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Abstract: Research is underway on the use of sensor simulation in generating
sensor data to design a real-world human gesture recognition system. The
overall development process suffers from poor interactive performance,
because developers lack an efficient tool to support the sensor configuration,
result checking, and trial-and-error that arise when designing a machine
learning system. Hence, we have developed VirSen1.0, a virtual environment
with a user interface to support the process of designing a sensor-based
human gesture recognition system. In this environment, a simulator produces
lightness data and combines it with an avatar’s motion to train a classifier.
Then, the interface visualises the importance of the features used for the
model, via the permutation feature importance, and it provides feedback on
the effect of each sensor to the classifier. This paper proposes a complete
development process, from acquisition of learning data to creation of a
learning model, using a single software tool. Additionally, a user study
confirmed that by visualising the importance of the features used in the
model, users can create learning models that achieve a certain level of
accuracy.
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1 Introduction

Methods for estimation of human gestures by utilising real-world sensors and machine
learning have been studied extensively (Xia and Sugiura, 2021; Xia et al., 2022). Gesture
recognition is now being applied in health surveillance, sports, entertainment, medicine,
efficient human interfaces, parenting, caregiving, and many other fields (Fu et al., 2020).
When sensors identify human motions and gestures, the system performance depends on
the number of sensors, the sensor placements, and the motions to be recognised. In the
real world, the biggest challenge is that it is time-consuming and expensive to create
and experiment with multiple devices while considering all possible combinations of
sensor numbers and placements. On the other hand, if sensors could be simulated, then
different sensor placements could be tested without needing real objects, which would
significantly improve the efficiency of developing sensor-based applications. Moreover,
the search for sensor placements could be automated, which would eliminate the need
to physically install sensors and thus save even more time.

To this end, researchers have simulated real-world sensors on a computer (Rossmann
et al., 2012; Park et al., 2014; Xia and Sugiura, 2021). While that approach can
potentially decrease the costs involved in dataset collection and augment existing
datasets to improve the performance of a machine learning classifier, the existing
research has focused on the level of data generation. Few studies have explored
the notion of having users interactively and intuitively develop a gesture recognition
system with techniques such as dynamically changing sensor placements or obtaining
feedback about the classifier’s performance. Interactive simulator operation through a
user interface (UI) would enable the user to become familiar with the simulator more
quickly. Such a UI would also have the potential to popularise sensor simulators among
people without a background in information engineering, thereby creating a future in
which internet of things (IoT) devices could be specified by ordinary users according to
their daily lifestyle needs.

Optical sensors are real-world sensors that measure human motions (Manabe, 2013;
Kawashima et al., 2017; Murakami et al., 2019; Fu et al., 2020). In contrast to standard
vision sensors, optical sensors that sense infrared light can acquire motion data in the
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dark and capture differences in light intensity generated by reflections due to human
motions, thus preserving the measurement target’s privacy. In addition, optical sensors
for infrared sensing are frequently implemented in home environments for systems that
are used to track and evaluate daily activities (Fu et al., 2020).

Given the above background, we have developed a UI, called VirSen1.0, that enables
users to interactively arrange optical sensors in a virtual space to design a gesture
estimation system. Figure 1 shows an overview of this simulator. The UI can be used to
measure a human avatar in a three-dimensional space, and the light sources and sensors
necessary for measurement can be virtually installed and later moved or deleted. The
training data for machine learning is acquired by having the avatar perform a gesture
that the user wants to identify. After data acquisition, the results of recognition by
a support vector machine (SVM) classifier are displayed, and a permutation feature
importance (PFI) contribution indicator supports the search for sensor placements with
a high recognition rate. In this paper, we report the results of a user study in which 16
participants used our prototype UI and evaluated its functionality.

Figure 1 Overview of the proposed simulator (see online version for colours)

Our main contributions in this paper are as follows.

1 we have developed an interactive sensor simulator that enables flexible placement
of virtual optical sensors and includes a PFI contribution indicator that shows each
sensor’s contribution

2 we have demonstrated through a user study that the sensor PFI contribution
indicator can contribute to the development of sensor systems with high
recognition rates.
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2 Related work

2.1 Simulators for sensor measurement

Buchmayr et al. (2011) developed a UI that reproduces behaviour data from sensors
(e.g., those embedded in IoT devices) on a computer so that the data can be obtained
quickly. The UI provides a floor plan visualised as a 2D map on which users can freely
place sensors, and sensor behaviour data can be obtained by touching or clicking the
sensors on the screen with a mouse. Rossmann et al. (2012) developed a simulation
method and a sensor simulation framework for optical sensors such as cameras,
time-of-flight cameras, and laser range scanners. The surface of a planet is depicted in
a VR simulator, thus allowing optical sensors to be reproduced. Park et al. (2014) used
Kinect and 3D avatars to reproduce real-world human motions on a computer in a more
realistic manner than before, and they tested a generic human detection algorithm that
could detect 3D avatars as humans. Then, they tested the algorithm’s parameters in the
real world and found that it could detect real-world humans, as well. To reduce the
cost of generating new training data whenever sensor locations are moved, ? developed
a system to assist in sensor placement and training model generation by using virtual
sensor data for HAR system development.

As mentioned above, various studies have focused on simulation of sensor
measurements. However, our research stands out in its interactive approach of using
a single software tool to simulate sensors, acquire training data, and create training
models. This streamlined process enables multiple trial-and-error processes. Another
unique aspect is the use of the PFI contribution indicator during those processes,
which enables efficient exploration of sensor placements and ultimately leads to higher
recognition rates.

2.2 Measurement of human body movements with optical sensors

There are several prior studies on ways to measure, estimate, and identify human body
movements via optical sensors. Kawashima et al. (2017) used infrared sensor arrays
attached to the ceiling to identify daily activities such as walking, sitting, and standing.
A shallow convolutional neural network (CNN) comprising three layers was used to
identify data at a frame rate of 10 fps with 85.75% accuracy. Manabe (2013) used
a single photo reflector to identify multi-touch gestures and demonstrated that even
a single photo reflector can discriminate between touch and gestures using multiple
fingers. AffectiveHMD (Murakami et al., 2019) focuses on the fact that the unevenness
of the facial skin surface varies with human facial expressions. It uses a photo reflector
inside a head-mounted display (HMD) to measure the distance between the facial skin
surface and the sensor.

While previous studies have used optical sensor data to estimate human body
movements, no existing research specifically focuses on simulating the sensors. In our
study, the target sensor for simulation is the phototransistor of a photo reflector, which
is a type of optical sensor. Motion detection and recognition are based on the optical
sensor’s output value, which changes when a physical action is performed in front of
the sensor.
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2.3 Applications of permutation feature importance

In this study, we use the PFI (Fisher et al., 2018) to visualise the importance of
the features used for learning and provide the user with feedback about the model.
Various prior studies also calculated the importance of features and used the PFI for
improvement in the recognition accuracy of learning models and for feature analysis.

Huang et al. (2016) applied the permutation importance (PI) to power-load
forecasting in smart grids and calculated the PI of 243 features used in a short-term
load forecast (STLF), after which features with high impact on the learning model
were extracted. This technique improved the load forecast’s accuracy and is simpler
than the conventional method because it requires less computation time. Kaushik and
Birok (2021) applied the PI to predict heart failure via the XGBoost algorithm, and
they found they could improve the prediction accuracy by using only the features that
were important for learning. Gazi et al. (2021) applied the PI to track a patient’s status
in virtual reality exposure therapy via machine learning. Several features were used
to detect patient anxiety during the therapy, and the PI enabled identification of the
features that were important for anxiety detection. Schelthoff et al. (2022) used the
PFI to estimate wait times for operations at a semiconductor manufacturing plant via
machine learning. The features in the plant that affected the waiting time were inferred
by treating each step of the semiconductor fabrication process as a feature.

In the above studies, the PFI and PI were applied to create learning models that gave
high recognition rates, or they were used to analyse important features. In this study,
each instance of data collected from the simulator’s sensors is treated as a feature. This
approach differs from previous approaches in that it performs PFI analysis of the sensor
data and uses the results to derive a sensor arrangement that yields a recognition rate
close to 100% for the simulator user.

3 Methodology

3.1 Overview

This section describes the method used in this study to simulate sensor data and create
a gesture recognition model. The virtual sensor comprises a camera and a rectangular
object that is the same size as a physical sensor and emulates its behaviour. An SVM
is used to generate the gesture recognition model because it is impractical to collect a
significant amount of training data. The PFI method is applied to assess the usefulness
of features in the model by measuring their impact on the model’s prediction error. This
approach enables effective exploration of sensor placement during the trial-and-error
process.

3.2 Simulated optical sensor

Sensors placed in a virtual space assume the light intensity to be the actual optical
sensor’s output value. Thus, as illustrated in Figure 2, the virtual sensor here comprises
the virtual camera and rectangular object mentioned above. The camera observes the
object’s surface, and the camera image’s intensity value is output every frame, thus
giving the same output behaviour as an actual sensor. The intensity is given by
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equation (2), where I denotes the intensity value, and R, G, and B respectively denote
the red, green, and blue RGB values. Each RGB value has a range of 0–1, and the
intensity is output as a decimal value between 0–1.

I = 0.229×R+ 0.587×G+ 0.114×B, (1)

Figure 2 Structure of the optical sensor on the simulator (see online version for colours)

3.3 Gesture recognition model

To develop the gesture recognition model, an SVM classifier is generated using sensor
data from the simulator. The SVM algorithm uses a radial basis function kernel. In our
method, training data acquisition requires a subject to perform a gesture multiple times.
Furthermore, generation of a large amount of training data leads to longer simulation
times. We thus use the SVM because it is impractical to prepare a significant amount
of training data.

3.3.1 PFI theory

As stated above, the PFI is typically applied to measure the usefulness of features in
machine learning models. The theory of the PFI is as follows. First, the importance
of features is determined by calculating their impact on the model’s prediction error
after reordering them. If swapping certain features increases the model error, then the
model’s predictions depend on those features, which mean that they are important. In
contrast, if the model error does not change when a feature is swapped, then that feature
is considered unimportant. The importance of each feature is expressed by equation (2),
with the fitted predictive model m and a tabular dataset D as inputs:

ii = s− 1

K

k∑
k=1

skj . (2)

Here, s is a reference score, in terms of accuracy, when D is input to m. For each
feature j, k is a number from 1–K, and Dkj is a new dataset in which the position of
feature j in D is randomly shuffled. Then, skj is the score obtained by inputting D̃kj

to model m. Lastly, ii is the importance of feature j.
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4 Implementation

4.1 Overview

The process flow of VirSen1.0, which is built on Unity, is shown in Figure 3. A start
menu appears when the simulator is initiated. The user then selects the objects to
use (human avatars, light sources, and sensors) and places them in the measurement
environment by using a mouse. Training data is obtained from the simulator, and the
recognition accuracy is calculated by an SVM. In addition, a PFI-based contribution
indicator provides feedback to the user about which sensor locations have the greatest
impact on the learning model. This helps the user determine a sensor placement with a
recognition accuracy close to 100%.

Figure 3 Process flow of the proposed simulator (see online version for colours)

4.2 Simulated optical sensor

The optical sensor utilised in this study comprises an infrared LED and a transistor
as a photodetector. The photocurrent generated in proportion to the light received by
the photodetector is amplified and output. The start of data acquisition is defined as
when the value of one of the installed sensors exceeds a specific threshold value as
compared to the value in the previous frame. We adopt a new infrared LED with a light
distribution angle of 104 degrees to enable measurement farther from the sensor, thereby
expanding the measurement range to approximately 3 m. As shown in Figure 5, body
movements occur between the sensor and the light source, and the value of each sensor
changes when the light is blocked.

4.3 3D human gestures and environment

We use Xsens1, a motion capture tool that uses inertial sensors, to reproduce body
movements, which are then recorded as Filmbox format files. The six different gestures
shown in Figure 6 were examined in this study: jump, squat, lean upper body to the
right, lean left, raise right hand, and raise left hand.
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Figure 4 VirSen1.0 (see online version for colours)

Note: 1 – place objects (human avatars, light sources, sensors); 2 – delete objects;
3 – move objects after placement; 4 – switch viewpoints during placement
(third-person/first-person); 5 – obtain training data; 6 – visualise sensor values;
7 – calculate recognition accuracy; 8 – view result with PFI contribution
indicator.

Figure 5 Measurement principle (see online version for colours)
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Figure 6 Recognised gesture types

Figure 7 Measurement environment on the simulator (see online version for colours)

The real-world environment where the sensors are placed are reproduced on a computer
by using Azure Kinect DK and simultaneous localisation and mapping technology
(SLAM). The Kinect DK is a device comprising an RGB camera, infrared camera, and
depth camera. The combination of this device and SLAM technology reproduces the
shape of the space captured by the camera in a 3D point cloud (Matsuo et al., 2020).
The 3D point cloud data is meshed using Blender to fill in any missing areas. The
measured environment and movements are reconstructed on the simulator by importing
the Filmbox file containing the recorded 3D model of the measurement environment
and the movements. Figure 7 shows the measurement environment on the simulator.

4.4 Gesture recognition model

The SVM is implemented by using the SVC class of scikit-learn, a Python machine
learning library. To develop the gesture recognition model, a human body moves in
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front of the sensors placed on the simulator, and sensor data is acquired to calculate
the recognition accuracy. The sensor values for a frame in which the sensor responds
are recorded in a CSV file and labelled with the gesture type. When the simulator
finishes generating sensor data, it uses UDP socket communication to signal the Python
environment running in the background. Once the signal is sent, the sensor data is used
to generate the SVM classifier.

4.5 PFI contribution indicator

To support placement search, we use the PFI, which measures the degree to which the
features used in learning influenced a model when it was generated. The UI for the ‘PFI
contribution indicator’ is shown in Figure 8. This information is feedback to the user
as a bar graph in order of decreasing influence of each sensor on the recognition rate.
We use the Python machine learning library scikit-learn to implement the PFI. Learning
is performed on data sent from Unity to calculate the importance of each feature, and
the importance results are sent back to Unity via socket communication. The simulator
screen displays the PFI calculation results in a graph.

Figure 8 UI of the PFI contribution indicator (see online version for colours)

5 User study

5.1 Overview and purpose

As discussed in the previous section, VirSen1.0 is an interactive sensor simulation with a
sensor placement recommendation function based on machine learning PFI calculations.
Users can freely position sensors with a mouse and view the status of training data
acquisition and the sensor values. Then, a user can examine the recognition accuracy
and confusion matrix for the sensor placement, and the importance of each sensor to
the training model.

The uniqueness of our approach is that we visualise the importance of sensor
placement by using the PFI. While it has previously been used to build learning models
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with high recognition accuracy or to analyse important features, few studies have
explored PFI visualisation with a UI built into a developer tool. Here, we hypothesise
that the PFI contribution indicator improves the recognition rate when users search for
sensor placements.

If our hypothesis is verified, we can consider the PFI contribution indicator to
support a user’s sensor placement search. We believe this will help lower the bar for
the development of data-driven, real-world sensing systems. With this motivation, we
evaluated our hypothesis by conducting a user study.

5.2 Design and task

5.2.1 Design

In this user study, the simulator was actually used by several users. The experimental
design is shown in Figure 9. We divided the participants into two groups: one operating
the simulator without the PFI contribution indicator (case 1), and one operating the
simulator with it (case 2). The participants were asked to perform five trials of
simulating the sensor placement.

Figure 9 Overview of the user study design (see online version for colours)

Note: Each participant was randomly assigned to one of two cases.

5.2.2 Task

The participants were given a task of using the sensor simulator to search for a
five-sensor arrangement with the highest possible recognition accuracy for six gestures
(Figure 6).

5.3 Evaluations

For indicators corresponding to our hypothesis, we performed three evaluations:
comparison of the recognition rates in cases 1 and 2; measurement of the physical,
mental, and other demands during simulator operation; and subjective comments from
interviews with the participants after they had used the simulator. In addition, the
simulator screen was recorded during the sensor placement search.
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5.3.1 NASA-TLX

The questionnaire was based on the NASA Task Load Index (NASA-TLX) (Hart and
Lowell, 1988), which is a commonly used subjective mental workload assessment
method comprising six items. The mental workload here refers to an index for
examining what demands or ecological burdens the load from a particular task imposes
on the subject. If the PFI contribution indicator reduced the user’s concerns about how
many sensors to move and where to move them, then it would mean that the mental
demands during simulator operation were reduced. Thus, we measured the cognitive
workload with the NASA-TLX questionnaire (Byers et al., 1989), as in related works.
The NASA-TLX items are scored on a scale of 0–100, and the details are listed in
Table 1.

Table 1 NASA-TLX questions and rating scale

Workload Descriptive question Endpoints

Mental demand
(MD)

How much mental and perceptual activity was required? Was
the task easy or demanding, simple or complex?

0 to 100

Physical
demand (PD)

How much physical activity was required? Was the task easy
or demanding, slack or strenuous?

0 to 100

Temporal
demand (TD)

How much time pressure did you feel due to the pace at which
the tasks or task elements occurred? Was the pace slow or
rapid?

0 to 100

Performance
(PF)

How successful were you in performing the task? How
satisfied were you with your performance?

0 to 100

Effort (EF) How hard did you have to work (mentally and physically) to
accomplish your level of performance?

0 to 100

Frustration
(FR)

How irritated, stressed, or annoyed versus content and
complacent did you feel during the task?

0 to 100

5.3.2 Interviews

Semi-structured interviews were conducted after the NASA-TLX responses to ascertain
the simulator’s usability and the need for its functions, including the ability to display
the PFI contribution indicator.

5.4 Participants

The user study was conducted with 16 participants (4 women and 16 men, aged 21 to
28 years old, SD = 1.68). Each participant was paid the equivalent of 11 US dollars,
and none of them had used the sensor simulator before.

5.5 Procedure

We conducted five trials over a total of 45 minutes. The participants watched a
three-minute instructional video on how to use the system and then were given three
minutes to practice. Each trial began with installation of the sensors, followed by
training data acquisition, and it finished with calculation of the recognition accuracy
results. The study participants were divided into two groups of eight for cases 1 and 2.
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6 Results

6.1 Recognition accuracy variation

Figure 10 shows the recognition accuracy results over five trials. The recognition
accuracy was initially higher for case 1, but by the fifth trial, case 2 produced the higher
recognition accuracy. In addition, the participants in case 2 had the highest recognition
accuracy over all five trials.

Figure 10 Changes in recognition accuracy over five trials (see online version for colours)

6.1.1 NASA-TLX

Figure 11 shows the NASA-TLX results in terms of the average scores over all
participants. The results of a t-test at the 5% significance level (p < 0.05) showed a
significant difference between TD and FR.

Figure 11 NASA-TLX results (see online version for colours)



236 K. Matsuo et al.

7 Discussion and limitations

7.1 Improvement in recognition rate

As shown in Figure 10, the recognition accuracy in case 2 was similar to that in case 1
until the fourth trial, but case 2 achieved a higher recognition rate in the fifth trial. The
reason for the difference in recognition rates is that in case 2, with the PFI contribution
indicator, the user could learn the effect of sensor placement on the recognition rate
during simulator operation and then choose a final placement that would produce a high
recognition rate. Observation of the sensor placements showed that, in both cases 1
and 2, the participants initially tended to place the sensors on the edges of shadows,
i.e., the body’s shadows projected on the wall where the sensors were placed. This
type of placement is not conducive to improving the recognition rate. In general, it is
better to place the sensors in a balanced arrangement on the wall, outside the shadow
edges, or completely scattered in the shadows (in a rectangular arrangement or close
to a well-balanced pentagonal arrangement). Figure 12 shows the total distance that the
participants in each case moved the sensors during the user study. A t-test at the 5%
significance level (p < 0.05) confirmed that there was a significant difference between
cases 1 and 2. In particular, the participants in case 2 moved the sensors farther than
the participants in case 1 did. In addition, the tendency to place sensors on the edge of
the shadows was observed to improve more often in case 2 as trials were repeated.

Figure 12 Total distance that sensors were moved (see online version for colours)

When the participants were asked whether the simulator itself was effective for finding
sensor placements, many responded affirmatively. When we asked what they specifically
appreciated, the responses included the following: “if a sensor’s contribution was low, I
could determine that the placement was inappropriate”; and “it was easier to understand
which sensors needed to be moved. The results were slightly better after moving the
sensor according to what I saw on the actual PFI contribution indicator”. In looking for
a sensor placement with a high recognition rate, there are two aspects: which sensor to
move, and which position to move that sensor to. Case 1 required the participants to
consider which sensor to move in each trial, whereas in case 2, by checking the PFI
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contribution indicator, they could immediately identify which sensors did not contribute
to improving the recognition rate. Thus, as confirmed by the interview results, the
participants could focus on where to move the sensors. The significant difference
between Temporal Demand and Frustration for the NASA-TLX also supports this view.

Overall, these results indicate that the PFI contribution indicator improves the
recognition rate in searching for sensor placements. It has been suggested that this is
because it reduces the need to think about which sensor to move in each trial. However,
it is difficult to decide where to move a sensor according to the PFI contribution
indicator alone.

7.2 Trial-and-error

There were several positive responses from the participants regarding the ease of
trial-and-error in the user study. These included comments like the following: “I thought
it would be good to have a simulator because it is time-consuming to search for the
best sensor placement in the real world” and “I think the simulator is very effective
because I can repeat the placement many times and use trial-and-error”. When asked if
the simulator made trial-and-error easier than in the real world, one participant replied,
“in the real world, it’s hard to move sensors and get training data, but the simulator
doesn’t have that”. These results suggest that trial-and-error is easier in this simulator
than in the real world.

Our study utilised an interactive sensor simulator where the user tries out sensor
placements. Other simulators can suggest sensor placements with high recognition
accuracy by using computational techniques such as combinatorial optimisation
algorithms (Jourdan and de Weck, 2004; Mallardo et al., 2013; Song et al., 2017;
Krzakala et al., 2021). However, those approaches can lead to local solutions, and the
more sensors there are, the longer the computation time becomes. In addition, they may
suggest a complex sensor placement that is not feasible in practice. In contrast, our
simulator avoids these problems because it can be operated interactively, and the user
can think about the placement to reduce the computation time. We also achieved 95%
accuracy for the users’ arbitrary sensor placements over 30 minutes across five trials.
Accordingly, we believe that allowing users to interactively perform their own sensor
placements through trial-and-error on the simulator is very feasible and will enable quick
discovery of a sensor placement with high recognition accuracy.

7.3 Usability

Next, when we asked whether it was difficult to use the keyboard and mouse, all the
participants said that it was not difficult. A few participants also gave positive responses
such as “it was intuitive and easy to navigate”. Regarding the training data acquisition,
there were positive comments such as “I thought it was effective in that I could see the
process of acquiring training data”. The simulator also allows placement of sensors in a
3D environment with a mouse click. Moreover, the simulator itself was rated positively,
with comments such as “it is more intuitive than setting the coordinates yourself”.
Overall, the simulator’s interactive nature was effective in reducing the amount of work
required to install sensors and collect training data, but making the simulator more
interactive could further improve its usability.
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7.4 Roadmap for future simulator UI design

The sensor simulator in this study was designed for ordinary people without specialised
knowledge. While we obtained useful feedback during the interviews in terms of how to
further improve the sensor search, our focus is how to better support novice developers
in sensor-based machine learning system development; as such, we view the current
study as a first step. In terms of the next design steps, we intend to adhere to the
following roadmap.

Comments common to all the participants included the following: “I would like to
be able to see past placements and results”; and “I would like the ability to revert
to previous placements with high recognition rates”. In addition, there were comments
that “while searching, I lost track of past placements and results”. Hence, we should
implement functionality to check the results of past placements and revert to them.
People presumably want this functionality so that they can refer to sensor locations
with low contributions to the recognition rate, especially when the PFI contribution
indicator is present. This situation occurs when users perform trial-and-error in location
configuration, and effective information management can help them understand how to
find desired sensor locations.

Regarding the PFI contribution indicator itself, the users commented that “if the
contribution level is known, it would be good to have a placement suggestion function
from the simulator side to suggest a sensor placement”. When the participants in case 2
were asked whether the sensor simulator was effective, one negative comment was “the
PFI contribution indicator shows which sensors to move, but in the end it does not tell
us where to move them, so moving them may result in a lower recognition rate”. We
consider this a critical issue, because it indicates the difficulty for both amateur users
and machine learning experts to determine why a machine learning model produced the
results that it did (Fisher et al., 2018). However, as discussed in Section 7.2, we still
believe that trial-and-error is important. Although we have not come up with a specific
solution yet, we would like to prioritise this issue in the future.

Currently, our simulator implements two visualisations: a green brightness
visualisation of the sensor surface values, and a bar graph of the sensor values. One
possible new interactive element would be a display of the sensor values near the sensor
when the cursor hovers over it. Also, one participant asked, “is it possible to freely
change the viewpoint while acquiring training data?”. Currently, the viewpoint can be
changed, but it is limited to two types. Hence, we plan to add interactions that will
allow the user to freely change viewpoints while acquiring training data. In addition,
because we observed that users lost track of which motion data they were capturing,
we will consider adding a progress bar or other UI element to indicate which motion
training data is currently being captured and how soon the training will be completed.
According to a report by Ohtsubo and Yoshida (2014), on the effect of a progress bar’s
shape on time evaluation, a ring-shaped progress bar with a central angle of 90 degrees
yields the most time reduction. Thus, the addition of a progress bar would have the
effect of reducing the perception that an operation is taking too long.
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7.5 Limitations

7.5.1 Clothing influence

Because the clothing worn by the human avatars in our simulator was not changeable,
we did not examine the effect of clothing on the recognition accuracy, nor the effect
on the optical sensor of infrared light reflection due to the colour of clothing. We thus
intend to measure the effect of clothing colour on the optical sensor in the real world
and see if it has any effect on the simulator.

7.5.2 Sensor noise errors

The optical sensor simulator in this study did not consider sensor noise and other errors.
If the simulator takes these factors into account, it will be possible to obtain results that
are more in line with real-world conditions.

7.5.3 Processing speed limitations

Our simulator reduces the frequency of acquiring sensor values from the optical sensor
to match the processing speed on the software side. Accordingly, we believe that by
increasing the processing speed of Unity, it will be possible to bring the simulator
more in line with real-world conditions. In addition, because the frequency of sensor
value acquisition was reduced to match Unity’s processing speed, the low fps accuracy
and screen choppiness caused problems that made it difficult to finetune the sensor
placement. User study participants also pointed out this issue during the interviews.
Because difficulty in sensor placement is a critical issue, we will explore ways to
implement a lightweight simulator in the future.

7.5.4 Restrictions on recognition targets

In this user study, the sensors were placed on only one wall, and the participants were
asked to identify large body movements. As we expect that sensors will also be able to
recognise and identify larger movements, our future work will explore the placement of
sensors on two or more walls to recognise even more complex movements.

8 Conclusions

This paper reported our development of an optical sensor simulator to determine the
necessary features and UI for a real-world simulator. Through a user study including
interviews and surveys, we confirmed that the PFI contribution indicator could assist
users in exploring sensor placements and generating data with high recognition rates.
In particular, the training model for case 1 with the PFI contribution indicator achieved
a high recognition rate. Additionally, we found that the simulator was easy to use.
We expect that this simulator, which facilitates the entire development process from
acquisition of learning data to creation of a learning model via a single tool, will reduce
user effort in sensor placement search and make the development of real-world human
gesture recognition systems more efficient.
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In addition, we have obtained ideas for new features to be implemented from the
user’s perspective, as described in Section 7.4. Our future works will include improving
the simulator to better support user sensor placement searches based on these ideas
obtained from the user study. The PFI contribution indicator in this study only shows
which sensor to move, which leaves the user to apply trial-and-error to determine a
sensor movement direction to improve the recognition accuracy. Hence, we aim to add
feedback on sensor placement locations that will improve the learning accuracy, through
analysis of past sensor configurations via reinforcement learning, among other methods,
in parallel with trial-and-error by the user. Additionally, for greater versatility, we aim
to simulate not only optical sensors but also inertial measurement unit sensors.
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