given as input to the generator
for adding the style attributes in the generation of the new image. The advantage of this
approach is that both instance and semantic level attribute editing has been performed
thus obtaining promising results. Figure 10 shows the proposed framework.
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Figure 8 MaskGAN for facial attribute manipulation (see online version for colours)

Source: Lee et al. (2020)

Figure 9 Multi-scale fusion approach for facial attribute manipulation (see online version
for colours)

Source: Ling et al. (2020)
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Figure 10 STD-GAN framework for facial attribute manipulation (see online version
for colours)

Source: Guo et al. (2021)

Figure 11 Attention-based GAN for facial attribute manipulation (see online version
for colours)

Source: Wang et al. (2021)

For facial expression manipulation (Wang et al., 2021) developed a conditional GAN
model which employed a multi-level attention mechanism that helped in expression
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manipulation and identity preservation as shown in Figure 11. For generating images
with higher quality, feature-based loss and self-attention mechanisms have been used.

Figure 12 Mask adversarial autoencoder approach for facial attribute manipulation
(see online version for colours)

Source: Sun et al. (2021)

Figure 13 SMILE architecture for facial attribute manipulation (see online version for colours)

Source: Romero et al. (2021)

For editing facial attributes, Sun et al. (2021) presented a mask adversarial autoencoder
approach that extends the VAE-GAN framework where a few pixels in an encoder’s
feature maps were altered without affecting the overall information. The authors
introduced cycle consistency and facial recognition loss for preserving face details and
mask loss to maintain background consistency. Using this approach, they could generate
realistic images with varying attributes. The architecture of the proposed model is shown
in Figure 12.
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Figure 14 Architecture of VecGAN (see online version for colours)

Source: Dalva et al. (2022)

Figure 15 Pluralistic facial attribute editing (see online version for colours)

Source: Sun et al. (2022)

Using an image guiding reference approach, Romero et al. (2021) proposed a
multi-attribute image-to-image translation using semantic segmentation. Figure 13
depicts the framework of the proposed method, which is an extension of StyleGAN2
(Karras et al., 2019), which deals with semantic masks for performing exemplar-based
synthesis.

With interpretable latent directions, Dalva et al. (2022) provides VecGAN as shown
in Figure 14, an image-to-image translation system for modifying facial attributes. By
factoring latent space, we create the attribute editing and discover an orthogonal linear
direction for each attribute. The additional factor is the change’s scalar, modifiable
strength. The other component is the controlled strength of the change, which is a
scalar value that can be sampled or encoded from a reference image through projection.
VecGAN has been fully trained for image translation tasks and is capable of changing
one characteristic while retaining the others. As opposed to earlier works, it uses a single
deep encoder-decoder architecture to translate data instead of a separate style network.
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Figure 16 Architecture of large-pose facial makeup transfer based on GAN
(see online version for colours)

Source: Chang et al. (2018)

Figure 17 Architecture of 3D GAN inversion with pose optimisation (see online version
for colours)

Source: Ko et al. (2023)

The diversity of facial attribute editing is mostly ignored by present approaches, which
can only produce a single editing result via binary attribute labels and cannot disclose



Exemplar-based facial attribute manipulation 89

the diversity of attribute styles. Instead, they concentrate primarily on enhancing the
quality of facial attribute editing. To address this restriction, Sun et al. (2022) offers
PattGAN as depicted in Figure 15, a unique pluralistic facial attribute editing technique
(pluralistic attribute GAN). Rather than using binary attribute labels directly to guide
facial attribute editing, PattGAN first learns the disentangled representation of face
attributes from binary attribute labels and then utilises the disentangled representation of
attributes to assist facial attribute editing. To extract distributions of specific properties
from face photos, an independent encoder known as the ‘attribute encoder’ is introduced.
Additionally, by improving the model’s capacity to learn pluralistic attributes, a unique
swapping technique is created to help the attribute encoder in modelling the disentangled
representation of facial characteristics. The attribute encoder, when used with the
classification loss, can accurately separate attribute-related information from face photos.

Figure 18 Architecture of FastSwap (see online version for colours)

Source: Yoo et al. (2023)

Li and Tu (2023) presented a large-pose makeup transfer approach based on GANs by
adopting CycleGAN (Chang et al., 2018) as shown in Figure 16. To locate the crucial
areas, including the eyes, mouth, and skin, a face alignment module (FAM) is first
introduced. The raw image is then examined to extract the facial features using a face
parsing module (FPM) and face parsing losses. The makeup transfer is then finished
by fusing the face characteristics and makeup style codes that were derived from the
reference image. Cycle consistency loss, perceptual loss, adversarial loss, face parsing
loss, and makeup loss are the several loss functions evaluated for evaluation. Although
the effect of makeup transfer is improved by this method, it still has the drawback of
being unable to transfer the pattern portion of the face makeup.

Ko et al. (2023) provides a 3D-GAN inversion technique that incrementally
improves an image’s latent code and 3D camera posture as depicted in Figure 17.
We extend the recently described 2D GAN inversion approach, which first inverts the
provided image into a pivot code and then slightly tunes the generator based on the
fixed pivot code [i.e., pivotal tuning (Roich et al., 2022)], resulting in significant results
in both reconstruction and editability. Recognising the interdependency between the
latent code and camera parameter, we employ a hybrid learning and optimisation-based
technique by using an encoder to derive a preliminary approximation of the camera
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posture and latent code before further refining it to an ideal outcome. Also, the authors
use regularisation loss, which makes use of conventional depth-based image warping, to
further enforce the camera viewpoint’s proximity (Zhou et al., 2017b).

Figure 19 Architecture of IA-FaceS (see online version for colours)

Source: Huang et al. (2023)

Using a TAN block to maintain the identity, pose, and attributes of the inputs as shown
in Figure 18, Yoo et al. (2023) suggested a simple one-stage system called FastSwap.
The authors use adaptive normalising to tackle the low-fidelity issue that arises as a
result of network reduction. To extract the attributes from the target image, a unique data
augmentation and switch-test technique are proposed, allowing for controlled attribute
manipulation.

Huang et al. (2023) presented a bidirectional approach for disentangled face attribute
modification in addition to flexible, controllable component editing. As shown in
Figure 19, images are embedded onto two branches: one computes high-dimensional
component-invariant content embedding for capturing facial information, and the
other offers low-dimensional component-specific embeddings allowing component
manipulations. The two-branch technique allows for high-quality facial component-level
editing while maintaining faithful reconstruction of details. Additionally, the component
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adaptive modulation (CAM) module was developed that successfully separates highly
correlated face components by integrating component-specific guidance into the decoder.
Without using face masks or sketches, single-eye editing is created for the first time.

Figure 20 Architecture of SC-GAN (see online version for colours)

Source: Li et al. (2023b)

Figure 21 Architecture of DyStyle (see online version for colours)

Source: Li et al. (2023a)

Li et al. (2023b) create a GAN based on subspace clustering (SC-GAN) as shown
in Figure 20. Our SC-GAN can simultaneously divide various subspaces and generate
different samples, allowing the training of generative models to be more effectively
directed by facial attributes and their breakdown and modification in a realistic and
significant way. It makes use of the SIFT K-means cluster, which may divide the overall
semantic facial space into several subspaces without supervision and aid the new GAN
in producing more convincing results in particular subspaces.

To execute nonlinear and adaptive manipulation of latent codes for flexible and
precise attribute control, Li et al. (2023a) propose a dynamic style manipulation
network (DyStyle) whose structure and parameters alter depending on input samples
as shown in Figure 21. The authors suggest the dynamic multi-attribute contrastive
learning (DmaCL) approach, which simultaneously decouples several attributes from
the generative picture and latent space of the model. This approach will enable
efficient and stable optimisation of the DyStyle network. As a result, it displays
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fine-grained disentangled modifications across a variety of numeric and binary
properties. Comparisons with existing style modification approaches, both qualitative
and quantitative, demonstrate advantages in terms of multi-attribute control accuracy
and identity retention without sacrificing photorealism.

3.2 Facial attribute manipulation approaches using heterogeneous images

Kazemi et al. (2018) presented a conditional CycleGAN (cCycleGAN) as shown in
Figure 22 for facial attribute modification for face-sketch synthesis problem. The
training was performed using two datasets which included hand-drawn and synthetic
sketches in an unpaired manner. For every single sketch, the proposed method generated
multiple photos with different facial attributes. The main drawback of this approach was
that during the generation, additional structural modifications were observed in certain
areas.

Table 4 Overview of heterogeneous facial attribute manipulation approaches

Methods Description Datasets Limitations
Conditional
CycleGAN
(Kazemi et al.,
2018)

A novel framework for facial
attribute guided Sketch-Photo
synthesis by adding
conditions to the CycleGAN.

FERET (Phillips
et al., 2000) and
CelebA (Liu et al.,
2015)

During the
generation, additional
structural
modifications were
observed in certain
areas.

Attribute-guided
generative
discriminative
network (Shiri
et al., 2019)

Encodes stylised images with
facial attributes and then
recovers realistic faces from
encoded feature maps using
an autoencoder with residual
block-embedded
skip-connections to extract
residual feature maps.

CelebA (Liu et al.,
2015)

Pre-defined facial
attributes are
considered.

Encoder-decoder
architecture (Hu
and Guo, 2020)

A convolutional generative
network with encoder-decoder
architecture is proposed to
achieve the facial
attribute-controlled face
sketch to image translation.

CelebA (Liu et al.,
2015)

Pre-defined facial
attributes are
considered.

Joint sketch
attribute
learning
approach (Yang
et al., 2020a)

A novel approach that
synthesises photo-realistic
face images from sketches
and attributes using joint
sketch-attribute learning.

CelebA-HQ
(Karras et al.,
2017)

When huge
distortions in the
image exist,
generated images
were found to be of
low quality.

Sketch-to-image
(Phusomsai and
Limpiyakorn,
2020)

A face sketch to image
translation by manipulating a
single facial attribute, wavy
hair, straight hair, wearing
glasses.

CelebA (Liu et al.,
2015)

Pre-defined facial
attributes are
considered.



Exemplar-based facial attribute manipulation 93

Table 4 Overview of heterogeneous facial attribute manipulation approaches (continued)

Methods Description Datasets Limitations
S2FGAN (Yang
et al., 2020b)

For sketch-to-image
translation with the facility of
face reconstruction, attribute
editing, and interactive
manipulation of attribute
intensity and present a
semantic level perceptual loss
to increase the
sketch-to-image translation
quality.

CelebAMask-HQ
(Karras et al.,
2017)

Pre-defined semantic
masks are considered.

r-face (Deng
et al., 2020)

Reference guided face
component editing for diverse
and controllable face
component editing with
geometric changes using an
example-guided attention
module which breaks the
shape and intermediate
presentation.

CelebAMask-HQ
(Karras et al.,
2017)

Difficulty with
reference images with
considerable changes
in pose.

Controllable
sketch-to-image
(Yang et al.,
2021)

A style-based network
architecture for
sketch-to-image translation
which adapts edge-based
models to real-world
hand-drawn sketches using
the sketch refinement method.

CelebA-HQ
(Karras et al.,
2017) and CelebA
(Liu et al., 2015)

Synthesised images
can be generated by
repeated revision
until satisfied.

CMAFGAN
(Luo et al.,
2022)

Cross-modal attention
fusion-based generative
adversarial network for
attribute word-to-face
synthesis.

CelebA (Liu et al.,
2015) and LFW
(Huang et al.,
2007)

Some irregular and
fuzzy images exist in
synthesised images
which require more
improvement.

A bi-directional
facial attribute
transfer
framework (Shi
et al., 2022)

A bi-directional facial
attribute transfer framework
for transferring facial attribute
to portrait illustration.

CelebA (Liu et al.,
2015)

Only single attribute
can be changed at a
time.

FLAME
(Parihar et al.,
2022)

Attribute editing and attribute
style manipulation by
StyleGAN latent space
exploration.

CelebAMask-HQ
(Karras et al.,
2017)

Generating synthetic
image pairs can be
challenging and can
be misused.

Pastiche Master
(Yang et al.,
2022)

An exemplar-based
high-resolution portrait style
transfer using DualStyleGAN.

CelebA-HQ
(Karras et al.,
2017)

Pre-defined semantic
masks are considered.

SM-GAN (Chen
et al., 2022)

A generative adversarial
network (GAN) with semantic
masks.

CelebA (Liu et al.,
2015) and LFW
(Huang et al.,
2007)

Pre-defined semantic
masks are considered.
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Table 4 Overview of heterogeneous facial attribute manipulation approaches (continued)

Methods Description Datasets Limitations
Sketch2Photo
(Liu et al.,
2023)

A novel image generation
method that can create
photorealistic images from
weak or incomplete sketches
or edge maps while
simultaneously capturing
global contexts and local
details.

CelebA-HQ
(Karras et al.,
2017)

The quality of the
image generated may
degrade if the
alignment of images
is too large.

HIGSA (Wu
et al., 2023)

The human image generation
framework consists of
self-attention blocks referred
to as the stripe self-attention
block (SSAB) and the content
attention block (CAB) to
produce photo-realistic human
images.

Market-1501 (Zhu
et al., 2019b)

Only 18 human key
points were extracted
by the human pose
estimator. The
number of training
parameters is more
which forms a
complex neural
network.

3D avatar
generation
(Canfes et al.,
2023)

A novel 3D modification
technique that makes use of
the contrastive
language-image pre-training
(CLIP) model and a
pre-trained 3D GAN model to
produce face avatars.

- Applicable only to
TBGAN.

Figure 22 cCycleGAN for facial attribute modification (see online version for colours)

Source: Kazemi et al. (2018)
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Figure 23 Recovering faces from portraits (see online version for colours)

Source: Shiri et al. (2019)

Figure 24 Encoder-decoder architecture for the generation of facial images from sketches
(see online version for colours)

Source: Hu and Guo (2020)

Shiri et al. (2019) proposed an attribute-guided generative-discriminative network
approach as depicted in Figure 23 to recover realistic photos from unaligned portraits,
real paintings, and hand-drawn sketches. Autoencoder with residual block-embedded
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skip-connections was used for extracting residual features from portraits (visible
features) and was combined with the facial attributes (semantic information). Thus
manipulating the attribute vectors, realistic faces were generated with desired facial
attributes.

Figure 25 Joint sketch attribute learning approach for the generation of facial images
(see online version for colours)

Source: Yang et al. (2020a)

Figure 26 Generating images from sketches based on GAN’s (see online version for colours)

Source: Phusomsai and Limpiyakorn (2020)
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Hu and Guo (2020) proposed an encoder-decoder architecture for the generation of
facial images from sketches as shown in Figure 24. This architecture was able to control
multiple attributes without affecting other facial attributes and generate high-quality
images. The architecture design was similar to AttGAN (He et al., 2019) with the
addition of more residual blocks for extracting the facial details of the generated images.
Attribute classification loss to guarantee that the reconstructed face image has the facial
characteristics that the users want, reconstruction loss to combine information about the
texture and structure of the face, and adversarial loss to promote visual fidelity, together
constituted in obtaining high-quality images from sketches.

Figure 27 Network architecture of S2FGAN framework (see online version for colours)

Source: Yang et al. (2020b)

Figure 28 r-face for facial attribute manipulation (see online version for colours)

Source: Deng et al. (2020)

The joint sketch attribute learning approach was designed by Yang et al. (2020a)
using conditional GANs for generating face images from the embedding of geometric
shapes. These shapes provided details of the facial structure and details about the facial
attributes. An attribute modulation module that transfers user-preferred attributes to
augment sketch representation with details was suggested and were able to create face
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images with finer control over both the shape and appearance of the face. One of the
limitations of this approach is that when huge distortions in the image exist generated
images were found to be of low quality. The architecture of the proposed model is
shown in Figure 25.

Figure 29 Controllable sketch-to-image translation for facial attribute manipulation
(see online version for colours)

Source: Yang et al. (2021)

Figure 30 Architecture of CMAF-based GAN for attribute word-to-face synthesis
(see online version for colours)

Source: Luo et al. (2022)

Phusomsai and Limpiyakorn (2020) suggested a method of generating images from
sketches based on GANs such as Pix2Pix (Isola et al., 2017) and StarGan2 (Choi et al.,
2020). Pix2Pix (Isola et al., 2017) is considered an effective method for synthesising,
reconstructing, and coloring black and white images, and StarGan2 (Choi et al., 2020)
helps in mapping the facial attributes along with the style information between source
and generated images. The model was able to generate realistic images with single
attribute manipulation such as straight hair, wavy hair, and images with glasses. The
architecture is depicted in Figure 26.

An interactive facial image manipulation approach using sketches was developed
by Yang et al. (2020b) where attribute manipulations can be controlled on either
sketches or facial masks. As shown in the Figure 27 for the generation of faces from
sketches, encoder-decoder GAN architecture has been utilised. As the sketches contain
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less information identifying low-level facial features is a challenging task. Hence, the
semantic level perceptual loss has been proposed in identifying the low-level features
of the sketches and also the structure of the face. Two attribute mapping networks with
latent semantic loss were used to adjust semantics in the latent space for attribute editing
which preserves the semantics and strength of non-edited attributes.

Figure 31 A bi-directional facial attribute transfer framework for transferring facial attribute
to portrait illustration (see online version for colours)

Source: Shi et al. (2022)

Figure 32 Attribute editing and attribute style manipulation by StyleGAN latent space
exploration (see online version for colours)

Source: Parihar et al. (2022)

To overcome the limitations of the existing methods where pre-defined facial attributes
were considered for modification or considering manually edited masks or sketches,
Deng et al. (2020) proposed a framework called r-face for modifying the facial
attributes. As a backbone for this model, an image in-painting model is used, with
reference images serving as conditions for controlling the shape of face components.

Yang et al. (2021) proposed a style-based network architecture as shown in Figure 29
that learns to refine the sketches. The sketch refinement process uses coarse-to-fine
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dilation inspired by the painting process of artists which bridges the gap between
coarse-level sketches and fine-level edges.

Figure 33 Harnessing semantic segmentation masks for accurate facial attribute editing
(see online version for colours)

Source: Chen et al. (2022)

Figure 34 Synthesising photo-realistic images from sketches via global contexts
(see online version for colours)

Source: Liu et al. (2023)

Instead of using the real attribute vectors, CMAFGAN (Luo et al., 2022) creates
faces using the matching attribute words where the word feature transformation (W2F)
challenge has never been satisfactorily completed before as shown in Figure 30. The two
blocks of CMAFGAN that are recommended to examine the association between image
data and the equivalent attribute word features are cross-modal attention fusion (CMAF)
and word feature transformation (WFT). By utilising cross-attention, CMAF provides a
more effective strategy than past studies for fusing word and visual characteristics.

In Shi et al. (2022), the newer and more difficult challenge of facial attribute transfer
between diverse photos is tackled. For instance-based facial attribute transfer, the authors
describe a new bi-directional method based on GAN and latent representation that
intends to transfer a target facial attribute with its fundamental shape from a reference
photo-realistic face image to a source realistic portrait drawing and vice versa as shown
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in Figure 31. The method solves the new facial attribute transfer task by redefining
and reformulating an image’s latent representation, which combines an image’s content
and aesthetic style in a representation. In a supervised manner, it disentangles each
supplied image into two components to generate associated content latent representation
and visual style representation. Not only is the facial attribute transferred from a
photo-realistic facial image to a realistic portrait illustration accomplished by exchanging
the target attribute modules in content latent representations of two heterogeneous
images, but the target attribute is also removed from the reference photo-realistic facial
image.

Figure 35 Human image generation with self-attention (see online version for colours)

Source: Wu et al. (2023)

Few-shot latent-based attribute manipulation and alteration (FLAME) as shown in
Figure 32 is a simple yet effective framework for doing highly controlled picture editing
via latent space manipulation, according to Parihar et al. (2022). To manipulate semantic
features in the resulting image, they estimate linear directions in the latent space (of
a pre-trained StyleGAN). They offer a novel task of attribute style manipulation to
generate varied styles for characteristics such as eyeglasses and hair, as well as a novel
sampling approach to sample latent from the manifold, allowing to generate a diverse
collection of attribute styles in addition to those in the training set. One constraint of
this technique is the difficulty in curating synthetic image pairs in some circumstances,
such as gender modification.

In this work, Yang et al. (2022) investigates more difficult exemplar-based
high-resolution portrait style transfer by presenting a novel DualStyleGAN with variable
management of dual styles of the original face domain and the extended artistic
portrait domain. With just a few hundred style examples, a novel DualStyleGAN is
proposed to characterise and manipulate intrinsic and extrinsic styles for exemplar-based
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high-resolution portrait style transfer. This method outperforms state-of-the-art
approaches in the creation of high-quality and varied artistic portraits.

Figure 36 Text and image guided 3D avatar generation and manipulation (see online version
for colours)

Source: Canfes et al. (2023)

The three main challenges with modifying face attributes are accurate editing
area, invariant identification information, and realistic visual effect. Unfortunately,
most studies concentrate on the first two issues. However, the main cause of
attribute-irrelevant data being damaged is a lack of understanding of the accurate
editing area in the assignment. Chen et al. (2022) offers a unique face attribute editing
algorithm – a GAN with semantic masks – to handle this problem from the standpoint of
modifying location accuracy as shown in Figure 33. The semantic segmentation network
can only confine manipulation in the target zone by creating the mask to attribute-related
areas. The complete framework, known as SM-GAN, is created by combining the GAN
with the semantic segmentation network.

Liu et al. (2023) presents a Sketch2Photo, a novel image generation method that
can create photorealistic images from weak or incomplete sketches or edge maps while
simultaneously capturing global contexts and local details as shown in Figure 34. The
lowest layers of the network are constructed using fast Fourier convolution (FFC)
residual blocks to provide global receptive fields, then swin transformer block (STB)
units are added to effectively get long-range global contexts for large-scale feature
maps. Additionally, an enhanced spatial attention pooling (ISAP) module is provided
to ease the rigorous alignment constraints between generated images and incomplete
sketches. Extensive experimental results and comparisons reveal that the suggested
method is capable of achieving excellent image synthesis effects and outperforms several
other existing methods. During the training procedure, adversarial loss, reconstruction
loss, feature matching loss, and perceptual loss are assessed. The quality of the image
generated whenever the alignment of the face is too large may result in a poor image,
which is one of the drawbacks of the suggested approach. Furthermore, the quality of
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the created image may decline due to the presence of things in the environment, such
as pedestrians surrounded by trees.

By using the positional data from the source image, Wu et al. (2023) suggest a
human image generation framework termed human image generation with self-attention
(HIGSA) as shown in Figure 35. Two complementary self-attention blocks referred to
as the stripe self-attention block (SSAB) and the content attention block (CAB), are
each included in the proposed HIGSA to produce photo-realistic human images. The
attention map is computed for each pixel in SSAB based on its relative spatial positions
to other pixels and establishes global dependencies of human images and introduces a
powerful feature extraction module in CAB that can be used to interactively improve
both person’s look and shape feature representations. Because of this, the HIGSA
framework automatically maintains superior shape consistency and visual consistency
with finer details. HIGSA can synthesise human images in any posture with realistic
details and maintained features, according to both qualitative and quantitative results.
During the model evaluation, GAN loss, perceptual loss, and combined L1 loss are all
measured. Some of the limitations of this approach are that only 18 human key points
are extracted by human pose estimator (Zhu et al., 2019b) which may not result in
accurate pose representation and hence may be difficult to extend to other complex
computer vision fields. Also, the number of training parameters considered results in a
complex neural network.

By employing text- or image-based instructions like ‘a young face’ or ‘a surprised
face’, Canfes et al. (2023) suggest a novel 3D modification technique that can change
the model’s texture as well as its shape as shown in Figure 36. To produce face
avatars and build a completely differentiable rendering pipeline, they make use of the
contrastive language-image pre-training (CLIP) model and a pre-trained 3D GAN model.
More precisely, this takes an input latent code and adjusts it so that the target attribute
indicated by a text or image prompt is present or improved while mostly preserving
the integrity of other properties. Using this method, editing an image just takes five
minutes. However, this method has certain drawbacks, including the fact that the model
has only been trained to build partial facial avatars and that full-head mesh creation is
not possible. Also, this approach can be implemented using only TBGAN (Gecer et al.,
2020).

4 Challenges and opportunities

Even though promising results have been obtained in manipulating facial attributes, still
there exist many challenging issues that need to be addressed. Many opportunities are
open to the research domain if these challenges are taken into consideration. This section
discusses the challenges and opportunities involved in facial attribute manipulation
keeping in mind the different databases, models/algorithms, and applications.

During the discussion on deep learning, the first thought considered will be the
availability of data. To extract the various facial features, we need to train the model
using a maximum number of samples. When a sufficient amount of data is not available,
the performance of the deep learning model degrades. By considering the well-known
database, CelebA dataset, we can observe that there is an imbalance in the distribution
of data under different attribute categories with a minimum of 4,547 images under the
‘bald’ category of images and a maximum of 169,158 images under ‘no beard’ category
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of images. Also, it is observed that only a few datasets with attribute information are
available, and only a selected few attributes are considered for facial manipulations.
However, only a few attributes have resulted in promising results (Chen et al., 2016;
Xiao et al., 2018; Huai-Yu et al., 2018).

The other possible challenge is the availability of video data for facial attribute
manipulation. To date, no study exists for the manipulation of facial attributes in videos.
Obtaining faces and identifying the attributes of faces to be changed in a video frame
and preserving the identity is not an easy task. The other factor that should also be
considered is the quality of the videos which can affect the performance.

Yet another challenge is obtaining appealing performance from low-resolution
images. Editing facial attributes in low-resolution images is difficult. Currently, many
deep learning models use a specific range of resolutions under defined conditions to
accurately modify facial attributes, which produces satisfactory results. Thus by using
super-resolution techniques on the regenerated images, the performance of the deep
learning model can be improved.

Adversarial images, which are created by adding minor artificial changes to the
topology of the network, training phase, and hyperparameter variations, can indeed be
leveraged as inputs to the deep face attribute prediction model. The strength of models
could be enhanced by accurately classifying the original inputs and misclassifying
the adversarial inputs. Szegedy et al. (2017) first postulated that properly designed
modifications that are invisible to humans can cause neural networks to misclassify
an image. Following this discovery, academics are beginning to consider the study of
adversarial images.

Additionally, some severe facial attribute manipulation may have a negative impact
on an automated face recognition system’s performance which is also one of the
challenging tasks. Bias caused by naturally occurring demographic characteristics in
automated face recognition systems might be exacerbated when attributes are digitally
manipulated. For instance, if we attempt to alter sex cues by introducing goatee to
images of women and makeup to give men a more feminine appearance and results
in visible aberrations that may be responsible for a significant decrease in automated
face recognition performance. In yet another attribute change, by removing eyeglasses,
it is possible to lighten the lens shades or the color of the eyeglass frames, but not
completely remove the glasses. This may result in significant changes in the texture
surrounding the facial landmarks, lowering the accuracy of face recognition.

5 Conclusions

In the realm of computer vision, facial qualities play a critical role in recognising the
visible features of face images. The performance of many authentic applications has
been enhanced using these facial features. In this paper, we discuss an ample review
of deep learning models based on facial attribute manipulation, different databases,
and metrics used for evaluation. Also, details of various state-of-the-art techniques
along with pros, cons, future problems, and opportunities are emphasised. From these
investigations, it can be seen that the availability of low-resolution photos and the
quality of the images produced are the key limitations of face attribute modification. We
look forward to more research that addresses these issues and takes advantage of these
opportunities to advance the field of deep-face attribute manipulation.
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‘Config: controllable neural face image generation’, in European Conference on Computer Vision,
Springer, pp.299–315.

Kumar, N., Belhumeur, P. and Nayar, S. (2008) ‘FaceTracer: a search engine for large collections of
images with faces’, in European Conference on Computer Vision, Springer, pp.340–353.

Kumar, N., Berg, A.C., Belhumeur, P.N. and Nayar, S.K. (2009) ‘Attribute and simile classifiers
for face verification’, in 2009 IEEE 12th International Conference on Computer Vision, IEEE,
pp.365–372.

Kwak, J-g., Han, D.K. and Ko, H. (2020) ‘Cafe-GAN: arbitrary face attribute editing with
complementary attention feature’, in Computer Vision–ECCV 2020: 16th European Conference,
Proceedings, Part XIV 16, Springer, Glasgow, UK, 23–28 August, pp.524–540.

Lample, G., Zeghidour, N., Usunier, N., Bordes, A., Denoyer, L. and Ranzato, M. (2017) Fader
Networks: Manipulating Images by Sliding Attributes, arXiv preprint arXiv:1706.00409.

Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H., Hawk, S.T. and Van Knippenberg, A. (2010)
‘Presentation and validation of the radboud faces database’, Cognition and Emotion, Vol. 24,
No. 8, pp.1377–1388.

Lee, C-H., Liu, Z., Wu, L. and Luo, P. (2020) ‘MaskGAN: towards diverse and interactive facial
image manipulation’, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp.5549–5558.

Li, D., Zhang, M., Zhang, L., Chen, W. and Feng, G. (2021) ‘A novel attribute-based generation
architecture for facial image editing’, Multimedia Tools and Applications, Vol. 80, No. 4,
pp.4881–4902.

Li, Q. and Tu, T. (2023) ‘Large-pose facial makeup transfer based on generative adversarial network
combined face alignment and face parsing’, Mathematical Biosciences and Engineering, Vol. 20,
No. 1, pp.737–757.

Li, L., Bao, J., Yang, H., Chen, D. and Wen, F. (2019) Faceshifter: Towards High Fidelity and
Occlusion Aware Face Swapping, arXiv preprint arXiv:1912.13457.



108 G. Padmashree and A.K. Karunakar

Li, T., Qian, R., Dong, C., Liu, S., Yan, Q., Zhu, W. and Lin, L. (2018) ‘BeautyGAN: instance-level
facial makeup transfer with deep generative adversarial network’, in Proceedings of the 26th
ACM International Conference on Multimedia, pp.645–653.

Li, B., Cai, S., Liu, W., Zhang, P., He, Q., Hua, M. and Yi, Z. (2023a) ‘Dystyle: dynamic neural
network for multi-attribute-conditioned style editings’, in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp.189–197.

Li, S., Liu, L., Liu, J., Song, W., Hao, A. and Qin, H. (2023b) ‘SC-GAN: subspace clustering based
GAN for automatic expression manipulation’, Pattern Recognition, Vol. 134, p.109072.

Ling, J., Xue, H., Song, L., Yang, S., Xie, R. and Gu, X. (2020) ‘Toward fine-grained facial
expression manipulation’, in European Conference on Computer Vision, Springer, pp.37–53.

Liu, H., Xu, Y. and Chen, F. (2023) ‘Sketch2Photo: synthesizing photo-realistic images from sketches
via global contexts’, Engineering Applications of Artificial Intelligence, Vol. 117, p.105608.

Liu, M., Ding, Y., Xia, M., Liu, X., Ding, E., Zuo, W. and Wen, S. (2019) ‘STGAN: a unified
selective transfer network for arbitrary image attribute editing’, in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp.3673–3682.

Liu, S., Sun, Y., Zhu, D., Bao, R., Wang, W., Shu, X. and Yan, S. (2017) ‘Face aging with
contextual generative adversarial nets’, in Proceedings of the 25th ACM International Conference
on Multimedia, pp.82–90.

Liu, Z., Luo, P., Wang, X. and Tang, X. (2015) ‘Deep learning face attributes in the wild’, in
Proceedings of the IEEE International Conference on Computer Vision, ppp.3730–3738.

Luo, X., Chen, X., He, X., Qing, L. and Tan, X. (2022) ‘CMAFGAN: a cross-modal attention fusion
based generative adversarial network for attribute word-to-face synthesis’, Knowledge-Based
Systems, Vol. 255, p.109750.

Ma, L., Jia, X., Georgoulis, S., Tuytelaars, T. and Van Gool, L. (2018) Exemplar Guided Unsupervised
Image-to-Image Translation with Semantic Consistency, arXiv preprint arXiv:1805.11145.

Mirza, M. and Osindero, S. (2014) Conditional Generative Adversarial Nets, arXiv preprint
arXiv:1411.1784.

Mollahosseini, A., Hasani, B. and Mahoor, M.H. (2017) ‘AffectNet: a database for facial expression,
valence, and arousal computing in the wild’, IEEE Transactions on Affective Computing, Vol. 10,
No. 1, pp.18–31.

Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I. and Zafeiriou, S. (2017) ‘AgeDB:
the first manually collected, in-the-wild age database’, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp.51–59.

Ning, X., Xu, S., Li, W. and Nie, S. (2020) ‘FEGAN: flexible and efficient face editing with
pre-trained generator’, IEEE Access, Vol. 8, pp.65340–65350.

Ning, X., Li, W., Dong, X., Xu, S., Nan, F. and Yao, Y. (2021) ‘Continuous learning of face
attribute synthesis’, in 2020 25th International Conference on Pattern Recognition (ICPR), IEEE,
pp.4282–4289.

Parihar, R., Dhiman, A., Karmali, T. and Babu, R.V. (2022) Everything is there in Latent Space:
Attribute Editing and Attribute Style Manipulation by StyleGAN Latent Space Exploration, arXiv
preprint arXiv:2207.09855.

Parkhi, O.M., Vedaldi, A. and Zisserman, A. (2015) Deep Face Recognition, British Machine Vision
Association.

Phillips, P.J., Moon, H., Rizvi, S.A. and Rauss, P.J. (2000) ‘The FERET evaluation methodology for
face-recognition algorithms’, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 22, No. 10, pp.1090–1104.

Phusomsai, W. and Limpiyakorn, Y. (2020) ‘Applying GANs for generating image with varied facial
attributes from sketch’, in Journal of Physics: Conference Series, IOP Publishing, Vol. 1619,
p.p12013.



Exemplar-based facial attribute manipulation 109

Ranjan, R., Patel, V.M. and Chellappa, R. (2017) ‘Hyperface: a deep multi-task learning framework
for face detection, landmark localization, pose estimation, and gender recognition’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 41, No. 1, pp.121–135.

Roich, D., Mokady, R., Bermano, A.H. and Cohen-Or, D. (2022) ‘Pivotal tuning for latent-based
editing of real images’, ACM Transactions on Graphics (TOG), Vol. 42, No. 1, pp.1–13.

Romero, A., Van Gool, L. and Timofte, R. (2021) ‘Smile: semantically-guided multi-attribute image
and layout editing’, in Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp.1924–1933.

Rothe, R., Timofte, R. and Van Gool, L. (2018) ‘Deep expectation of real and apparent age from
a single image without facial landmarks’, International Journal of Computer Vision, Vol. 126,
No. 2, pp.144–157.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A. and Chen, X. (2016) ‘Improved
techniques for training GANs’, Advances in Neural Information Processing Systems, Vol. 29.

Sengupta, S., Chen, J-C., Castillo, C., Patel, V.M., Chellappa, R. and Jacobs, D.W. (2016) ‘Frontal
to profile face verification in the wild’, in 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV), IEEE, pp.1–9.

Shen, W. and Liu, R. (2017) ‘Learning residual images for face attribute manipulation’, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp.4030–4038.

Shi, R-x., Ye, D-y. and Chen, Z-j. (2022) ‘A bi-directional facial attribute transfer framework: transfer
your single facial attribute to a portrait illustration’, Neural Computing and Applications, Vol. 34,
No. 1, pp.253–270.

Shiri, F., Yu, X., Porikli, F., Hartley, R. and Koniusz, P. (2019) ‘Recovering faces from portraits with
auxiliary facial attributes’, in 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV), IEEE, pp.406–415.

Song, X., Shao, M., Zuo, W. and Li, C. (2020) ‘Face attribute editing based on generative adversarial
networks’, Signal, Image and Video Processing, Vol. 14, No. 6, pp.1217–1225.

Sun, R., Huang, C., Zhu, H. and Ma, L. (2021) ‘Mask-aware photorealistic facial attribute
manipulation’, Computational Visual Media, pp.1–12.

Sun, Q., Guo, J. and Liu, Y. (2022) ‘PattGAN: pluralistic facial attribute editing’, IEEE Access,
Vol. 10, pp.68534–68544.

Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A.A. (2017) ‘Inception-V4, inception-resnet and
the impact of residual connections on learning’, in Thirty-First AAAI Conference on Artificial
Intelligence.

Tan, Z., Chai, M., Chen, D., Liao, J., Chu, Q., Yuan, L., Tulyakov, S. and Yu, N. (2020)
MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait Editing, arXiv preprint
arXiv:2010.16417.

Tewari, A., Elgharib, M., Bernard, F., Seidel, H-P., Pérez, P., Zollhöfer, M. and Theobalt, C. (2020)
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