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Abstract: Unsafe explorations in the training phase hinder the practical
deployment of reinforcement learning (RL) on autonomous robots. Some safe
RL methods use safety constraints from prior or external knowledge to reduce
or avoid unsafe explorations, but such knowledge is usually unavailable in
practice, especially in unknown environments. In this work, we propose a
few-shot reasoning-based safe reinforcement learning framework that includes
a new few-shot learning method with dynamic support set to reason the safety
of unexplored actions and hence guide safer action selection. Additionally,
it endows robots with the capability of reverting to previous safe states and
reflecting on failures to update the dynamic support set and further improve
the accuracy of safety reasoning. Experimental results show that our new
few-shot learning method is more accurate, and our proposed framework can
significantly reduce the number of failures in the learning phase, especially
for long-term autonomy.

Keywords: safe reinforcement learning; few-shot learning; dynamic support
set; autonomous robots.
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1 Introduction

Reinforcement learning (RL) shows great potential in autonomous robot navigation,
especially in unknown environments, as it can adapt to the environment by learning
from the interactions between robots and environments. In order to find the optimal
policy, the robot should have sufficient explorations and learn from both good and bad
consequences to maximise the cumulative rewards it obtains. When applying RL to
real-world autonomous robot navigation, however, unsafe actions and bad consequences
may make the robot suffer from safety issues, such as collisions that cause damage
to the robot or the environment. As most robots for navigation are safety-critical, it is
crucial to guarantee learning safety in the practical deployment of RL.

For the safety issue during the learning phase of RL, two general categories of safe
RL methods have been reported (Garcıa and Fernandez, 2015). One is transforming
the traditional optimisation criteria that maximise the expectation of the return to more
comprehensive criteria respecting learning safety. This method reduces the probability
of risks by changing the final objective the agent needs to optimise, but it does not
strictly prevent the risk from happening. The other methods modify the exploration
process by choosing safe actions through the incorporation of external knowledge,
such as environmental knowledge. However, we do not always have access to external
knowledge that can be directly used in practice, especially in unknown environments.
Considering that prohibiting the selection of unsafe actions is a fundamental and
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effective way, it comes to the question whether the robot can reason useful safety
knowledge from limited explorations by itself.

For example, as shown in Figure 1, there are three obstacles in the environment:
chair 1, chair 2, and garbage can 1. The robot faces one side of chair 1 and assumes that
it has got the safety knowledge in this position. The safe exploration mechanism aims to
prevent the robot from choosing actions toward chair 1 at this position and to recognise
chair 1 when facing other sides. Moreover, the knowledge obtained around chair 1 can
be helpful to the inference of chair 2 or even for other items in the environment like
luggage 1. It is significant to emphasise that safety knowledge is not available as prior
knowledge but acquired from the environment during the exploration. To this end, a safe
exploration method that can online learn safety specifications from limited explorations
to ensure the selection of safe actions is expected.

Figure 1 Safety reasoning for actions in unknown environments (see online version
for colours)

Notes: The robot is expected to reason and exclude unsafe actions toward to unseen
obstacles based on the information that has been already explored by RL.

Furthermore, even if the action is safe when selected for exploration, it may still lead
to unsafe consequences during the execution due to many unexpected disturbances, like
the sudden changes in the friction between the robot and the ground. Theoretically, once
the failure occurs, RL should terminate the current episode and restart from the initial
position with another episode. This transition from one episode to the next episode is
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easy in simulations, but it can be difficult in practical robot autonomy, where human
interventions are not expected or allowed. In fact, as the already explored states are
safe, it is easier and less time-consuming for the robot to go back to the previous
safe states rather than resetting back to the starting point. Also, the failures usually
contain more hidden safety information, so it is better for the RL-based robot to have
the capability of self-recovering to previous safe states and reflecting on failures for
further safe explorations.

In this work, we propose a few-shot reasoning-based safe RL framework for the
practical deployment of RL in autonomous robot navigation. It improves learning safety
through two important parts:

1 The safe exploration part: This part uses a new few-shot learning method with
dynamic support set to reason safety relations between different actions and
different obstacles and hence exclude unsafe actions in the exploration process.

2 The self-recovery part: This part can self-reverse to previous safe states when
failures occur and learn from these failures to update the support set used in the
few-shot learning.

Our method is demonstrated by a robot navigation example where obstacles are assumed
to cause collisions. The main contributions of this work can be summarised as follows.
Firstly, we develop a safe RL framework for autonomous robot navigation. The safe
exploration part in this framework can reason the safety of unexplored actions and
prevent unsafe actions from executing. The self-recovery part can make better use
of failures to improve the reasoning performance in the safe exploration part. The
self-recovery part can also revert the robot to safe states once a failure happens, which
avoids frequent resets and hence is more suitable for practical application. Secondly,
we propose a new few-shot learning algorithm with dynamic support set to reason the
safety of unexplored actions so to improve the safety in the learning phase. The support
set dynamically changed with collected real-world samples can improve the robot’s
adaptation to unknown environments. Lastly, we provide experiment results to present
the effectiveness of our proposed framework.

2 Related work

RL methods have been gradually applied in robot navigation with the development
of artificial intelligence (Tai et al., 2017). A popular application scenario is local
obstacle avoidance (Duguleana and Mogan, 2016; Kato et al., 2017; Kato and Morioka,
2019), which is the basis of the other scenarios and can be extended to more complex
navigation tasks (Zhu and Zhang, 2021), such as indoor navigation (Zhu et al., 2016;
Devo et al., 2020a,b). These works focus more on traditional learning performance, but
when applying RL in practical applications, it brings up a new question – the learning
safety. Due to trial and error, RL needs to try various actions including both safe
and unsafe actions to find the optimal policy. In practical applications, unsafe actions
will cause unacceptable consequences to robots or environments, which motivates the
development of safe RL.

The safety problem in RL is one of the significant problems in artificial intelligence
safety (Amodei et al., 2016). One solution to the safety issue is formulating the problem
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as a constrained Markov decision process (CMDP) (Altman, 2021). Two common
approaches to solve the CMDP problem are primal-dual method (Chen et al., 2021;
Xu et al., 2020; Paternain et al., 2019; Tessler et al., 2018) and constrained policy
optimisation (CPO) method (Achiam et al., 2017; Yang et al., 2020). Other approaches
have been proposed to solve the CMDP problem recently, like the Lyapunov method
(Chow et al., 2018; Huh and Yang, 2020) and the safe layer method (Dalal et al., 2018).
However, these methods are limited in the type of constraints because they require
a parametrisation of the policy (policy gradient methods), which is not applicable to
value-based algorithms. Additionally, these methods tend to base on dynamics or an
appropriate design of risks, but this knowledge is hard to be obtained in practice. Some
works solve the safety issue from other perspectives. Alshiekh et al. (2018) introduce a
shielded RL that can synthesise a shield concerning the safety specifications to prevent
the agent from choosing unsafe actions. Sui et al. (2019) and Turchetta et al. (2016)
assume that the state spaces and the safety function have some form of regularity to
keep safe. Zhou (2021) uses a potential function to shape a safe reward that biases safe
explorations and gets significantly fewer failures. Saunders et al. (2017) and Turchetta
et al. (2021) introduce human supervision to help the agent explore safely. In practical
navigation, however, it is important for the robot to acquire safety knowledge that is not
specific and obtain safety knowledge by itself. In this work, we reflect on the failures
during the exploration and adopt the few-shot learning method to reason the safety of
different actions.

Few-shot learning is one of the meta-learning algorithms that aim at recognising
categories from very few labeled samples like humans (Biederman, 1987). Recently,
most works related to few-shot learning focus on the recognition accuracy by different
networks (Vinyals et al., 2016; Finn et al., 2017a; Snell et al., 2017; Sung et al.,
2018; Ravi and Larochelle, 2017) in some well-known datasets such as miniImagenet
(Vinyals et al., 2016) and Omniglot (Lake et al., 2011), and some works apply few-shot
learning in computer vision, natural language processing, audio processing, robotics,
and so on (Lu et al., 2020). In robotics fields, few-shot learning is usually applied in
visual navigation (Finn et al., 2017a; Li et al., 2017; Jamal and Qi, 2019), imitation
learning (Duan et al., 2017; Finn et al., 2017b), robot manipulation (Xie et al., 2018; Xu
et al., 2018). So far, using few-shot learning to improve the learning safety in RL-based
robot navigation has not been reported. Furthermore, the support set in the traditional
few-shot learning is constant, which may have a poor performance on some unseen but
similar obstacles in the environment. Thus, our work designs a support set that can
be dynamically changed with respect to environments to improve obstacle recognition
accuracy and safety reasoning accuracy to further improve safety of explorations.

3 Methodology

In this section, we describe our few-shot reasoning-based safe RL framework as shown
in Figure 2, through two parts:

1 a safe exploration part that uses few-shot learning with dynamic support set to
recognise unseen obstacles and exclude unsafe actions in the future explorations

2 a self-recovery part that can self-reverse to previous states when failures occur
and self-reflect on failures to update the support set.
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Figure 2 Few-shot learning-based safe RL framework for autonomous robot navigation
(see online version for colours)

Notes: The safe exploration part excludes unsafe actions by recognising and reasoning
similar, unseen obstacles from known ones. When a failure is detected, the
self-recovery part recovers the robot to a previous safe state and reflects on the
failure for subsequent safer explorations.

3.1 Problem statement

The framework is for practical, safe autonomous robot navigation in unknown
environments. There are a few categories of obstacles in the environment, and each
with several samples for the auxiliary inference by the robot. The goal of the robot is
to find an optimal path in the unknown environment autonomously and avoid as many
collisions as possible.

In order to simulate a real-world scenario, we make some assumptions as follows:

1 While we do not know the specifications of obstacles such as the shape, size,
colour, and so on, we assume knowing the categories of obstacles in the
environment. For example, we could know there are boxes as obstacles in the
environment, but the size and colour of these boxes are different, which is not
known beforehand.

2 The obstacles in the environment will not cause lethal damage to robots, i.e., the
robot is able to recover from the collision. For example, if the robot moves
forward and collides with a box, it can move backward to achieve a safe position.

3 The robot can know the specific obstacle category after the collision. This may be
achieved by taking a closer and clearer picture or using impact sensors. This is
out of our work’s scope, so we do not discuss it more here.
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3.2 Safe exploration

We introduce the safe exploration part through two modules: few-shot reasoning and
safety guarantee. As shown in Figure 2, the main module, the few-shot reasoning
module, uses few-shot learning with a dynamic support set to recognise obstacles in
the environment and reason for unsafe actions toward these obstacles. Another module
is the safety guarantee module, which focuses on the decision-making of the agent.
Specifically, the safety guarantee module monitors the actions selected by the learning
agent and corrects them if and only if the chosen action is unsafe. The criterion for
judging whether the action is safe or not is learned from the few-shot reasoning module.

3.2.1 Few-shot reasoning

In an unknown environment, few-shot reasoning module can be seen as a recognition
module with the function of reasoning similar categories of obstacles. We first make
a simple introduction to the few-shot learning algorithm. Few-shot learning tends to
have three datasets: training set, support set, and query set. The training set usually has
thousands of different kinds of data with labels, and it is used to train the model with
the capability of telling the difference between two common categories. The support
set and the query set share the same labels, but the categories of data in them never
occur in the training set. The support set provides some samples for the model to refer
while the query set is the real testing set the model needs to classify. We call the target
few-shot problem C-way K-shot if the support set contains K labeled examples for each
of C unique classes. In the few-shot learning research field, the size of K is typically 1
or 5, that is to say, one-shot or five-shot.

In our work, we use the relation network (Sung et al., 2018) as a recogniser for
the recognition of obstacles in the navigation because the relation network can be
seen as providing a learnable nonlinear classifier for determining relationships, while
other few-shot learning networks like twin network and prototype network use a linear
classifier of relationships. We think the models learned by the relation network may
have a better performance on our own data due to the similarities between the navigation
environments.

In practical navigation, each side of the obstacles can be captured as a picture
belonging to the query set. All the pictures are provided for recognition. Our recognition
is a 5-way 5-shot problem, and the samples in the support set never occur in the training
set. We do not make any changes to the trained model and still use the similar expression
in Sung et al. (2018) to describe our problem. Specifically, our training set is based
on miniImagenet (Vinyals et al., 2016) and follows the split introduced by Ravi and
Larochelle (2017), with 64 classes for training. Our support set and query set are data
of obstacles in navigation instead of the miniImagenet dataset. The support set can be
denoted as S = {(xi, yi)}mi=1 (m = K × C), where xi and yi represent the sample and
its label. Before we define the query set in the form of real navigation, we first divide
the area around the obstacle into d0 parts starting from the east in a clockwise direction.
Our work divides the area into d0 parts because our action space is discrete. For the
continuous action space, it can be any position around the obstacle at a certain distance.
Then the query set can be denoted as:

Q =
{(

xjs(Areadi)

)
, yj

}n

j=1
, di = 1, 2, ..., d0, (1)
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where Areadi represents the area of dith part, and s (Areadi) is the initial position
in Areadi towards the obstacle at a constant distance, and then xjs(Areadi) means the
picture captured from s (Areadi) of the jth obstacle. Some examples are depicted in
Figure 3 for intuitive description. n is the number of obstacles in the environment.

Figure 3 An illustration of sensing an obstacle from different positions (see online version
for colours)

Notes: The value of d0 means how many sides of an obstacle can be observed,
which is also the number of this obstacle images in the query set.

Therefore, the recognition problem (few-shot reasoning algorithm) can be defined as:

ri,js(Areadi) = gϕ
(
C
(
fφ(xi), fφ

(
xjs(Areadi)

)))
,

i = 1, 2, 3, 4, 5, di = 1, 2, ..., d0, (2)

the relation network combines the feature map of samples in the support set and query
set, computes the relation scores between different categories in the support set, and
then chooses the category of the biggest score to complete the classification problem
(see Sung et al., 2018 for more details). Different from Sung et al. (2018), the support
set is dynamic in our settings, which is further explained in the dynamic support set
part.

3.2.2 Safety guarantee

In this part, we discuss how to guarantee safety from two perspectives. First, if
recognising an obstacle correctly, how to prohibit the robot from choosing the actions
toward that obstacle? Second, if recognising incorrectly, how to prohibit the robot from
choosing this action again after collision?

We usually give a negative reward to unsafe actions to encourage the agent not to
select those actions in RL. However, receiving negative rewards cannot fully prohibit
the selection of unsafe actions. Unsafe actions can still be sampled in RL methods,
although the probability is low during the later phases of training. A RL problem is
usually described as a Markov decision process (Suttong and Barto, 1998), which is
defined as a tuple M = ⟨S,A, P,R, γ⟩, where S is a finite set of states s, A is a finite
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set of actions a, P : S ×A → S is a state transition probability matrix denoting the
probability of transferring to the next state, R is a reward function, γ is a discount
factor, γ ∈ [0, 1]. For our question, we first define a critical-states set:

Sc = {st | ∀st ∈ S, ∃st+1 ∈ Sobs} , (3)

to denote all the critical positions around the obstacles, where Sobs is the set of all the
obstacles. Afterward, we can define the dangerous actions set:

Ad = {at | ∀at ∈ A,∃st+1 ∈ Sobs, s.t. , st ∈ Sc, st × at → st+1} , (4)

to denote all the actions which make the agent transit from critical states to obstacle
states. Thus, we use the pair (stc, atd) to denote one specific critical state and the
action towards a specific obstacle in this state. (stc, atd) pairs are important hidden
safety information that should be exploited, and the safety guarantee module’s duty is
to monitor the agent not to choose atd at state stc as shown in Figure 4. The safety
information is originated from two sources. First, it is from the few-shot reasoning
module. If the module recognises the obstacle correctly, which means a collision will
not happen and the robot is facing the obstacle at the critical position stc. At this
time, the safety guarantee module will collect the information and prevent the robot
from taking action atd as a prediction. Second, if the few-shot reasoning module
recognises incorrectly, which means a collision will happen, and the self-recovery part
can collect the real obstacle information to safety guarantee after the collision. All the
safety information is gained during the training process and the safety guarantee module
gradually expands its safety specifications.

Figure 4 Safety guarantee module (see online version for colours)

Notes: The module collects safety information in two ways: the few-shot recogniser
and the failure information after collisions. With the safety information, it
monitors the actions selected by the learning agent and corrects them if and
only if the chosen action is unsafe.
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RL methods tend to have the safety issue during the learning phase. Here we use the
classic Q-learning algorithm as an example for its easy implementation. In fact, our
framework can work with other RL methods because the key safe exploration part and
the self-recovery part are generally independent of a specific RL method. The navigation
problem can be summarised as:

Maximise:

Qπ (s, a) = Eπ

{∑∞
k=0γ

krt+k+1 | st = s, at = a
}
, (5)

Subject to:

at /∈ Ad, ∀t ∈ [0,+∞] , (6)

where Qπ (s, a) is the long-term expectation that the Q-learning algorithm needs to
optimise, the objective of the agent is to maximise Qπ (s, a) as well as not violating
the safety specifications. The safety guarantee module guides the action selection by
restricting the agent. More specifically, if the action in the safety guarantee module
is sampled by the agent in the action selection process, the safety guarantee part will
prohibit the unsafe action and reselect a safe action. The action selection policy remains
similar to Q-learning. Hence, the improved selection policy (using ε− greedy policy)
can be formed as follows:

For the probability of 1− ε:

π (st, at) =

{
argmaxaQ (st, at) , if at /∈ Ad

argmaxaQ
′ (st, at) , if at ∈ Ad

. (7)

For the probability of ε:

π (st, at) =

{
randomaQ (st, at) , if at /∈ Ad

randomaQ
′ (st, at) , if at ∈ Ad

, (8)

where Q (st, at) is the Q-value of all actions, and Q′ (st, at) is the Q-value of all actions
except unsafe actions. Finally, either the safe action guided by safety guarantee module
or the unsafe action resulting in collisions are evaluated by Bellman equation:

Qt+1 (st+1, at+1) = Qt (st, at)

+ α

[
rt + γmax

at+1

Qt+1 (st+1, at+1)−Qt (st, at)

]
. (9)

3.3 Self-recovery with dynamic support set

In the real-world environment, when an autonomous robot collides with an obstacle
during the training process, the RL method terminates the current episode and starts a
new one. In the practical deployment of RL on autonomous robots, it is not always
possible to restart training from the initial position. Thus, we develop a self-recovery
module to go back to the previous safe state without ending the current episode.
Meanwhile, the occurred failures can be used to update the support set for few-shot
learning in safe exploration.

We consider the robot’s trajectory as a discrete sequence of states and actions like:
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τ = {s1, a1, s2, a2, ..., st, at} . (10)

For example, at time t, the robot in state st executes action at, and then converts to
st+1, which is an obstacle state and results in a collision. The self-recovery mechanism
aims to reverse the robot to one of the past recorded t states s1, s2, ..., st that are safe
states without changing the framework of RL. In this work, we only consider reverting
to the nearest state in the past, which uses the least memory.

Figure 5 Sample substitution in dynamic support set (see online version for colours)

Notes: Once a collision happens, the picture is substituted in the corresponding category
for one of the five samples in different ways. Thus, the support set is composed
of five categories, each with five dynamically changed samples.

When a collision happens, the robot first updates this unsafe action by Bellman
Equation, and then reverts to the previous safe state by the self-recovery module.
Meanwhile, the robot receives the real category of the obstacle due to assumption (3).
Then the robot sends this message to the safety guarantee module to prohibit this unsafe
action. In addition, the photo captured by the robot during a collision is a piece of useful
information for the robot to reflect on itself and improve its capability of reasoning. The
happening of collision is caused by the inaccuracy of the few-shot reasoning module,
and the reason for low accuracy is that there is a big difference between samples in
the support set and instances in the real environment (query set). Therefore, an intuitive
idea to optimise this problem is to substitute some samples in the support set with the
pictures in the query set, as pictures captured from different sides of an obstacle share
similar features. Also, the background of the environment in the query set is closer to
the real environment than the original support set.

We propose four substitution ways for the dynamic support set depicted in Figure 5.
The blue numbers represent five samples of one category in the support set. We use the
red numbers 0, 1, 2, ... to represent the photo sequence that is recognised incorrectly
during the explorations. The first substitution way replaces the samples in order for
each step, one in and one out. In the other substitution ways, we use red numbers r1,
r2, ... to denote that we replace a random position of the five samples, but the random
substitution rules are different. The second substitution way replaces one of the five
samples randomly, and any sample is likely to be replaced at each step even if it was
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just replaced at the previous step. Different from substitution way 2, the third and fourth
substitution way only replace the samples by choosing one position in blue numbers
randomly, which means it replaces one of the five blue number positions randomly in
step 1, replaces one of the four blue number positions randomly in step 2 and so on.
After all the original samples are replaced, the third substitution way restarts from step
1, while the fourth substitution way continues with the first substitution way with the
substitution order recorded in the first round of substitution way 4.

3.4 Algorithm summary

Our full algorithm is shown in Algorithm 1, which consists of safe exploration and
self-recovery. Safe exploration is always activated to learn from experiences and
guarantee safety, while the self-recovery part is executed only when a failure occurs.

Algorithm 1 Our algorithm
1: Initialise Q(s, a) arbitrarily
2: for each episode do
3: Choose at from st using policy derived from Q (ε− greedy)
4: if at ∈ Ad then
5: Reselect at ◃ Safety guarantee
6: else
7: if detecting a picture then
8: Compute ri,js and do classification ◃ few-shot reasoning
9: if recognising correctly then
10: Ad = Ad ∪ {at} ◃ append at to safety guarantee module
11: End this episode
12: else
13: r (s, a) = rfailure
14: end if
15: end if
16: end if
17: if r (s, a) = rfailure then
18: Ad = Ad ∪ {at}
19: Update the Q-value of at

20: Do substitution for dynamic support set
21: st+1 = st ◃ Revert to st by self-recovery
22: else
23: Take action at, observe rt, st+1

24: Update Q-value
25: end if
26: end for
27: Return the optimal policy

4 Experiments and discussion

4.1 Experiment setup

In this work, we conduct an experiment to test the accuracy of few-shot learning with
dynamic support set in the navigation problem and validate our safe RL framework in a
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5 × 5 grid-world environment. The gird-world environment is about the robot navigation
in an unknown maze with several obstacles.

The grid-world environment is shown on the left of Figure 6. The red block in the
upper left corner of the grid environment is regarded as a mobile robot, and the yellow
oval in the lower right corner represents the target location to be reached by the robot,
and the black blocks represent obstacles in the unknown environment. Once the target
point is reached, the agent will be given a reward of 1. Once it collides with an obstacle,
the mobile robot will get a reward of –1. For other individual steps, the reward is 0. The
robot needs to find the optimal path to the target location in several iterations, and it
can move in four directions: north, south, east, and west, but it can move only one grid
at one time. When the robot moves to the positions around the obstacle and chooses
the action towards the obstacle, a picture is received by the robot for recognition. If
the few-shot reasoning module fails to recognise the obstacle, the robot reverts to the
previous safe state. An episode ends if the agent has taken more than 200 steps. An
ε-greedy action selection method is used for Q-learning with ε = 0.1. The discount rate
γ is set to 0.9, and the learning rate α of the agent is set to 0.01.

Figure 6 The maze navigation environment and samples in query set and support set
(see online version for colours)

As formula (1) says, each side of an obstacle is a test picture of the query set. In our
environment, the hyperparameter d0 is four, which means all the pictures are captured
from north, south, east, and west. Our query set consists of five categories which contain
chairs, kettles, cartons, basins, and baskets, and each category has eight pictures. The
pictures are captured from four sides of two obstacles, and we define the first picture
in four pictures in the middle of Figure 6 as the orientation of this obstacle. We rotate
the obstacle 45 degrees clockwise to represent another specific obstacle that belongs to
the same category as shown in the middle of Figure 6 shows. Our support set is shown
on the right of Figure 6. In the first experiment, we test the 40 pictures in the query set
by counting how many pictures can be recognised correctly with different substituted
numbers in the support set, which aims to validate the effectiveness of the few-shot
learning algorithm with dynamic support set. In the second experiment, nine of the ten
obstacles in the query set are assigned randomly to the obstacles in the environment
and this means all the pictures in the environment are not repetitive. Meanwhile, the
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orientation of each obstacle is random, too. If two obstacles are next to each other,
the image of the adjacent sides cannot be captured by the robot. We apply our safe
RL framework to the autonomous robot navigation in the grid-world environment and
compare it with baselines with the index of collision number.

4.2 Experiment results

4.2.1 Few-shot learning accuracy

In our work, the support set is a 5-way 5-shot setting and the training set is the same
as the relation network which is based on miniImagenet. Considering the substitution
of one category has an influence on all the test data, we first test all 40 pictures in
the query set, and then substitute one of the pictures in the support set with one of
the pictures in the query set. The substitution is executed in the same category and the
pictures selected from the support set and query set are randomly chosen. The result is
shown in Table 1.

Table 1 Few-shot learning accuracy using one sample substitution

Test accuracy

Category 0 1 2 3 4 Overall Mean

No substitution 0/8 3/8 2/8 8/8 4/8 17/40 42.5%

Substituted category 0 186/800 495/800 168/800 748/800 364/800 1,961/4,000 49.03%
1 0/800 689/800 132/800 771/800 292/800 1,884/4,000
2 5/800 581/800 383/800 742/800 388/800 2,099/4,000
3 4/800 500/800 136/800 792/800 314/800 1,746/4,000
4 12/800 500/800 335/800 692/800 577/800 2,116/4,000

Substituted category 0 95/700 496/800 155/800 747/800 373/800 1,866/3,900 48.04%
(no same picture) 1 0/800 596/700 134/800 756/800 303/800 1,789/3,900

2 11/800 574/800 331/700 748/800 389/800 2,053/3,900
3 0/800 500/800 127/800 697/700 316/800 1,640/3,900
4 13/800 500/800 334/800 685/800 487/700 2,019/3,900

Category 0 has very low recognition accuracy while category 3 has very high
recognition accuracy and other categories’ accuracy is balanced among the original
recognition results of five types of obstacles without substitution, which shows that our
data selection is representative. We first substitute a picture chosen from eight pictures
in category 0 of the query set randomly for the picture chosen from five pictures
in category 0 of the support set, and do the substitution 100 times, and then each
category has 800 pictures to test, 4,000 pictures in total. We count how many pictures
can be recognised correctly to measure the effectiveness of substitution in category 0.
Afterward, we execute the same operation on category 1, category 2, category 3, and
category 4, respectively, and compute the mean accuracy. The substitution category (no
same picture) means that when counting the pictures recognised correctly, we do not test
the pictures being sampled to replace the support set. Thus, there are only 700 pictures
in this category being counted. The result shows that the test accuracy increases from
42.5% to 49.03%, 48.04% (no same picture) when the substituted picture number is 1.
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The substituted category tends to have higher accuracy, and the result shows that the
effect on the whole test data is positive.

Furthermore, we do more experiments on substituting more pictures of one category
in the support set, as shown in Table 2, because the real substitution process during
navigation can be continuous. We substitute some of the pictures in the support set with
the same number of pictures in the query set, the selection is also random, and we
compute the accuracy respectively when the substituted number is 1 to 5. The result
shows that the recognition accuracy increases gradually with the increase of substitution
number. When it comes to the no same pic condition, the accuracy decreases a little
compared to the previous result, which illustrates that when the support set contains the
test picture in the query set, the test picture tends to be recognised more correctly. And
the mean accuracy only increases when the substitution number changes from 1 to 2,
or 3 to 4. There could be two possible reasons. First, the substitution process has the
property of randomness, and those pictures which pose bad influences on the accuracy
may be sampled more frequently. Second, the whole substitution process is dynamically
balanced. Substitutions in one category can bring both good effects and bad effects to
the recognition accuracies of other categories and hence cause small fluctuations of the
mean accuracy. In summary, the accuracy of few-shot learning with dynamic support
is better than the original algorithm in our navigation environment, which is consistent
with our theory.

Table 2 Few-shot learning accuracy using substitutions with different number of samples

Substitution number Mean accuracy

0 42.5%

Substitution number Mean accuracy Mean accuracy (no same picture)

1 49.03% 48.04%
2 50.83% 48.46%
3 52.47% 48.41%
4 53.64% 48.68%
5 54.91% 48.60%

4.2.2 Comparisons of different RL algorithms

The robot ought to navigate in the grid-world environment in Figure 6 and find an
optimal path to the goal position. Our framework is to ensure exploration safety during
the training phase. Figure 7 shows the final optimal path the robot has learned.

Figure 8 shows the number of collisions by using different algorithms in the
grid-world environment. We do 100 times independent experiments and each with 500
episodes. Then we record the collision number of each independent experiment. Owing
to that all the RL algorithms can suffer from unsafe actions, the Q-learning algorithm
is compared as a baseline to represent the RL algorithms without safety guarantee
property. The other algorithm, Q-learning with the shield, is used as another baseline
using shield RL algorithm (Alshiekh et al., 2018). We modify it by adding safety
specifications during exploration rather than being computed before exploration for fair
comparisons. The safe and self-recoverable RL framework (SSRL) (Wang et al., 2022)
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can be seen as a rule-based algorithm based on Q-learning with the shield. It can predict
the other three unsafe actions when a failure towards an obstacle occurs. The result in
Figure 8 shows that algorithms with the safety guarantee can significantly reduce the
number of collisions than the algorithm without a safety guarantee. SSRL and few-shot
reasoning (without a dynamic support set) are comparable, and both of them have
a better performance in safety exploration than Q-learning with shield. Although the
performance of SSRL is slightly better than few-shot reasoning, the rule of SSRL is not
always applicable in real navigations while our method does not have this restriction.

Figure 7 The optimal path (see online version for colours)

Notes: The blue dots represent the optimal path and all the RL methods for comparison
are able to find it within 500 episodes.

Figure 8 Comparisons of collisions between different algorithms (see online version
for colours)

Figure 9 shows the comparison of collisions between the few-shot reasoning method
with different sample substitution ways. The result shows that all the different
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substitution ways are comparable and can further reduce the collision number than
few-shot reasoning with no substitution.

Figure 9 Comparisons of collisions between different sample substitution ways
(see online version for colours)

Notes: The collision number is described by the mean number and the variance of the
100 times independent experiments.

Figure 10 Comparisons of collisions between restoring the support set and not restoring the
support set for subsequent experiments after completing the first one
(see online version for colours)

Notes: Not restoring the support set can be considered a long-term autonomy scenario.



48 W. Wang et al.

After completing the first independent experiment, we find that the collision number
can be reduced to a very low level if we do not restore the support set to the original
set in the following experiments, which is shown in Figure 10. As the recognition
accuracy has increased a lot at the later stage of the first independent experiment, it
is not that difficult to recognise the same picture like the first time, which validates
the effectiveness of the dynamic support set, too. This result also corresponds with the
few-shot accuracy experiment: the accuracy increases when the substituted picture is in
both support set and query set, because most pictures in the query set are also in the
support set in the second independent experiment. The practical meaning of this result
is that the autonomous robot can still ensure safety to a large extent when the obstacles’
positions change with time. Therefore, it is good for the long-term autonomy of mobile
robots.

Figure 11 The maze navigation environment, (a) is a 7 × 7 grid world with 49 states and 16
of them are obstacles, and (b) is a 11 × 11 grid world with 121 states and 49 of
them are obstacles (see online version for colours)

(a) (b)

Table 3 Mean collision numbers within 500 episodes in different maze sizes

���������Method
Maze size 5 × 5 7 × 7 11 × 11

Sarsa (Rummery and Niranjan, 1994) 192.3 Not converged Not converged
Constrained RL (Achiam et al., 2017) 29.51 55.74 144.62
Our method without dynamic support set 8.77 18.39 48.44
Our method with dynamic support set 7.145 9.75 15.9

For a more comprehensive comparison, we have done more experiments with larger
maze sizes as shown in Figure 11. Two more RL methods, Sarsa and constrained RL,
are also added for comparison and the results can be seen in Table 3. Compared to
Q-learning, the conservative exploration mechanism of Sarsa generally makes it explore
in a safer way. However, in our 5 ∗ 5 maze experiment, Sarsa has more collisions than



Few-shot reasoning-based safe reinforcement learning framework 49

Q-learning. The possible reason is that we have set only one optimal path surrounded
by many obstacles which is hard for Sarsa to avoid. The conservative exploration also
takes more time for Sarsa to converge, which can be found as not converged within
500 episodes in 7 ∗ 7 and 11 ∗ 11 environments. Since constrained RL methods are
policy-based methods, it is difficult to have a direct comparison between our method
and constrained RL methods. Thus, we make some modifications to apply the idea of
the CPO method to the value-based RL method. To be specific, we regard one collision
as constraint 1, and the threshold is set to end the current episode when the cumulative
constraint on the trajectory is larger than 0.01. Meanwhile, the value of ε decreases by
0.03 for each constraint violation until it decreases to 0.01. Other experiment settings
remain unchanged. The results in the last row of Table 3 are the average of the sum
of the collisions using four substitution ways. From Table 3, it can be seen that our
method, no matter with or without the dynamic support set, has fewer collisions than
constrained RL methods.

4.3 Discussion

The results above bring up two interesting thoughts:

1 How to manage the support set dynamically by substituting those pictures which
have bad influences on the classification and hence hinder the inference?

2 How can our framework be further modified to solve the problems of a dynamic
environment?

These questions deserve further investigations in the future. In addition, we also find
that our framework can accelerate the convergence of the RL algorithm because the safe
exploration part reduces the unnecessary explorations, and the self-recovery part reduces
the steps to restart a new episode from the initial position when a failure occurs.

Although our framework can work with different RL algorithms, it may need some
necessary modifications or prerequisites for any specific RL algorithm to work in
practice. For example, Q-learning has limitations such as the dimension disaster problem
and the incapability to deal with the continuous state space or action space. Thus,
when the practical environment is continuous and large, we may need to discretise the
continuous environment to small square areas before directly using our method. We
can also use a parameterised neural network to approximate the estimation of Q(s, a)
function to deal with the large dimension problem.

Moreover, traditional navigation algorithms such as A star and Dijkstra tends to rely
on simultaneous localisation and mapping as a prerequisite and are supplemented by
dynamic local obstacle avoidance algorithms such as the dynamic window approach
may have a better performance in structured environments. However, in some unknown
complex environments, where it is difficult to build a map, the traditional navigation
algorithms may have poor performance or even not work, while the RL-based robot can
still explore autonomously with the reasoning part and self-recovery part.
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5 Conclusions

In this paper, we propose a few-shot reasoning-based safe RL framework for the
practical deployment of RL on autonomous robots. With the safe exploration part to
recognise obstacles and reason and prohibit unsafe actions, the robot can explore safer
than traditional RL methods. Moreover, the self-recovery part makes RL more applicable
to the real world by enabling the robot to revert to previous safe states for continuous
learning. Experiments show that our method can significantly improve learning safety.
The future work includes designing a more sophisticated reasoning method for unsafe
actions. We will also validate our method with real-world experiments that use the
turtlebot3 robot to navigate in a manually created maze environment.
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