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Abstract: This paper proposes a secure finger vein reconstruction
and recognition system utilising a novel weight standardisation-based
progressive generative adversarial networks (WS-progressive GAN) as well
as ‘he’ initialised chimp optimisation-based convolutions neural network
(he-ChOA-CNN) classifier for overcoming security issues. Initially, the input
images are pre-processed, and the reflection-based contrast limited adaptive
histograms equalisation (RCLAHE) enhanced the pre-processed images. Next,
bias locality-sensitive hashing (BLSH) generates hash values, through which
the ameliorated images are secured. Next, the secured images are augmented
and applied for WS-progressive GAN, which encodes and decodes the image
for reconstructing the synthetic images. Then, the he-ChOA-CNN accepts
the imperative features extracted as of the synthetic images as input for
training. Amid testing, the identity of the person is recognised utilising the
classifier output and the query image by detecting the gaps. Analogised to
the prevailing methods, more accurate outcomes are attained by the proposed
model, which is illustrated through the experimental outcomes.
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1 Introduction

Diverse technologies like digital signatures, watermarking, biometric (BM) recognition
and many are rising owing to the decisive requirement for authentication methods to
protect digital information and user identity (Kapoor et al., 2021). The conventional
identity techniques like smart cards, passwords as well as signatures are now no
more the finest choices (Noh et al., 2020). Via greater anti-spoof capacities, BM is
considerably enhanced (Hu et al., 2020) which led to more consistent, protected, and
suitable authentication (Yang et al., 2020). To protect private information, identification,
and validation, the BM-based recognition technique is employed (Ren et al., 2021).
Face, iris, fingerprint, FV, palm vein, voiceprint, gait and signature are the diverse
technologies used in it (Song et al., 2019). Detection of the living body, compact device
size, and excellent safety is the clear benefits of hand and FV systems when compared
with other BMs (Zhao et al., 2020). For numerous applications, the FV systems have
been verified to be a viable substitute to finger-based systems (Zhang et al., 2019).

The interest in the usage of finger vascular (also called FV) pattern as a BM
modality has been grown owing to the requirement for dependable together with
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precise authentication in safe applications (Ramachandra et al., 2019). Border crossing
control, attendance systems, and financial safety are many BM technology applications.
At present, fingerprint recognition is built into every smartphone. FV authentication
is extensively available in all smart devices, apart from face and iris authentication
(Kirchgasser et al., 2020). On comparing with the other traditional methods, the boon
of FV-based systems is that it is non-intrusive (Fairuz et al., 2019a) and duplication
of FV information is very complex (Fairuz et al., 2019b). The enriched secrecy during
personal authentication is another benefit of using the FV image-based identification
because the subsurface vascular patterns are greatly concealed beneath; and under
visible illumination, it is complex to steal the image (Xie and Kumar, 2019). The FV
recognition has several feature extraction techniques, which can well be classified as
follows. The segmented blood vessel pattern or minutiae has been utilised to categorise
FV images in Vein pattern-based methodology (Liu et al., 2019a). The cross, as well
as endpoints, are illustrated as minutiae in minutiae-based techniques and as per the
surrounding local features, they compute their similarity. The features are collected
from segmented blood vessels by the network-based approaches, and in line with the
distribution of the vessel structures, they are matched (Meng et al., 2020).

But when the BM template is compromised or stolen, privacy invasion and
impersonation might happen, in spite of the BMs outstanding utility in the
authentication. The BM characters are irreversible and incomparable, so this may lead
to more complications (Muthusamy and Rakkimuthu, 2021a). With the help of diverse
strategies, more investigation work has been constructed in prevailing work for FV
verification along with protection of template (Liu et al., 2019b). But, the identification
of FV features in raw images is not robust. As a result, employing a WS-progressive
GAN and he-ChOA-CNN classifier, a secure FV reconstruction and identification
system is proposed in this work. Table 1 include the overview of the notions used in
this work.

The remaining of the paper is structured as follows: Section 2 describes the proposed
finger vein recognition system (FRS), Section 3 details the experimentation results and
Section 4 concludes the paper with future work.

1.1 Our contributions

The main contributions of this research are as follows:

• To propose an efficient pre-processing technique for improving the classification
accuracy and reducing the processing time.

• To present the reflection-based contrast limited adaptive histogram equalisation
(RCLAHE) for contrast enhancement (CE).

• To improve the classification using Chen chaotic chimp with convolutional neural
network (C4) for avoiding the vanishing gradient problems.

• To introduce the bias locality-sensitive hashing (BLSH) for performing the
biometric input data security and key generation.

• To present the weight standardisation-progressive GAN (WS-progressive GAN).

• To compare the proposed technique with the existing technique using various
result parameters and existing algorithms.
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Table 1 Overview of our notions

Notions Meaning

ANN Artificial neural network
BLSH Bias locality-sensitive hashing
BM Biometric
CDF Cumulative distributions function
CE Contrast enhancement
CL Convolution layer
CLAHE Contrast limited adaptive histogram equalisation
CNN Convolution neural networks
ChOA Chimp optimisation algorithm
CSO Crow search optimisation
DCNN Deep convolution neural networks
FCL Fully connected layer
FDR False discovery rate
FM Feature map
FNR False negative rate
FP Fingerprint, false positive
FPR False positive rate
FRR False recognition rate
FV Finger vein
GAN CNN Generative adversarial networks-based CNN
He-ChOA ‘He’ initialised chimp optimisation algorithm
HF Hash function
HHO Harish Hawks optimisation
LBP Local binary pattern
LLBP Local line binary pattern
MCC Mathews correlation coefficient
NPV Negative predictive value
PHDCP Pyramid histogram of double competitive pattern
PL Pooling layer
PSNR Pixel signal to noise ratio
RCLAHE Contrast limited adaptive histograms equalisation
ReLU Rectified linear activation function
RNN Recurrent neural networks
RSO Rat swarm optimisation
SIFT Scale-invariants feature transform
SSIM Structure similarity index measure
TP True-positive
TN True-negative
WS-progressive GAN Weight standardisation-based progressive GAN

2 Proposed FRS

Considerable attention is drawn by the biometric systems with augmenting growth in the
demand for security. Nevertheless, most biological patterns are susceptible to spoofing
attacks. More user-friendly, lower-cost, and extremely secure biological patterns, say
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palmvein together with FV, have attained much attention. It is because they belong to
the intrinsic modalities within humans’ bodies and are hard to forge. The FV imaging
device, in contrast to palm-vein, is more fine and simple to assemble which makes FV
recognition technology conducive to popularise. Therefore, an effectual FV recognition
system utilising a WS-progressive GAN in addition to he-ChOA-CNN is proposed.

Figure 1 Block diagram of the proposed methodology (see online version for colours)

The proposed method’s block diagram is exhibited in Figure 1. Pre-processing,
CE, security and key generation, augmentation techniques, WS-progressive GAN,
feature selection, and C4 classification are the seven stages that are involved in the
proposed work. Initially, the inputted FV images are pre-processed and implemented
to reflection-based contrast limited adaptive histogram equalisation (RCLAHE) for CE.
Next, BLSH takes care of the security as well as the key generation process for the
ameliorated images. Then, the secured images are augmented and reconstructed as
synthetic images utilising the encoder together with the decoder in the WS-progressive
GAN. The vital features are extracted as of the synthetic images, which are inputted to
the He-ChOA-CNN that outputs it as an authorised or non-authorised user.

2.1 Pre-processing

The initial step of the proposed system is pre-processing. It totally consists of three
steps: converting the multiple FP images into float 32 array, rescaling the images, along
with normalisation. The input images are initialised as:

Wfp(n) = {Wfp(1),Wfp(2),Wfp(3), ...,Wfp(N)} (1)

wherein W(n) signifies the total input images. At first, the input images are transmuted
into a float-32 array. It can well be expressed as,

arr(Wfp(n)) = Float32Array(Wfp(n)) (2)
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wherein Float32Array(.) signifies the function that signifies an array of 32-bit
floating-point numbers, arr(Wfp(n)) implies the float-32 arrays subsequent to
conversion. Next, for creating a new version of the image with disparate sizes utilising
the scaling factor, the converted images are rescaled. The rescaled images are attained
as:

rs(Wfp(n)) = ζ(arr(Wfp(n))) (3)

where rs(Wfp(n)) implies the total rescaled images, ζ signifies the scaling factor. Next,
for converting the image to a range of pixel values, the rescaled images are normalised.
The normalised images are signified as norm(Wfp(n)). Thus, the pre-processed image
Wpp(n) are implied as:

Wpp(n) = {Wpp(1),Wpp(2),Wpp(3), ...,Wpp(N)} (4)

2.2 Contrast enhancement

FP image enhancement is an important step. The quality to accurately detect adequate
reliable features, namely, minutiae and FP singularities will be enhanced. The
pre-processed images Wpp(n) are implemented to the RCLAHE (Muthusamy and
Rakkimuthu, 2021b) for CE. CLAHE functions on smaller regions on the image, termed
tiles, instead of the complete image. It is basically a variation of adaptive histogram
equalisation. For removing the artificial boundaries, the neighbouring tiles are joined
utilising bilinear interpolation. The reflection technique is incorporated in the prevailing
CLAHE for ameliorating the image’s CE. The entire region of the image and the portion
of the image flipped over one or the other portions of the image by including a negative
sign is reviewed by the reflection-based transformation function. This aids to concentrate
on the whole region of the image intended for CE. The RCLAHE steps are:

• Manifold regions are split as of every pre-processed image Wpp(n) and also the
histogram of every region is attained.

• For limiting the amplification, the clip limit (CL) is ascertained to clip the
predefined value of the histogram. The CL can well be obtained as:

χcl = Lmax.O +
O

Omax
(1− Lmax) (5)

where Lmax is the maximum limit of the histogram slope where the pixels ranges
from O to Omax, χcl is the CL.

• Next, the histogram equalisation is done for the altered histogram. Here, the
clipped pixels are distributed equally to every grey level. The cumulative
distributions function (CDF) is computed for histogram equalisation as:

Ωcdf =
K∑

k=1

ϱ(Wpp(nk)) (6)

where Ωcdf denotes the CDF function, ϱ denotes the probability for k pixels.
Then, the reflection-based transformation function for grey-scale mapping is
computed as:
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R(Tfun) =
(Ngl − 1).Ωcdf

Np
(7)

where R(Tfun) denotes the reflection-based transformation function across the
horizontal −R(Tfun) and vertical R(−Tfun) axis.

• Lastly, via interpolating the partitioned regions, the enhanced image is
reconstructed. The enhanced image is denoted as WCE(n)

2.3 Security and key generation

Following CE, via binarisation along with minutiae extraction, the security phase for
securing the BM data is executed; similarly, by utilising the BLSH, the hash code is
created. The LSH (Lai et al., 2021) is a hash function (HF) in which it takes a certain
data point; subsequently, hashes it into a number. The bias locality is considered in the
sensitive hashing algorithm to ameliorate the hash code complexity; here, it permits the
HF to be shifted to the left or right to fit the data effectively. Following are the steps
incorporated:

• Firstly, the enhanced image WCE(n) is binarised; subsequently, forms the image’s
skeleton.

• The binary image is thinned for extracting the minutiae points. Due to this, a
ridge is just ‘1’ pixel wide.

• The points that comprise a pixel value of one (ridge ending) as their neighbour or
more than two ones (ridge bifurcations) in their neighbourhood are called
minutiae points. The bifurcations are marked by the proposed work as the minutia
points since there is no ridge ending for the FV. The extracted minutia points are
exhibited as:

mpi = {mp1,mp2,mp3, ...,mpK} (8)

where mpi denotes the number of minutia points extracted, mpK denotes the Kth

minutia point.

• The BLSH hash function accepts the extracted minute points as the input. Centred
on the spatiality of the data, it generates hash values.

• In BLSH, m hash functions are chosen independently and uniformly at random.
The hash functions are expressed as:

Hm[mpi] = {H1[mp1 +B],H2[mp2 +B], ...,Hm[mpm +B]} (9)

where Hm[mpi] denotes the m number of hash functions, B denotes the bias
added with the minute points. The bias can be computed as:

B =
1

Loc(Loc− 1)

Loc∑
i−1

AC[mpi]

Cor[mpi]
(10)

where Loc denotes the locality, AC and Cor denote the auto co-variance and
correlation of the minutia points.
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• m hash tables are built utilising every HF. All the minutia points are inserted in
every hash table via computing respective hash values. The output images
subsequent to generating the hash values are signified as WH(n).

2.4 Augmentation techniques

Augmentation (Lu et al., 2021) is a technique wherein the existing data are modified
or the dataset accessible for training a learning model is expanded artificially. By the
conversion in various directions, the augmentation of the images is executed. Utilising
the translation in orientation along with distance, the translation operation is conducted.
It is specified as:

G =WH(n)|WH(n) =
3600

LG
∗ i, 1 ≤ i ≤ LG (11)

x = {WH(n)|1 ≤WH(n) ≤ Lx} (12)

where G denotes the translation orientation containing LG directions, x denotes the
translation distance computed by the pixels. After several translations and augmentation
processes, the minutiae finger vein images are obtained and denoted as WA(n).

2.5 WS-progressive GAN

Here, utilising the WS-progressive GAN approach (Huang et al., 2020), the augmented
minutiae FV images WA(n) are encoded along with decoded. There are ‘2’ networks
pitted against one another in a 2-player game in the progressive GAN, which is a kind of
generative model. In the GAN, ‘2’ players are in a steady battle in which one attempts
to fool the other, whilst the other attempts not to be fooled. The generator, which trains
the encoder net along with generates an image with its code as of certain probability
distribution is included in player 1; in addition, it ascertains that they look equivalent to
player 2. The image’s pixel values are encrypted together with modified by the encoder
in numerous ways; subsequently, it produces a random code whereas an image with
the arbitrary code is synthesised by the decoder. The discriminator, which trains the
decoder net, is included by player 2; it differentiates its inputs and decides whether
the inputs are obtained as of the generator or the training distribution. The images are
trained in the same manner to attain the synthesised images. In the progressive GAN, a
preliminary weight standardisation normalisation is utilised to ameliorate the synthetic
images’ diversity. Following are steps incorporated in this.

The input parameters are taken by the discriminator, which outputs its discrimination
probability via the LF. It is specified as:

ψ(ζD, ρ
Dis) = A−B (13)

where A denotes the data distribution of true samples and B denotes the denotes the
data distribution of duplicate samples generated by the generator.

A = −TWA(n)∼P(n)[log(ζD.WA(n))] (14)
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B = −TWA∗(n)∼P(q),c∼P(cd)[log(1− ζD(ζG(WA∗(q),cd)))] (15)

where ψ denotes the loss function, log(ζD.WA(n)) denotes the discriminator output for
true samples, q denotes the random noise sampling from a normal distribution P(q),
log(1− ζD(ζG(WA∗(q),cd) denotes the discriminator output for generator outputs. The
output of the generator with input parameters ζG(WA∗(q)) and ρGen can be expressed
as:

ψ(ζG, ρ
Gen) = TWA∗(n)∼P(Gen),cd∼P(c)[− log(ζD(ζG(WA∗(q),cd)))] (16)

where the weight values ρGen and ρDis are optimised by using weight standardisation
normalisation techniques. The weight standardisation is done as:

ρ”(Gen,Dis) = ρ′|ρ′ = ρ′ − µmean(ρ
′)

σstd(ρ′)
(17)

where ρ′ denotes the weights before standardisation, µmean, σstd are the mean and
standard deviation for each output. Then, the standardised weight vectors are normalised
as:

ρ(Gen,Dis) =
U

||ρ”(Gen,Dis)||
ρ”(Gen,Dis) (18)

where ||ρ”(Gen,Dis)|| denotes the trainable weight vector that is independent of the
parameter U . The generator and discriminator outputs their probability through the
logistic sigmoid activation function which can be expressed as:

Sig(P(n), P(q)) = log
(

1

1 + e−(P(n),P(q))

)
(19)

In the training process, by maximising the LF, the generator executes gradient
ascent; similarly, by minimising the LF, the discriminator executes gradient descent.
Consequently, for the network, the overall LF is given as:

min
Gen

max
Disc

(ζ(G), ζ(D)) = min
Ge

max
Ds

(A+B) (20)

A and B are given by the formulas (14)–(15). When the distribution samples as of
the generator congregate to the distribution of real samples as of the discriminator,
the global optimum is brought about by the minimax game utilised above. Thus, the
reconstructed synthetic images are signified as:

Wsyn(n)
= {Wsyn(1)

,Wsyn(2)
, ...,Wsyn(N)

} (21)

where Wsyn(n)
denotes the the total synthetic images.
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2.6 Feature extraction

To extract the significant features for training, the reconstructed synthetic images are
utilised. The features that are extracted as of the synthetic FP image are local binary
pattern (LBP) (Tüű-Szabó et al., 2021), 3D morphable model (Dai et al., 2020), pyramid
histogram of double competitive pattern (PHDCP) (Lu et al., 2018), along with local line
binary pattern (LLBP) (Rosdi et al., 2011). Moreover, to attain tiny features, which are
highly strong to rotation along with a translation, the scale-invariants feature transform
(SIFT) (Manickam et al., 2019) was deployed.

Figure 2 Architecture of he-ChOA-CNN

Finally, the extracted features are expressed as:

IF (n) = {IF (1), IF (2), ..., IF (N)} (22)

where IF (n) denotes the extracted features from the synthetic images.

2.7 Classification

The ‘he-ChOA-CNN’ accepts the extracted features as input. A sort of neural network
is called CNN wherein the input is converted through a sequence of the layer as of
the feature values to the scores. ‘3’ significant layers namely convolution layer (CL),
pooling layer (PL), and fully connected layer (FCL) betwixt input and output layer
are needed by CNN (Yuan et al., 2014). The parameters called weights and biases of
the neurons are encompassed by each layer. Conventionally, the weight values in CNN
are arbitrarily generated. Therefore, poor prediction quality of the model is attained
with augmented losses. The weights are optimised by utilising the he-initialised chimp
optimisation algorithm for lessening the losses and obtaining more precise results. The
‘he’ initialisation technique is utilised for ameliorating the convergence speed of the
ChOA method. Figure 2 illustrates the proposed he-ChOA-CNN architecture.

• Convolution layer: The input data is reshaped by the input layer into a
D-dimensional matrix. The convolution operation betwixt the inputted features
and the weight values (kernels) is performed by the CL. After that, for the ReLU
layer, the convoluted output is implemented that returns the rectified feature map
(FM) via changing all the negative values to zero. The progress of FM in the CL
is formulated mathematically as:
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O
fn(n)
Conv = δ(ΣIF (n) ∗ δwtn + ξ) (23)

where Ofn(n)
Conv denotes the FM obtained from the convolution layer, δ denotes the

nonlinear activation function (ReLU), δwtn denotes the weight values and ξ
denotes the bias value given to each FM.

• Pooling layer: The size of the inputted FM attained subsequent to convolution
and ReLU operations is decreased by this layer. The max-pooling function is
applied for dimensionality reduction. The network’s computation is quickened by
the max-pooling function via identifying the most dominating features. Therefore,
the pooled FM of the PL is specified as:

O
fn(n)
pool = ϕmp(O

fn(n)
Conv ) (24)

where Ofn(n)
pool denotes the pooled FM, ϕmp(.) denotes the max-pooling function.

• Fully connected layer: The pooled output is flattened into a solo column vector
and is implemented to the FCL after the total convolution together with pooling
operations. To learn the input features, each neuron in the prior layer is joined to
each neuron on the subsequent layer. The input is fed by the FCL to the softmax
layer. It employs the softmax function to transmute the input scores into addition
of output probabilities. The softmax layer’s output is attained as:

O
fm(n)
fc = δsm(ΣO

fm(n)
flat ∗ δwtn + ξ) (25)

where Ofm(n)
fc denotes the output of the FCL, δsm denotes the softmax function,

O
fm(n)
flat denotes the flattened vector, δwtn denotes the weight values and ξ

denotes the bias value

Lastly, the output images with labels are contained by the output layer. Next, the
appraisal of LF is done. Here, the weight values are optimised by the he-ChOA if
the target is not matched with that of the observed output. A metaheuristic algorithm
enthused via the individual intelligence along with the sexual drive of the chimps is
called ChOA. Grounded on the disparate abilities of the chimps (Khishe and Mosavi,
2020) together with their group strategy in updating their parameters, the successful
hunt is achieved on a chimp’s colony. Chimps population (i.e., the weight values to
be optimised) are separated into ‘4’ groups termed driver, barrier, chaser, together
with the attacker for the hunting procedure. The driver follows the prey, the barrier
blocks the prey’s escape route, the chaser moves quickly for catching the prey, and the
attacker predicts the escaping route of the prey to attack it. In ChOA, the algorithm’s
convergence speed is lessened by the random vector utilised for updating the prey’s
position (Zhang, 2021). The random vector is initialised utilising the he initialisation
technique for resolving this issue. The best initialisation strategy is the ‘he’ initialisation
(Datta, 2020). It initialises the values arbitrarily but with variance. The random values
are taken by this technique and it outputs the variation of those values approximately to
one. For augmenting the convergence rate, this variance calculation is helpful.

In the exploration phase, the competence to explore the prey position via driving,
blocking, as well as chasing is possessed by chimps. The initial position of the prey
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is located centred on the solution updated by the initial attacker, driver, barrier, along
with chaser to imitate the chimps’ behaviour. Next, the four best solutions attained are
stored. The other chimps are forced in updating their positions in the best solution. The
best solutions obtained are:

Dn=1,2,3,4 =


D(1) = Datt − α1.ratt

D(2) = Dchas − α2.rchas

D(3) = Dbar − α3.rbar

D(4) = Ddriv − α4.rdriv

(26)

where D denotes the position vector updated according to (Datt, Dchas, Dbar, Ddriv)
denotes the distance vector and α is the dynamic coefficient. The distance vector and
coefficient are expressed as:

r(att,chas,bar,driv)

=


ratt = |β ∗Datt − γ ∗Dchimp|, α1 = ζ1(2ϵ1 − 1)

rchas = |β ∗Dchas − γ ∗Dchimp|, α2 = ζ2(2ϵ1 − 1)

rbar = |β ∗Dbar − γ ∗Dchimp|, α3 = ζ3(2ϵ1 − 1)

rdriv = |β ∗Ddriv − γ ∗Dchimp|, α4 = ζ4(2ϵ1 − 1)

(27)

where β = 2ϵ2 and ζ are the coefficients, γ is the Chen chaotic vector.
Then, attack of the prey is done in the exploitation phase, which could be signified

by lessening the α value in line with the ζ value. The chimp’s subsequent position could
be at any point among its current position together with the prey’s location when the
arbitrary values of α are in the gamut of [1, –1]. The vector determines the convergence
for attacking the prey as well as divergence to look for the prey on the exploitation
phase, which is initialised utilising the ‘he’ as:

ζ = y(1,−1) ∗
√

2

y
(28)

where y implies the parameter on the gamut of [1, –1]. The variance of arbitrary values
is offered by the ‘he’-initialisation in the gamut of [1, –1] approximately to 1 by the
parameter called. The algorithm’s convergence speed is ameliorated.

Amid the hunting procedure, the chimps quit their responsibilities on account of their
sexual motivation. The updating strategy could be performed either by normal behaviour
or chaotic behaviour at this stage. It could be specified as:

Dchimp(i+ 1) =

{
Dpr(i+ 1)− α.r if ϕ < 0.5

γ if ϕ > 0.5
(29)

where ϕ ε (0, 1) implies the random vector that finds the updation behaviour. For
alleviating the local optima together with slower convergence rate issues, the chimps
might be assisted by the chaotic maps. The weight values are optimised.

After training, the testing of the target image is performed with a trained system on
the querying step. Here, the gap betwixt the trained system’s output and the target is
identified. Then, the outcome is returned as an authorised and unauthorised user.
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3 Results and discussion

In order to access the effectiveness of the proposed system, numerous experiments
are performed in this section. The experiments are conducted using Finger Vein USM
(FV-USM) Database (Asaari et al., 2014) which contains a total of 5,904 images
from 492 finger classes. For training and testing, 80% of data and 20% of data are
employed from this database respectively.The proposed FRS is implemented in the
working platform of Python.

3.1 Performance parameters

The efficiency of the proposed technique is analysed based on the metrics such
as sensitivity, specificity, false positive rate (FPR), false negative rate (FNR), false
discovery rate (FDR), false recognition rate (FRR), Matthew’s correlation coefficient
(MCC), negative predictive value (NPV), precision, recall, F-score, accuracy, pixel
signal to noise ration (PSNR) along with structure similarity index measure (SSIM).
These metrics are calculated based on the values obtained from the confusion matrix.
In predictive analytics, a confusion matrix is a table with two rows and two columns
that report the number of TP, FN, FP, and FN. This permits a more comprehensive
investigation than just perceiving the proportion of correct classifications. The
performance metrics are evaluated centred on parameters like true positive (t(p)), true
negative (t(n)), false positive (f (p)), together with false negative (f (n)). For a better
system, f (p) should be minimum and t(p) should be maximum.The equations for the
performance parameters are mentioned herewith.

3.1.1 Sensitivity

Sensitivity is a performance measure that describes the predictive performance of a
classification model. For finger vein recognition, to measure the effectiveness of a
proposed system, sensitivity measures the number of authorised finger veins identified
correctly that has a positive test result.

Sensitivity =
t(p)

t(p) + f (n)
(30)

3.1.2 Specificity

Specificity measures the number of mismatched finger veins (i.e., negative examples)
that have a negative test result. The correct identification of mismatched finger veins by
using the proposed system shows effective results.

Specificity =
t(n)

f (p) + t(n)
(31)

3.1.3 FPR

It is defined as the ratio betwixt the number of negative events wrongly classified as
positive (false positives) along with the total number of actual negative events. The
lower FPR shows better performance.
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FPR =
f (p)

f (p) + t(n)
(32)

3.1.4 FNR

It portrays that a finger vein does not match with any of the people when the person
actually has the matching results. The lower mismatching shows that the proposed model
identifies the person correctly, which shows that the system is more effective in terms
of recognition.

FNR =
f (n)

t(p) + f (n)
(33)

3.1.5 FDR

FDR is a technique of conceptualising the rate of errors during testing when
performing numerous comparisons. The FDR is the expected ratio of the number of FP
classifications (false discoveries) to the total number of positive classifications.

FDR =
f (p)

f (p) + t(p)
(34)

3.1.6 FRR

The FRR is the gauge of the probability that the biometric security system will
erroneously reject access attempt by an authorised user. A system’s FRR normally is
implied as to the ratio of the number of false recognitions divided by the number of
true positives and false negatives.

FRR =
f (n)

t(p) + f (n)
(35)

3.1.7 MCC

MCC is a correlation coefficient betwixt the predicted values along with the true values.
It returns a value between –1 and +1. When the predictions are perfect, the MCC will
be +1 and 0 for the imperfect recognition.

MCC =
t(p) · t(n) − f (p) · f (n)

[(t(p) + f (p)) · (t(p) + f (n)) · (t(n) + f (p)) · (t(n) + f (n))]1/2
(36)

3.1.8 NPV

NPV is a proportion of giving negative outcomes. It is defined as the number of TN
(people who test negative who does not have a matching finger vein) divided by the
total number of the person who assesses negative.

NPV =
t(n)

f (n) + t(n)
(37)
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3.1.9 Precision

The ratio of true positives to the total predicted positives is termed precision. It is the
degree to which a process will repeat the same value.

Precision =
t(p)

f (p) + t(p)
(38)

3.1.10 Recall

Recall defines the proportion of correct identification of actual positive results
(authorised finger veins). This means that, it measures the percentage of actual finger
veins that were correctly classified for recognising a person.

Recall =
t(p)

t(p) + f (n)
(39)

3.1.11 Accuracy

A parameter that usually elucidates how the model carries out across all classes is called
accuracy. It is helpful when all classes are of equal significance. It is computed as the
ratio betwixt the number of correct predictions to the total number of predictions.

Accuracy =
t(p)

t(n) + t(s)
(40)

3.1.12 F-score

The F1-score merges the precision along with recall of a classifier into a single metric
by taking their harmonic mean. Therefore, both TP and FN are considered in this score.

F − score = 2 ∗ Precision ∗Recall
Precision ∗Recall

(41)

3.1.13 PSNR

PSNR is the ratio betwixt the original and compressed image expressed in decibels. This
ratio is utilised as a quality measurement betwixt the original and a compressed image.
The superior the PSNR, the superior the quality of the compressed or reconstructed
image, formulated as:

PSNR = 10 log10
MAX2

MSE
(42)

where in MAX signifies the maximum possible pixel value of the image and MSE
denotes the means square error.
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3.1.14 SSIM

A perceptual metric that quantifies image quality degradation engendered by processing
like data compression or by losses in data transmission is termed the structural similarity
index (SSIM). It is a complete reference metric that needs ‘2’ images from the same
image capture such as a reference image along with a processed image.

PSNR = 10 log10
MAX2

MSE
(43)

where µx denotes the average of x and µy denotes the average of y. The variance of x
is denoted by σ2

x and the variance of y is denoted by σ2
y . σxy denotes the covariance of

x and y. c1, c2 are the two variables to stabilise the division with weak denominator.

3.2 Performance analysis

The proposed technique’s performance is correlated with the prevailing artificial
neural network (ANN) (Kumar and Vikram, 2010), deep convolution neural networks
(DCNN) (Deshpande et al., 2020), convolution neural networks (CNN) (Wong and
Lai, 2020), recurrent neural networks (RNN) (Ackerson et al., 2020) and generative
adversarial networks-based CNN (GAN CNN) to authenticate the efficiency of the
proposed WS-progressive-GAN-based he-CHOA-CNN methodology centred on some
quality metrics. On the grounds of pixel signal to noise ration (PSNR) and SSIM, the
performance of the proposed RCLAHE and existing contrast limited adaptive histogram
equalisation (CLAHE) (Vidyarthi and Malik, 2021), histogram (Liang et al., 2012),
along with Gaussian filtering (Khan et al., 2017) is examined. The proposed he-ChOA,
along with prevailing ChOA (Khishe and Mosavi, 2020), crow search optimisation
(CSO) (Hussien et al., 2020), rat swarm optimisation (RSO) (Dhiman et al., 2020), and
Harish Hawks optimisation (HHO) (Heidari et al., 2019) techniques, are then subjected
to fitness vs. iterations study.

Figure 3 Performance analysis of proposed and existing methods based on sensitivity,
specificity and accuracy (see online version for colours)
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3.2.1 Performance analysis of generative adversarial networks-based CNN
(GAN CNN)

The sensitivity, specificity, along with the accuracy of the prevailing along with
proposed techniques is assessed in Figure 3. The most vital parameters like
sensitivity, specificity and accuracy are reliant on true-positive (TP), true-negative (TN),
false-positive (FP) and false-negative (FN). The sensitivity of prevailing methodologies
like ANN has 91.3256, DCNN has 92.8574, CNN has 93.6258, RNN has 95.1485,
and GAN CNN has 96.1863, which are smaller than the proposed technique, that
is, 97.2458. The proposed method has greater specificity and accuracy values of
96.3258 and 97.78459 respectively. On comparing with the proposed technique, the
prevailing model accomplishes lesser specificity and accuracy. Therefore, the enrichment
made in the proposed techniques effectively acknowledges the FV than the prevailing
methodologies, and also it is evident from the aforesaid investigation.

Figure 4 Performance analysis of proposed and existing methods based on precision, recall
and F-measure (see online version for colours)

Figure 5 Performance analysis of proposed and existing methods based on MCC, NPV and
FPR (see online version for colours)
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Figure 6 Performance analysis of proposed and existing methods based on FNR, FRR and
FDR (see online version for colours)

On basis of precision, recall, and F-measure, the proposed and prevailing technique’s
performance is exhibited in Figure 4. The metric that measures how many correct
positive forecasts have been made is termed precision. The percentage of total
appropriate outcomes accurately categorised by the algorithm is called recall. For
generating a single score that accounts for both precision and recalls concerns in a single
number, F-measure is used. The precision and recall of the prevailing ANN, DCNN,
CNN, RNN and GAN CNN are 91.5633 and 91.3256, 92.3254 and 92.8574, 93.3322
and 93.6258, 95.2477 and 95.1485, and 96.0285 and 96.1863. The Precision and
Recall for the proposed method achieve greater values, such as 97.2547 and 97.2458.
The proposed work has good performance than the prevailing techniques concerning
F-measure. The proposed work is superior to the prevailing techniques, as evident from
the preceding analysis.

Centred on the MCC, NPV, and FPR, the proposed and prevailing technique’s
performance are evaluated in Figure 5. The NPV calculates how many of all negative
forecasts were correct. With the predicted classes, the MCC measures the true classes.
The prevailing, DCNN, CNN, RNN, and GAN CNN have MCC of 89.3322, 90.1245,
91.5478, 92.3647, and 93.1794, but the proposed technique has an MCC of 94.3265.
On comparing with the prevailing techniques, the proposed one has a greater value of
MCC. When analogised to the proposed approach, existing ANN and DCNN have lesser
performance, while existing CNN and RNN have medium performance regarding NPV.
The FPR value acquired from the proposed is 0.1247, and it is extremely smaller than
the prevailing techniques. Therefore, the proposed technique produces better outcomes
than the prevailing approach.

The proposed together with the prevailing technique’s FNR, FRR, and FDR are
exhibited in Figure 6. For the system to work well, the negative measures like FNR,
FRR, and FDR should be less as possible. The proposed one has decreased the
FNR, FRR, and FDR values to 1.2254, 3.2478, and 4.3257 respectively. FNR, FRR,
and FDR have the largest values for ANN and DCNN, and they are 31.2487 and
24.6325, 41.2589 and 32.9854, and 47.21245 and 34.89565 respectively in the prevailing
approaches. Thus, the proposed strategy produces superior outcomes for all metrics than
the prevailing techniques, and also it is clear from the above analysis.
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3.2.2 Performance analysis of proposed RCLAHE method

The PSNR of the proposed and prevailing approaches is illustrated in Figure 7. The
proposed technique achieves a PSNR of 30.01731%, while the CLAHE has 9.48688%,
histogram has 14.87275%, and Gaussian filtering has 19.26135% in the prevailing
model. Thus, the proposed methodology outperforms the prevailing techniques on
account of the enrichment. Therefore, the proposed model improves image contrast more
efficiently than the prevailing methodologies.

Figure 7 Performance analysis of proposed RCLAHE with existing methods based on PSNR
(see online version for colours)

Figure 8 Performance analysis of proposed RCLAHE with existing methods based on SSIM
(see online version for colours)

Centred on SSIM, the performances of the proposed and prevailing methodologies are
depicted in Figure 8. The prevailing CLAHE, histogram, and Gaussian filtering have
an average SSIM of 0.60501, 0.59066, and 0.89233. However, on comparison with the
prevailing techniques, the RCLAHE achieves an average of 0.97897 SSIM which is
higher. Thus, in contrast to the prevailing techniques, the proposed work performs better.
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3.2.3 Performance analysis of proposed ChOA

The total iterations engaged for the analysis differ as 10, 20, 30, 40, and 50, which is
exhibited in Figure 9. The prevailing techniques like ChOA, CSO, RSO and HHO have
the fitness value of 74.3256, 62.32568, 54.6532, and 48.32459 respectively, whereas
the proposed model accomplishes 89.3256 of fitness value, for the ten iterations. In
the proposed technique for the remaining 20 iterations, 30 iterations, 40 iterations,
and 50 iterations, the fitness values are 102.3256, 112.4578, 124.3256, and 132.1245
respectively. Hence, for the diverse number of iterations the prevailing models have
lesser fitness value in relation to the He-ChoA technique.

Figure 9 Performance analysis of proposed ChOA (see online version for colours)

Figure 10 Computational cost analysis (see online version for colours)

Figure 10 shows the computational cost of the proposed work with prevailing works.
The proposed work attains computation time that is lesser than the values attained by
the prevailing works. The computation time attained by the proposed he-ChOA-CNN
technique is 54,302 ms, whereas existing DCNN, CNN, RNN, and ANN are, 61,481 ms,
74,238 ms, 84,756 ms and 99,991 ms. By comparing the computation time of the
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proposed and existing model, the proposed one outperforms the other existing technique
by showing less time than the others. Therefore, it is guaranteed that the proposed
system achieves more efficient performance than others.

Figure 11 Training and testing time analysis (see online version for colours)

Figure 12 Accuracy analysis of proposed classifier (see online version for colours)

Figure 11 depicts the training and testing times of the proposed methodology and
the prevailing works. The proposed technique attained the training and testing time
of 18,070 ms and 18,000 ms which are lower than the prevailing methods. The
existing techniques require the training time of 23,299 ms (DCNN), 32,165 ms (CNN),
43,290 ms (RNN), and 55,120 ms (ANN). Also, the testing time taken by the proposed
system to recognise the authority of finger veins is, 23,100 ms, 32,105 ms, 43,209 ms,
and 55,101 ms for DCNN, CNN, RNN, and ANN respectively. When analogised to the
prevailing techniques, the training and testing time of the proposed system is lower. The
superior outcomes of the proposed technique show the improvement in the proposed
model’s efficiency.



A secure finger vein recognition system 65

To reiterate the performance of the proposed classifier, it is compared with the
adaptive k-nearest centroid neighbour (akNCN) (Rosdi et al., 2011) in terms of accuracy.
The comparison is depicted in the form of Figure 12. The proposed classifier attains the
value of 97.78% while the existing work acquires the value of 85.64%. The superior
results of the proposed method show the efficiency of the improvements made in this
work.

4 Conclusions

An efficient FV recognition system for authentication is proposed. Presenting an
effectual FP reconstruction system using a WS progressive GAN and he-ChOA-CNN
classifier is the main goal here. Seven phases are there in the proposed work. The data
gathered as of the publicly available dataset is employed for analysing the proposed
model’s performance. Concerning the accuracy, precision, recall, F-measure, sensitivity,
specificity, NPV, FNR, MCC, FRR, FDR and FPR, the proposed he-ChOA-CNN’s
performance is analogised to the ANN, DCNN, CNN and RNN. High performance is
obtained by the proposed work for all metrics. The recognition accuracy of 97.78459
is attained by the he-ChOA-CNN. Analogised to the prevailing methods, the analysis
proves that the proposed scheme and its efficiency for recognising the identity of the
person utilising FV are better. In the future, more advanced algorithms can well be
incorporated in the proposed work for improving performance.
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