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Abstract: This article focuses on the problem of fault estimation of nonlinear
descriptor systems (NLDS) using intelligent approaches. Firstly, an extended
Kalman filter for descriptor systems is employed for state estimation. Then,
the residuals are generated and mapped to detect and confirm the fault.
Finally, machine learning approach and neural network models are used to
estimate faults. For machine learning approach, Gaussian process regression is
employed to estimate fault magnitude. Additionally, a back propagation neural
network is also applied for fault estimation. The efficacy of the proposed
methods are demonstrated with the help of benchmark chemical mixing tank
descriptor system (Yeu et al., 2008) and two-phase reactor and condenser with
recycle (Kumar and Daoutidis, 1996). It is observed that the Gaussian process
approach outperforms neural network-based approach for fault estimation.
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1 Introduction

In today’s world, a multitude of technologically complex systems are sporadically
subject to faults which might result into catastrophic consequences (Li, 2016) for
personnel, system and environment. A fault may occur in a system due to improper
operation, usage, mounting, non-adherence to limits, ageing and unsuitable operating
environment of system component/s or its subsystems. A closed-loop control action
may also hide a fault from being observed (Blanke et al., 2001). On account of this,
the stability and performance of the closed loop system may degrade or may even
result in unforeseen consequences; causing economical loss or industrial accidents where
damage, injury or loss of life may occur as evident from historical incidents like
Chernobyl plant accident, Bhopal gas tragedy, etc. (Li, 2016). In order to prevent
such industrial accidents, reliable control systems can be attained by appropriate fault
diagnosis and control either by analytical redundancy or redundant hardware which
enables a system to take necessary actions in presence of fault/s. The control action
applied in such situations can diminish the risk as well as ensure nominal operation of
the process/system until next shutdown. This control effort largely depends upon the
type and magnitude of the fault. Thus, fault diagnosis play a critical role in the fault
tolerant control framework which can prevent life-hazards or industrial accidents by
acting in a timely manner.

The fault diagnosis methods are generally classified as system model-based,
signal-based or knowledge-based methods. A variety of systems can be conveniently
modelled in descriptor/differential algebraic equation (DAE) form. Such systems
include chemical processes, power systems, electrical circuits, mechanical systems,
thermodynamic processes, water distribution networks, vehicle dynamics, etc. These
systems require deliberate approaches to address peculiar issues such as requirement
of some variables to be differentiable, consistent initialisation, etc. unlike conventional
ordinary differential equation (ODE) systems. Descriptor systems tend to show
impulsive behaviour for arbitrary initial conditions while numerical methods can fail
if certain variables are not differentiable. On the other hand, such systems can be
converted to ODEs but they eventually result into numerical errors (Mandela et al.,
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2010). Additionally, the resultant system will possess canonical variables that might not
have any physical significance. Hence, these systems are considerably different than
conventional state space systems and need to be dealt with explicitly.

The fault diagnosis as well as fault tolerant control methods (Zhang and Jiang, 2003;
Zhang et al., 2002, 2008; Das et al., 2014; Igbal et al., 2019; Wu et al., 2011; Isermann,
2005) have been well developed for conventional system representations. While majority
of works (Zhang et al., 2002, 2008; Das et al., 2014; Igbal et al., 2019) have focused on
conventional state space systems, the problem of fault diagnosis for descriptor systems
is not investigated thoroughly. Additionally, such studies tend to focus on issues of
fault detection and isolation and sometimes seem to discount the importance of fault
estimation. On the other hand, majority of works (Qiao et al., 2017; Sjoberg, 2006;
Rao et al., 2003; Masubuchi et al., 1997) exhibit considerable interest in research on
identification and control of descriptor systems. However, many areas pertaining to fault
diagnosis of descriptor systems have received minimal attention. It is observed that the
problem of fault detection and isolation (Patel et al., 2019; Taqvi et al., 2018; Hamdi
et al.,, 2012; Alkov and Weidemann, 2013; Huang et al., 2003; Patel et al., 2020b)
of descriptor systems has been addressed frequently and well studied. On the other
hand the fault estimation of NLDS has been analysed by various approaches based on
observers in frequency domain (Chan et al., 2019a), sliding mode observers (Chan et al.,
2019b, 2019c¢) recently to other approaches that rely on simultaneous state and fault
estimation (Witczak et al., 2016; Shi and Patton, 2014) or dedicated observers that utilise
a multi-model approach (Jia et al., 2015; Wang et al., 2013). Of these, some works
(Chan et al., 2019a; Witczak et al., 2016; Shi and Patton, 2014; Jia et al., 2015) for
descriptor systems which focus on fault estimation by dedicated observer or augmented
observer design require linear matrix inequality (LMI)-based approaches to determine
observer gains for fault estimation. In this design methodology, the problem needs to be
cast or recast as semi-definite programming (SDP) problems which at times can be an
inconvenient process. Moreover, the problem of fault estimation for descriptor systems
which draws upon powerful and modern methods based on artificial intelligence (AI)
has rarely been addressed except for few investigations (Wang et al., 2014; Vemuri et al.,
2001) and hence requires critical attention. Recently, the status of machine learning
algorithms for processing large amounts of data, application issues and challenges are
discussed (Wang et al., 2022). The fault estimation which is an integral component
of fault diagnosis is a challenging issue that has been addressed by some researchers
(Sun et al., 2021; Qi et al.,, 2018). The use of deep learning techniques, including
artificial neural networks, recurrent neural networks, and other machine learning models
to directly model the relationship between the input and output is discussed. In Sun
et al. (2021), the performance of soft computing-based approaches for fault diagnosis is
evaluated and analysed comparatively. These techniques have the advantage of handling
complex nonlinear relationships, and they have demonstrated superiority over traditional
methods in various applications.

The investigation carried out in this paper derives its motivation from various works
(Vemuri et al., 2001; Wang et al., 2014) which are applied for fault diagnosis as well
as other most recent works (Lee et al., 2018; Myren and Lawrence, 2021; Fugh et al.,
2022) that dissect the topic of Gaussian processes, however, limited to the domain
of machine learning. In this study, we hereby evaluate two different approaches for
fault estimation of nonlinear descriptor system (NLDS). These approaches are based
on back propagation neural networks and Gaussian processes that rely on a common
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dataset for modelling/training respectively. It is worthy to mention that the machine
learning-based approach for fault estimation shown in this work is rarely assessed in
any study. The approaches employed in this study differ from the methods applied in
various investigations. In Vemuri et al. (2001), an online approximator in the form of
sigmoidal neural networks is employed for fault diagnosis of linear descriptor systems.
It assumes that the state variables are readily available. Additionally, in contrast to
Vemuri et al. (2001), the approaches for fault estimation in this study is only dependent
on residual information. In Wang et al. (2014), a radial basis function (RBF) neural
network is implemented to model actuator faults for a class of NLDSs which is further
estimated by an adaptive observer. In that, the neural network is not directly involved
in the process of fault estimation itself but it is utilised to represent the fault. For the
approach considered in this work, the neural network explicitly performs the function
of fault estimation. It should be noted that fault estimation is a non-trivial problem
since the output is fault magnitude unlike fault detection and isolation which provides
information only in qualitative terms. Further, the technique of fault estimation proposed
on Bayesian approach of machine learning has rarely been employed for fault estimation
of NLDSs. Thus, the proposed approaches are in stark contrast with earlier works.

The rest of the article is organised as follows. In the next section, we first
describe the approach of fault detection based on residual generation and evaluation.
In the subsequent sections, we describe the methods of fault estimation. Lastly, these
approaches are implemented on a chemical mixing tank NLDS (Yeu et al., 2008) and
two phase reactor and condenser with recycle (Kumar and Daoutidis, 1996) for which
the results of fault estimation are put forth.

2 Fault detection

In order to detect the occurrence of fault, the residual signal is required (Mohanty et al.,
2012; Singhal et al., 2022; Kantharia et al., 2014; Kamdar et al., 2015; Patel et al., 2019,
2020a, 2020b, 2013). Since the residual signal can be generated from the knowledge
of state estimates, the state estimation approach avails the use of an extended Kalman
filter (Mandela et al., 2010) for NLDSs. Several modifications of the same are further
studied (Patel et al., 2020a; Purohit and Patwardhan, 2018). The EKF filter for descriptor
systems (Mandela et al., 2010) is featured briefly by block diagram presented in Figure 1
and the necessary details of the same are put forth.
Consider a NLDS with sampling time At expressed as

(k+1)At
.i‘k+1 =T+ /kA f(l‘(t), Z(t))dt + W41
T
g(x(t),z(t)) =0, kAT <t < (k+ 1)At (1)

where x € R™" is differential state, & is estimated differential state, z € R” is algebraic
state and the function g(z(t), 2(¢)) defines algebraic constraints. As shown in Figure 1,
the algebraic constraints are employed by constraint solver block in the process of

algebraic state estimation. It can be easily perceived that [z] is descriptor state vector.
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Additionally, w1 is process noise with zero mean and known covariance given by
matrix (). The system output as a function of descriptor state vector can be given as

Yks1 = P(Trs1, 2h41) + Vgt (2)

where vy is measurement noise with zero mean and known covariance matrix R, h
is the measurement model and y is system output/s. For the given system expressed by
equations (1)—(2), the EKF determines the estimate of g, i.e., Tx and z, i.e., Z; given
the observations y;, along with the knowledge of input and initial states. It should be
noted that the system [equations (1)—(2)] eliminates consideration of system input for
the sake of simplicity.

Figure 1 Block diagram: EKF for descriptor systems (see online version for colours)

The system expressed above by equation (1) can be linearised as

T = Az + Bz
0=Cz+ Dz 3)
where
AB 97 9f
on) =154
ox 0z

From equation (3), the following can be obtained
0=Ci+ Dz 4)
and then rearranged into

3 =-D"Ci 5)
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Since & = Ax + Bz the equation (5) yields into
3=—-D"'CAx — D 'CBz (6)

which is further used to augment the original system. The augmented system then
becomes

[ﬂ - [—DAlCA —DBch} m @)

for which a brief representation can be
JOUI — AOupaug (8)

where 2“9 and A®“9 can be easily inferred from equation (7). The EKF algorithm
starts by propagating the descriptor states forward by suitable solver from current time
instant to next time instant. The covariance matrix of the augmented states can be given
as

P = oPIT 4+ TQpyr I ©)

-D~1iC
The Kalman gain is then computed as

where ® = ¢(A""7AY) and T' = [ ! }

T T -
Kit1 = Pep HY (HRY P HYYD +R)™Y (10)
Further, the state estimate with the knowledge of Kalman gain and sensor information
can be updated as

Trr1 = Trgapk + K1 Ukt — R(Ergaje, Zeraie) (11)

The correction of state estimates is also displayed in Figure 1 as seen from the top
left corner. From the resultant descriptor states, the differential states are retained and
utilised to compute the algebraic states by solving the constraint equation as

9(Zry1,2p41) =0 (12)

which obtains the improved estimate for the algebraic state estimate. The constraint
solver shown in Figure 1 represents the same. It also ensures consistent initialisation of
solver during next iteration. Finally the covariance matrix Py is updated as
aug __ aug rraug aug

Pl == Kk+1Hk+1)Pk+1\k (13)
and the EKF filter proceeds to next iteration. Further, the measurement model given
by equation (2) is utilised to predict system output from estimated states. Next,
the difference between the measured output and estimated output facilitates residual
generation. The innovation or residual signal can be expressed as

Ti = Yn — ﬁ (14)
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where i € [1,q], y, € R? is measured output/s and § € R? is predicted output/s.
Subsequently, the innovation sequence may then be passed through a filter or mapped
using a residual evaluation function. The residual evaluation function employed in this
case is a root mean square (RMS) function. The RMS value measures the average energy
of the signal over a certain time interval. The RMS value of the signal can be defined
as the square root of the mean of the squares of a set of signal magnitude. The RMS
value is denoted by ||.||rass. In case of discrete system for n samples of signal, the
RMS value can be given as

1
||T(k)||R1\/IS = \/n (7']% + 7’]%71 + 7”%72... + T/%*’n,) (15)

which can be briefly represented as

(k)| raes =

1 n
= llreill? (16)
n =1

Figure 2 Block diagram: fault detection and fault estimation (see online version for colours)

Intuitively, it can be understood as a moving window/buffer that considers sample data
points of residual signal from 7y, to r5_,; where n is the number of signal samples. The
solution to the fault detection problem can be posed as

lrl|rRars < |7l Rarsmin of ||7||Rars > |7 RM Smae; fault detected
I*lrrrsmin < 7 < |7l RMSmaz; fault free, nominal operation 17)
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such that ||7|| ramrsmin and ||7|| Rassmae are minimum and maximum value of ||7|| rass-
These minimum and maximum values of residual signal can be determined from
nominal system operation. The overall block diagram of the entire process for state
estimation, fault detection and fault estimation is presented in Figure 2. In that, the
residual is mapped by RMS function and checked whether any thresholds are violated.
If any thresholds are exceeded, a window of certain time period is chosen to confirm
the fault. During this window, the mapped residual signal should constantly violate
respective thresholds in order to confirm the fault. After the existence of fault is
confirmed, the fault estimation block is activated to estimate the fault magnitude. As
shown in Figure 2, the intelligent fault estimation approach relies only on residual
information in order to estimate the fault.

3 Fault estimation

The problem of fault estimation is evaluated thoroughly within this study. In contrast
to fault detection, it should be recalled that the problem of fault estimation is complex
and critical within framework of fault tolerant control. As shown in Figure 2, upon
detection of fault, the fault is confirmed provided that the threshold is continuously
violated for certain number of consecutive time instants. Further, the fault estimation
module determines the magnitude of the confirmed fault which can be further utilised
for control.

The intelligent fault estimation can be realised by a machine learning algorithm
that possesses regression capabilities such as linear regression, logistic regression, ridge
regression, Lasso regression, Bayesian regression and others. The simplest form of
regression is linear regression and can be used to determine the relationship between
two variables which is presumably linear. The logistic regression can be opted when
the dataset is large such that there is almost equal occurrence of values to predict in
target variables. On the other hand, the ridge regression is used when there is a high
correlation between the independent variables. In contrast to ridge regression where
the regression coefficient value is larger, Lasso regression performs regularisation of
regression coefficient along with the advantage of feature selection to build a model.
This feature subset prevents over-fitting of the model. Lastly, the Bayesian regression
is based on Bayes theorem to determine the value of regression coefficients. In this
method of regression, the posterior distribution of the features is determined instead
of least-squares approach. Bayesian regression is similar to both linear regression and
ridge regression but more stable than the simple linear regression. Thus, Bayesian
regression-based approach such as Gaussian process regression (GPR) can be a good
choice to establish the relation between residuals and fault magnitude. On the other
hand, the neural network-based approach can also be applied to model the relation
between different variables. The two approaches considered in this paper, namely, neural
network-based approach and GPR-based approach are discussed further.

3.1 Neural network approach

In Vemuri et al. (2001), the neural network-based approach utilises state information
along with inputs to estimate the fault. In contrast, the proposed approach relies only on
residual information to estimate the fault magnitude. Additionally, Vemuri et al. (2001)
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uses a dead zone approach for fault detection which may render itself incapable to detect
low magnitude faults. In the proposed approach, the fault isolation scheme activates
a pre-trained neural network for fault estimation. A backpropagation neural network
(BPNN) alternatively known as multilayer perceptron or Feedforward neural network is
employed in this case.

A neural network is made up of simple processing units that can store experiential
knowledge and process new information. Consider the neural network of Figure 3. Each
neuron within a neural network performs two distinct computations

1 z=wlz+d

2  a=o0(z), where w and b are vectors for weights and bias respectively. « is input
and o(z) is activation function which is hyperbolic tangent in this case.

Alternatively, a can be expressed as g(z) meaning the same. For a given network of
Figure 3, the forward pass can be given as
The forward propagation can be given as

P07 e PO R ARY
all = g(zM1)

121 2l (1) pl2]

al?l = g(z[ ])

S8 — B2 4 gl

g = a = (1) (18)

The output § from the neural network can be used to determine error with the help of a
loss function. The Least squared error is most commonly used loss function and denoted
by L. Based on the scalar output from the loss function the following weight update for
a certain layer [ can be performed

oL
0 —wll — g2
W =W STl (19)
Similarly,
oL
0 — plll — (2=
b =1 Ol (20)

where « is the learning rate. In order to perform the above update, the gradients
must be found. The backpropagation method can be extended to neural networks of
different structures and different sizes. In order to apply this to problem at hand, the
residuals and fault magnitude form the dataset. The residuals are the inputs while known
fault magnitudes become the targets during the training stage of neural network. After
pre-defined number of epochs or no scope of further improvement, the update of the
hyper-parameters terminate. The trained model can then be tested with values that were
never presented earlier in order to determine the prediction accuracy of the neural
network model. If appropriate, the neural network can then be implemented online to
determine the fault magnitude for given residuals.
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Figure 3 Two layer neural network (see online version for colours)

3.2 GPR approach

The machine learning approaches are rarely explored for descriptor systems. In contrast
to earlier studies (Igbal et al., 2019; Kankar et al., 2011), where deep learning (Igbal
et al., 2019) and SVM (Kankar et al., 2011) is employed for fault detection and isolation,
the machine learning approach employed in this case relies on Gaussian processes and
addresses the issue of fault estimation.

GPR is a powerful, non-parametric Bayesian approach towards regression problems
(Schulz et al., 2018). A Gaussian process defines a distribution over functions such that
it follows a joint (multivariate) Gaussian distribution. The GPR computes the probability
distribution over all admissible functions that fit the given set of data. In GPR, the
output y of a function f can be expressed as

y=f(z)+e 21

where x is the input and ¢ is noise such that ¢ ~ N(0,02). Additionaly, the function
f(z) is considered to be a random variable which follows a Gaussian process
distribution given as

f(@) ~ GP(pu(z), k(z, ) (22)

where 2’ denotes another data point. The mean function p(x) in a way states the
expected function value at input = which is the average of all functions evaluated at
input x. This can be expressed as

p(x) = E[f(x)] (23)

The prior mean function is mostly set to () = 0 so as to avoid any expensive posterior
computations. Additionally, k(z,z’) is covariance function (or kernel function) that
captures the dependence between two different input points = and z’ given as

k(z,2') = E[(f(z) — p(z)(f(2) — p(a")] (24)
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There are various options available for the choice of a kernel function such as squared
exponential, rational quadratic, exponential kernel, matern 3/2, matern 5/2, etc. One of
the most commonly employed kernel is squared exponential which can be expressed as

_ ! 2
k(xz,2') = 0]20 exp (1’2)\32v||> (25)

In equation (25), the hyper-parameters A is length scale while aj% represents signal
variance. These hyper-parameters can be varied in order to change the apriori correlation
between points.

Now for a given set of data D = {X;,y;}, in order to make predictions for new
inputs X by drawing f from the posterior distribution, then the distribution can be given
as

A~ O™ ) @

where K denotes respective covariance matrices between respective points, [ is identity
matrix.

The conditional distribution p( f | X+, v, X ) is then a multivariate normal distribution
with mean

K(X, X)[K(Xy, X¢) + 021ty (27)
and covariance as

K(X,X) - K(X,X)[K(X¢, Xs) + 0217 K (X4, X) (28)
It should be noted that the above posterior is also a Gaussian process with mean function

pi(x) = K (2, X)[K (X¢, X)) + 021) "y, (29)
and the kernel is

ki(z,2') = k(z,2") — K(z, X¢)[K(Xs, X¢) + 021) 7 K (X, 2') (30)
To predict, the mean of equation (29) or sampled functions from the Gaussian process
with this mean function and the kernel expressed by equation (30) can be used. The
problem of fault estimation can be viewed as a fault being a function of residuals and
modelled to predict the fault magnitude. As discussed, a set of observations can be used

to fit a GPR model. This model can then be employed to predict the fault for a given
input (residual).
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4 Results and discussion

4.1 Case study 1

In order to assess the approaches described earlier, a physical system of chemical mixing
tank (Yeu et al., 2008) in descriptor form is considered as depicted by Figure 4. Each
mixing tank has standpipe which facilitate for a descriptor system formulation. The
system has two inputs (g1, q4) which provide inflow of chemical to tank 1 and tank 2
respectively. It has three outputs (gs, ¢5, ¢5). On account of standpipes, any excess fluid
will overflow and ensures that the heights h; and ho are constant. Further, the dynamic
model of the system can be obtained given as

Vics = ci1q1 + c2q2 — c3q3
Vacs = c3q3 + c4qs — c5¢5 (31)

and the equilibrium relations/constraints can be given by

q3 =q1+ q2
G5 = g3+ qa (32)

Consider the following representation where input, descriptor variables and outputs are
denoted by

e Inputs: u(t) = [uy uQ]T = [q1 q4]T.

e  Descriptor states: x(t) = [ml T2 T3 x4]T = [03 C5 G3 %}T

e Outputs: y(t) = [y1 y2 ys]T = [gs¢5 %}T

On utilising the above variable definition in equations (31) and (32), an alternate
representation can be obtained as

ViZ1 = crug + caqo — w173

Vodia = w173 + cauz — T2T4

ur+qg2—x3=0

T3+ us —x4 =0 (33)

Additionally, the system parameters are tabulated in Table 1. Firstly, the results of
state estimation for physical system are put forth. The simulation time step is dt = 1s

. . o T
while the system states and estimator states are initialised as xg = zof = [0000] .

The process noise covariance matrix is considered to be @ = 0.0025 0 while
0 0.0025
0.01 0 0
the measurement noise covariance matrix is R = | 0 0.0025 0 |. Furthermore, the
0 0 0.01

initial error covariance matrix is assumed to be Py = I4x4. As evident from the results
depicted in Figure 5, the state estimates are in good agreement with the system states.
It is also noticeable that the estimated states track the system states even in dynamic
conditions.
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Figure 4 A chemical mixing tank system

Source: Yeu et al. (2008)

Figure 5 Estimation results for chemical mixing tank NLDS (see online version for colours)

Next, the state estimates are utilised to predict system output that in turn is utilised
to generate residuals. The residuals are mapped by a RMS evaluation function. The
thresholds are obtained from nominal conditions of system operation. These thresholds
are further utilised to assess the problem of fault detection in a brief manner. In
this study, a window of n = 10 samples was considered for residual evaluation. The
thresholds were identified from nominal operating conditions to be [0.19 0.06 0.18]7.
A fault is detected when any residual evaluation signal violates their respective
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threshold. Further, the occurrence of fault is confirmed considering a window of n = 5
samples. Now, in order to evaluate fault detection; actuator fault in wu; is considered. The
faults are introduced around time ¢ = 300 s for simulation results presented in Figure 6.
In Figure 6, the residual evaluation signal is plotted along with respective thresholds
for an under-actuation fault in actuator u; (of —10%). It should be recalled that y € R?
and hence r € R3. All mapped signals continue to remain well within threshold limits
before time ¢ = 300 s. It should be noticed that the magnitude of the residual evaluation
signals are small before ¢ = 300 s which implicitly denotes negligible estimation error.
As evident in Figure 6, all mapped residual signals suddenly peaks after time ¢ = 300 s
and violate respective thresholds indicating the occurrence of a fault. The threshold
violations stand true consecutively for five time instants which confirm the fault. Thus,
the occurrence of fault is detected and confirmed. In order to evaluate the approaches of
fault estimation, a dataset is generated which is availed by fault estimation approaches.
All of these approaches learn/generate a model from this dataset. The considered
approaches are demonstrated on estimation of fault magnitude for a fault that occurs in
actuator u;. In order to do so, the dataset containing residuals and fault magnitude was
generated for actuator u; wherein discrete fault values with step size of 10 and range of
-100% to 100% was considered. Hence, the dataset generation was performed for values
as follows: fault in actuator u; = [-100% —90% —80% ... 80% 90% 100%]. For each
magnitude of fault shown above, a training dataset was generated which consisted of
residuals and fault magnitude. The simulation for training dataset generation was carried
out for a time horizon of ¢ = 200 s where the fault in u; was introduced at around ¢ =
100 s. The entire training dataset to be presented to respective models was formed by
appending all such datasets generated.

Figure 6 Residual evaluation signal vs. threshold: —10% fault in u; (see online version
for colours)

The neural network structure employed for fault estimation is shown in Figure 7 which
consists of one input layer, two hidden layers and one output layer wherein the hidden
layers consist of five and three neurons respectively. The neural network was trained
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with residuals as input and normalised fault magnitudes as outputs. The results of
training the neural network depicts R values of 0.9 indicating that the trained model can
predict fault magnitudes that are close to actual fault magnitudes.

The trained BPNN is further assessed by applying varying abrupt fault for actuator
uy. A fault of 20% magnitude was introduced in actuator u; around time ¢ = 400 s. All
fault estimation results presented in this work are continuously averaged over a window
of five samples. As evident from Figure 8, the abrupt actuator fault of chemical mixing
tank system is tracked by the backpropagation neural network in a satisfactory manner.
Additionally, when the fault is constant, the neural network is capable to estimate the
fault. In order to assess it further, during another simulation, a fault of —10% magnitude
is introduced in u; at t = 400 s. The fault estimation results for the same are presented
in Figure 9 and found to be satisfactory.

Table 1 System parameters

Concentration of chemical 1 c¢; 4 mol/l
Concentration of chemical 2 co 2 mol/l
Concentration of chemical 4 c4 1 mol/l
Volume of liquid in mixing tank 1 V; 40 1
Volume of liquid in mixing tank 1 V5 501
Input flow rate (steady state) g1 51s
Input flow rate (steady state) g 6 1/s
Flow rate of chemical 2 g2 31/s

Figure 7 Backpropagation neural network structure for fault estimation (for case 1)
(see online version for colours)

Further, the GPR approach is also analysed for fault estimation. The GPR model
is structured to have pure quadratic as basis function while squared exponential as
kernel function. As mentioned earlier, the training dataset tends to be the same
as utilised earlier in case of backpropagation neural network. For fitting the GPR
model, the residuals were provided as inputs and fault magnitudes as expected values.
Subsequently, the trained GPR model is then examined for actuator fault estimation
of chemical mixing tank system. The results of fault estimation via GPR appraoch
is included in Figures 8-9. It can be easily perceived that the fault estimates are
in excellent agreement with the actual fault. The GPR-based fault estimation shows
superior performance as compared to neural network approach. The backpropagation
neural network-based fault estimation approach exhibits some noisy behaviour. In
contrast, the fault estimation performance of GPR model is excellent in terms dynamic
response as well as fault estimation for constant value of fault.
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Figure 8 Actuator (u1): abrupt fault estimation by NN and GPR approaches
(see online version for colours)

Figure 9 Actuator (u1): abrupt fault estimation by NN and GPR approaches
(see online version for colours)

In terms of steady state performance, as evident from Figure 89, the GPR is less
noisy as compared to NN approach. As observed, the dynamic response of BPNN and
GPR is almost similar for chemical mixing tank system. A quantitative analysis of the
approaches considered in this work is tabulated in Table 2 for which the results are
averaged over 50 simulations. The fault estimation performance quantised in terms of
mean square error shows that the MSE value of GPR is less than that of NN. Hence it
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can be said that the GPR-based approach offers superior performance as compared to
NN-based approach for fault estimation.

Table 2 Case 1: abrupt fault estimation performance analysis

Mean square error

Fault NN GPR
Positive fault (+20%) 1.6124 1.4887
Negative fault (—10%) 0.6877 0.5624

4.2 Case study 2

Consider a two phase reactor and condenser system with recycle as shown in Figure 10.
In this system, an exothermic reaction occurs between reactant A and reactant B which
are fed to the reactor at flow rates F4 and Fg, at temperatures 74 and T in vapour
and liquid phases, respectively. The rate of diffusion for reactant A in liquid phase is
N 41 which causes the following exothermic reaction

A+ B —2C (34)

of which reactant B is considered to be non-volatile. Also, the product C of the
exothermic reaction diffuses in the vapour phase at rate N¢q. With the assumption that
the interphase mass-transfer resistance is negligible, the reaction rate in the bulk liquid
phase can be expressed as

—E,
ra = kg exp (RT1> M{pxmxm (35)

where r, indicates the rate of comsumption of A, kig is pre-exponential factor, F, is
activation energy, 77 is temperature, p is molar density, x 4; and zp; indicates mole
fractions of reactants A and B respectively. Additionally, the liquid and vapour phases
are considered to be ideal mixtures of which the molar density p, molar heat capacity
cp and latent heat of vapourisation AH" are constant. From the reactor, the liquid
stream is removed from bottom at a constant flow rate Fj; while the vapour stream
exits from the top at a flow rate Fy, and enters the condenser where it is cooled down
to temperature 75. The liquid phase within the condenser is rich with reactant A and
thus recycled at a flow rate Fy;. The product is in vapour phase and is withdrawn from
condenser at flow rate F5, with composition y42. The DAE model of the system shown
in Figure 10 includes differential equations based on mole and overall enthalpy balances
while algebraic equations based on interphase mass-transfer rates, ideal gas relations and
pressure-drop correlations. The DAE model of two phase reactor and condenser system
with recycle is as follows:

M} =Fp—Fy+ Fy + Nai — Ny (36)
. 1
Zap = <l> [—Fpxa1 + Fo(za2 — xa1)
My
+ Nai(1 —xa1) + Nerwar — 74l (37
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. 1
TB1 = (M) [FB(1—zp1) — Fyzrpr — Narzp1 + Nc1xp1 — 4]

1
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. 1
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Figure 10 Two phase reactor and condenser system with recycle (see online version
for colours)

Figure 11 Estimation results (differential states) for two phase reactor and condenser system
with recycle (see online version for colours)
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Table 3 Two phase reactor: system parameters and nominal values

Variable Description Nominal value Unit
a Interfacial mass-transfer area per 1,000 m?/m®
unit liquid holdup
Cp Molar heat capacity 80.0 J/molK
E, Activation energy 110.0 kJ/mol
Fa Inlet molar flow rate of reactant A 99.84 mol/s
Fp Inlet molar flow rate of reactant B 52.0 mol/s
Fuy Molar flow rate of liquid stream 10.0 mol/s
from reactor
Fy Molar flow rate of liquid recycle 72.19 mol/s
from condenser to reactor
Fiy Molar flow rate of vapour stream 214.03 mol/s
from reactor to condenser
Fs, Molar flow rate of vapour stream 141.84 mol/s
from condenser
K Proportional gain of pressure controller 10.0 mol/s - atm
k1o Pre-exponential factor 2.88e+11 m3/mol - s
ka Overall mass transfer coefficient for A 20 mol/m? - s
ko Overall mass transfer coefficient for C 30 mol/m? - s
M Liquid molar hold up in reactor 14.52 kmol
M3 Liquid molar hold up in condenser 15.0 kmol
MY Vapour molar hold up in reactor 3.75 kmol
M3 Vapour molar hold up in condenser 3.90 kmol
P Pressure in reactor 50.0 atm
P Pressure in condenser 48.69 atm
Pset Setpoint for reactor pressure 50.0 atm
Q1 Heat output from reactor 863.68 kW
Q2 Heat output from condenser 1,164.39 kW
Ta Temperature of feed A 315.0 K
Tp Temperature of feed B 300.0 K
Ty Temperature in reactor 330.0 K
Ts Temperature in condenser 304.16 K
Vir Volume of reactor 3.0 m’
Vor Volume of condenser 3.0 m’
TAl Mole fraction of A in liquid phase 0.49 -
in reactor
TB1 Mole fraction of B in liquid phase 0.40 -
in reactor
T A2 Mole fraction of A in liquid phase 0.74 -
in condenser
YAl Mole fraction of A in vapour phase 0.47 -
in reactor
YA2 Mole fraction of A in vapour phase 0.33 -
in condenser
AH, Heat of reaction -50.0 kJ/mol
AH, Latent heat of vapourisation 10.0 kJ/mol

p Liquid molar density 15.0 kmol/m’
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In the above equations (47)—~(50), P3,, P2, indicates the saturation pressures of A and
C' in reactor (i = 1) and condenser (i = 2) which can be further expressed as

3,400
P = 25.1 — =
Ai = exXp < 5 T 1 20) (55)
4,100
Ps. = 2773 - 2 56
Cri exp<73 TH—?O) (56)

Additionally, k4, k¢ denote overall mass transfer coefficients for A and C. The pressure
P, of the reactor is highly dynamic and can be stabilised by a proportional controller
as shown in equation (54) where K is controller gain, Ps.; is desired pressure, Fs, is
manipulated input and Fy, o indicates its nominal value. The outputs for the system

are y = [T1 yaz Mé]T while the inputs are F'a, T4, Fig, T, Q1, Q2, Fa.

Figure 12 Estimation results (algebraic states) for two phase reactor and condenser system
with recycle (see online version for colours)

The differential variables for the system are x; = M{, Ty = TAl, T3 = Tp1, T4 = M7,
_ _ _ sl _ _ _ _ :

5 = ya1, ve = 11, x7 = My, 3 = T A2, T9 = My, T10 = ya2, T11 = T2 while the

algebraic variables are considered to be z; = Na1, 20 = N1, 23 = Naa, 24 = Neo,

z5 = Py, 26 = Pa, 27 = F1y, 28 = Fy,. Firstly, the results of state estimation are put
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forth for which the simulation time step dt = 1s. The process noise covariance matrix
is

Q =10"%diag ([10.10.110.1110.110.10.3])
while the measurement noise covariance matrix is

R =10"%diag ([0.70.10.3]).

Figure 13 Residual evaluation signal vs. threshold: —10% fault in T’z (see online version
for colours)

Moreover the initial error covariance matrix is assumed to be Py = I19x19. The results
of state estimation are presented by Figures 11-12. The differential variables of the state
estimation rendered in Figure 11 depict excellent agreement with system states even in
dynamic conditions.

As mentioned earlier, the residuals can be generated using system outputs which
are obtained with measurement function and state estimates. The residual evaluation
function in this case is RMS function and employed in a similar manner as case
1 earlier. In order to analyse the system for fault detection, an input fault in feed
temperature of reactant B, i.e., Tp is considered. Upon simulation, it was observed
that the fault affected all residuals; however residual r; exhibited an inverse response
for a brief period ultimately consuming more time to violate its respective threshold
level. Since, ry and r3 were also affected by fault, they were considered to determine
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fault occurrence. The thresholds were identified from nominal operating conditions to
be [0.00047 0.8339]7. The fault is introduced at time ¢t = 700 s for the simulation
results exhibited in Figure 13. The residual evaluation signals are plotted with respective
thresholds for the simulation where an input fault of —10% is considered in 7. As
observed, the residual evaluation signals exceeed their respective threshold limits within
sometime after the fault is introduced. The residual evaluation signal of 7o exceeds the
threshold at time ¢ = 732 s while of r3 at time ¢ = 703 s. The fault in T can be said
to have occurred after the thresholds are violated as shown in Figure 13. Further the
fault is confirmed as discussed earlier in case 1 where a window of five time instants
is considered. If the fault persists continuously for the considered duration ; the fault is
confirmed. For the scenario of Figure 13, the confirmation of fault in 7z is obtained at
t = 737 s. Further, the fault estimation approaches are assessed for which the dataset
is generated in a manner as described earlier. The dataset contains the information of
residuals and fault magnitude (fault in T’g). This dataset so generated is availed by fault
estimation approaches under consideration.

Figure 14 Backpropagation neural network structure for fault estimation (for case 2)
(see online version for colours)

Figure 15 Input (I's): abrupt fault estimation by NN and GPR approaches (see online version
for colours)

The neural network structure employed for fault estimation is shown in Figure 14. The
neural network consists of three hidden layers and one output layer. The first hidden
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layer consists of 20 neurons, second hidden layer consists of ten neurons while third
hidden layer consists of three neurons with tansigmoidal activation functions. The output
layer consists of one neuron which maps to the magnitude of the fault. The dataset
generated earlier is provided to this neural network during training. The training of back
propagation neural network results in R values of 0.9 which indicates that the network
has learned and can predict values close to actual fault magntiudes.

Figure 16 Input (I's): abrupt fault estimation by NN and GPR approaches (see online version
for colours)

Table 4 Case 2: abrupt fault estimation performance analysis

Mean square error

Fault NN GPR
Positive fault (+20%) 15.7468 12.4667
Negative fault (—10%) 4.4249 4.0994

In order to implement the same, this trained neural network is evaluated by applying an
abrupt fault in input 7. Additionally, the GPR model with exponential kernel function
is also trained and assessed. The magnitude of the abrupt fault is —10%. The fault is
introduced at time ¢ = 700 s while it is detected at time ¢ = 732 s and further, the fault
is confirmed at time ¢ = 737 s. The fault is confirmed if the residual evaluation signal
exceed their respective thresholds atleast for five consecutive time instants. The fault
estimation results for the same are presented in Figure 15 where in the fault introduced
is indicated by solid blue line while the estimated faults are indicated by spaced lines. It
can be observed that there is some time elapsed before the fault estimation starts. This
time difference between the fault introduction and onset of fault estimation includes the
time taken for fault detection as well as fault confirmation. Similarly, the fault estimation
approaches are analysed for an abrupt fault of 20%. The fault is introduced at time ¢ =
700 s, detected at time ¢ = 724 s and confirmed at time ¢ = 729 s for which the results of
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fault estimation are exhibited by Figure 16. On visual inspection, it can be noted that the
NN-based approach consumes more time to settle as compared to GPR-based approach.
Thus, it is observed that the fault estimation by GPR approach shows better response
as compared to NN-based approach. These results corroborate with other observations
made earlier.

For the system considered in case 2, a quantitative analysis of fault estimation
performance for both approaches is put forth in Table 4. The GPR-based approach shows
considerable improvement as compared to NN-based approach of fault estimation. The
backpropagation neural network attempts to learn the relation between fault estimates
and residuals in a regressive manner and could only moderately generalise as compared
to GPR from the dataset offered. However, the GPR model that was trained on the same
dataset could establish a relation between fault estimate and noisy residuals because
the probabilistic approach allows to consider for variations in the form of distribution.
Moreover, in general, the GPR approach learns fewer parameters as compared to neural
network. Additonally, GPR approach is a direct approach where new predictions entirely
depend upon the training data while NN approach depends on optimisation of parameters
from the training data.

5 Conclusions

This study probes various intelligent approaches of fault estimation for NLDSs and
demonstrates the same for

1 chemical mixing tank system

2 two phase reactor and condenser system with recycle.

It employs extended Kalman filter for descriptor systems which helps in fault detection
while neural network and GPR models are evaluated for fault estimation. The GPR
approach presented in this work has hardly been assessed for fault estimation of NLDSs.
The approaches considered are demonstrated for abrupt fault estimation and further
compared in a quantitative manner so as to evaluate their performance. The results show
that RMSE for GPR-based approach improves in the range of 10-20% as compared to
NN-based approach for fault estimation. Additionally, in terms of dynamic response,
the NN approach shows substandard performance as compared to GPR approach. The
GPR approach offers superior performance as compared to NN-based approach inspite
of noisy residuals. The fault estimation for GPR model shows excellent performance
because of its inherent probabilistic approach.
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