
 
International Journal of Society Systems Science
 
ISSN online: 1756-252X - ISSN print: 1756-2511
https://www.inderscience.com/ijsss

 
An improved hybrid genetic algorithm to solve the multi-vehicle
covering tour problem with restriction on the number of
vertices
 
Manel Kammoun
 
DOI: 10.1504/IJSSS.2023.10058186
 
Article History:
Received: 30 January 2021
Last revised: 29 December 2021
Accepted: 15 April 2022
Published online: 08 August 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijsss
https://dx.doi.org/10.1504/IJSSS.2023.10058186
http://www.tcpdf.org


Int. J. Society Systems Science, Vol. 14, No. 3, 2023 247

An improved hybrid genetic algorithm to solve
the multi-vehicle covering tour problem with
restriction on the number of vertices

Manel Kammoun
Department of Quantitative Methods,
Faculty of Economics and Management,
MODILS,
Sfax University,
Sfax, Tunisia
Email: kamounemanel@gmail.com

Abstract: In this paper, we address the multi-vehicle covering tour problem
where only the restriction on the number of vertices in each route (m-CTP-p).
The objective of the m-CTP is to minimise the total routing cost and
fulfill the demand of all customers such that each customer which is not
included in any route must be covered. Each covered vertex must be within
a given distance of at least a visited vertex and the number of vertices
on a route does not exceed a pre-defined number p. We propose two
approaches to solve this variant. First, we develop a genetic algorithm (GA)
using an iterative improvement mechanism. Then, an effective hybrid genetic
algorithm (HGA) is developed in addition to a local search heuristic based
on variable neighborhood descent method to improve the solution. Extensive
computational results based on benchmark instances on the m-CTP-p problem
show the performance of our methods.
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1 Introduction

The VRP is one of the most famous combinatorial problems. It is a classical logistics
problem that aims at servicing a given set of customers using a set of vehicles located
at a central depot. Many applications defined on the real world need to provide vehicle
routing strategies. For a detailed literature review about the VRP, we refer to the paper
of Braekers et al. (2016).

The CTP has been motivated by the humanitarian logistics that aims at minimising
damage and losses in human lives after a disaster where appear some restrictions on
some resources (time, budget, ...). These restrictions prevent the healthcare organisations
to provide relief as soon as possible to the victims and to supply the affected populations
with food and medecines.

The covering issue is considered in a large number of real world applications
including but not limited to disaster management, problems arising in emergency
situations and busines sector. For example the covering issue is involved to solve the
problem of disaster relief (De La Torre et al., 2012). Besides, Doerner and Hartl (2008)
deal with the unavailability of roads to reach a specific customer by applying the m-CTP.
The restriction of time can be appear in the problem of vaccination campaigns where the
service duration to vaccinate the people is more important than the travelling time. In
addition, we have the problem of resource availability like the number or the capacity of
the vehicles such as dairy practice problem in the case of milk collection points (Simms,
1989).

In this paper, we address a generalisation of the covering tour problem. The studied
problem can be described as follows: find a good design of a set of tours to supply
demands to cities with the aim of minimising the total length of all tours while
respecting a covering distance. This distance is defined as the largest distance that any
customer must travel to reach the nearest supplied city or visited vertex. In this work
we consider the constraint on the number of vertices on each tour.

The paper is organised as follows. In Section 2, we present a literature review of the
CTP. In Section 3, we describe the studied problem. Then in Section 4, we present the
different steps of our proposed approches. Finally, in Section 5 we present computational
results and a comparative study was provided.

2 Literature review

In this section and before we proceed with our study, we briefly review the related
problems of the CTP and their variants.

Over the last decades, several authors have adopted exact methods, heuristics and
metaheuristics to solve different variants of the VRP. But, few works focus on the
CTP despite his importance in the real world. The CTP was first introduced by Current
(1981) where he divides the set of vertices into two groups. The first one includes the
vertices that can be visited and contains a set of vertices that must be visited and the
second group includes the vertices that must be covered by the tour. The CTP seeks
to find a minimum-length Hamiltonian cycle along a set of vertices where another set
of vertices lies within a given distance of at least a vertex of a route. For instance,
Gendreau et al. (1997) solve the one vehicle version (1-CTP) exactly by branch and
cut algorithm. The CTP was extended by Hachicha et al. (2000) to include multiple
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routes. They introduce a generalised variant of the CTP called m-CTP which aims to
find a minimum length set of vehicle routes with respecting the constraints related
to the length of each route and the number of vertices that it contains and solve
the problem heuristically. Lopes et al. (2013) develop a branch-and price algorithm
to solve the same problem. Jozefowiez (2011) solve the multi-version by an exact
algorithm based on a column generation approach where they formulate the sub problem
similarly to the 1-CTP model proposed in Gendreau et al. (1997) and consider the
master problem as a simple set covering problem. Jozefowiez et al. (2007) added a new
objective to the m-CTP aiming at minimising the greatest distance between the vertices
of another set and the nearest visited vertex. They solve the proposed bi-objective
covering tour problem (BOCTP) with two-phases cooperative strategy that combines
a multi-objectives evolutionary algorithm with a branch-and-cut algorithm initially
designed to solve a single objective covering tour problem. Jozefowiez (2015) solve
the m-CTP exacty using a branch-and-price algorithm where the resulting subproblem
is a variant of the profitable tour problem. It is reduced to a ring star problem and
solved by a branch-and-cut algorithm. Há et al. (2013) study a variant of the m-CTP
with no tour length constraints and develop exact and metaheuristic methodologies
to solve the problem. They develop a branch-and-cut algorithm and a two-phase
metaheuristics derived from evolutionary local search (ELS). Kammoun et al. (2015)
show the efficiency of a variable neighbourhood search (VNS) algorithm for solving the
m-CTP with only the restriction on the number of vertices in each route (m-CTP-p) and
improving results in terms of quality and solution time compared with Há et al. (2013).
Vargas Suarez (2012) analyse the single-vehicle CTP, the m-CTP and the orienteering
problem (OP) and developed a m-Selector operator which proves their effectiveness to
solve these problems.

More recently, the multi-vehicle multi-covering tour problem was introduced and
studied by Pham et al. (2017). An integer linear program, a branch and cut algorithm
and a genetic algorithm (GA) are developed to solve the problem. Margolis et al. (2019)
study the multi-vehicle covering tour problem with time windows (MCTPTW) that aims
to determine a set of maximal coverage routes that serve a secondary set of sites under
a fixed time schedule, coverage requirements and energy restrictions. They extend both
the m-CTP and the VRP with time-windows (VRPTW) under energy constraints to
formulate a deterministic mixed-integer second-order cone programming (MISOCP).

Furthermore, Current and Schilling (1994) solve the maximum covering tour
problem (MCTP) as a multi-objective CTP. Another m-CTP variant, which considers
multiple objectives is introduced by Tricoire et al. (2012).The authors deal with
stochastic demand and consider multiple objectives including the cost and expected
uncovered demand. They formulate the multi-objective problem using the ε – constraint
method and solve the problem exactly by a branch-and-cut approach. Flores-Garza
et al. (2017) introduced the cumulative m-CTP, which aims to find a set of tours that
must be followed by a fleet of vehicles in order to minimise the sum of arrival times
(latency) at each visited location. They formulate a mixed integer linear programming
model and develop a greedy randomised adaptive search procedure (GRASP) to solve
it. Another variant of the m-CTP named multi-vehicle multi-covering tour problem
(mm-CTP) is introduced by Pham et al. (2017) in which the customer vertices must
be covered several times rather than once. Kammoun et al. (2019) develop a general
variable neighbourhood search with mixed VND (GVNS) to solve the same problem.
The results of the GVNS show an appreciable competitive behaviour compared with
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Pham et al. (2017). They develop also two hybrid metaheuristics that combine GA and
variable neighbourhood descent (VND) method and a general variable neighbourhood
search (GVNS) algorithm (Kammoun et al., 2020). The results show that these hybrid
approaches are competitive with the ELS and GA proposed in the literature.

Several methods are used to solve different variants of the CTP problem. We
note that the population-based metaheuristic search method (GA) hybridised with LS
technique have been successfully applied to hundreds of real world problems in a wide
range of domains and represent a trade-off between global searching and local searching
in terms of quality of the solution and the time to converge to a global optimum
(Ochelska-Mierzejewska et al., 2021; Viana et al., 2020; Barkaoui and Berger, 2020).
The main reason behind the hybridisation of GA and VND algorithms is to exploit the
complementary features of each optimisation techniques. In this context, we propose an
hybridisation to the GA and we enhance it with a VND algorithm.

3 Problem description

The m-CTP-p is defined by Baldacci et al. (2005) as an undirected graph G = (V ∪
W,E), where V ∪W is the vertex set and E is the edge set. They consider different
kinds of locations: V , T and W . V is the set of vertices that can be visited and W
is the set of vertices that must be covered by up to m vehicles. T ⊆ V is the set of
vertices that must be visited including the depot where identical vehicles are located.
They consider that each vertex of V has an unit demand and each vehicle has a capacity
of p. In this problem, we do not need to visit all vertices of V with the exception of
the vertices of T to satisfy the demand of each customer. The demand of each customer
could be satisfied in two different ways: either by visiting the customer along the tour
or by covering it. Covered vertices must be within a predefined distance d from the tour.
The m-CTP is an NP-hard problem as it reduces to a travelling salesman problem (TSP)
when d = 0 and V = W , to a VRP with unit demand when T = V and W = ∅; or
simply to a CTP when there are no capacity constraints. The difference between these
routing problems is illustrated by the Figure 1. In the TSP solution the route can be
started with any vertex whereas in the VRP solution all the vehicles start from the depot
and all the vertices must be visited.

The goal of the m-CTP is to find a minimum length set of vehicle routes with
respecting the number of vertices in each route and satisfying the following constraints:

1 each vehicle route starts and ends at the depot

2 each vertex of T belongs to exactly one route while each vertex of V \ T belongs
to at most one route

3 each vertex of W must be covered by a route, i.e., a covered vertex vl ∈ W can
be covered by a visited vertex vk ∈ V when the distance between these two
vertices small than a certain fixed value

4 the number of vertices on a route (excluding the depot) is less than a given value
p

5 the length of each route does not exceed a fixed value q.
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In the m-CTP-p, the last constraint is relaxed and the only considered restriction is
related to the number of vertices on each route. Figure 2 shows an example of the
m-CTP instance and their corresponding feasible solution where |T | = 1, |V | = 10, |W |
= 8, m = 3 and the number of vertices in each route does not exceed p = 3.

Figure 1 An illustrative example of the different routing problems

Figure 2 Example of feasible solution for a m-CTP instance

4 Proposed approches

4.1 A GA for m-CTP-p

The GA is considered as a robust algorithm with great flexibility as it follows a set of
genetic operators which prevent the solution of being trapped in a local optimum. The
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GA was shown to be competitive with other modern heuristic techniques since a wide
variety of hard optimisation problems were solved successfully by GA (Bräysy et al.,
2004; Oliveira da Costa et al., 2018).

In this work, we develop a GA to solve the m-CTP-p. To begin our algorithm, some
parameters need to be initialised as population size, number of generations, mutation
and crossover rates. As a second step, we define an initial population based on a set of
random feasible solutions named chromosomes. Then we measure the fitness of each
chromosome to select two parents. An offspring is generated from the selected parents
using the crossover operator. In order to maintain a diversity in the population, we
mutate the offspring, then we use an iterative improvement procedure (IIP) that apply
a swap move between a gene from the chromosome and a selected element from the
remaining set of vertices and find the best position of this element in the offspring.
Finally, a new population is formed by applying the replacement phase in which we
reject the worst parent from the population and replace it with the obtained offspring.
After the predefined number of generation is performed we obtain the best offspring.
The different steps of our approach are summarised in Algorithm 1.

Algorithm 1 GA for m-CTP-p
1: Initialise: psize = 10, Pm = 0.1, Pc = 0.9, nbg = 100; /*Global parameters*/
2: Generate Pop; /*First generation of individuals*/
3: Calculate the evaluation function FEV AL of each individual Si in Pop;
4: Let Sbest the individual with the best fitness;
5: Let Sworst the individual with the worst fitness;
6: while number of generations is not reached do
7: S1 ← SELECT (Pop);
8: S2 ← SELECT (Pop);
9: Snew ← CROSSOV ER(S1, S2);
10: S′

new ←MUTATION(Snew);
11: S′′

new ← IIP (S′
new);

12: if FEV AL(S′′
new) < FEV AL(Sworst) then

13: Sbest ← REPLACEMENT (S′′
new, Sworst, Pop);

14: end if
15: end while

In the following we describe with more details each step of our approach.

4.1.1 Solution representation

In this work, the initial population was built by generating an initial set of feasible
solutions. Here we describe a constructive heuristic designed to derive good initial
feasible solution. The heuristic constructs a vehicle route that guarantee the covering
constraint. Starting at the depot, in each iteration, the next visit (vertices from V ) is
chosen in order to maximise the number of covered vertices. Each solution contains a
set of vertices that must be visited (T ) and some vertices from V to cover the total
vertices in W . The obtained feasible solutions represent the set of individuals of the
population. We measure the fitness function of each individual from the population and
initialise the best one. The representation of each individual in the population have a
big influence on the choice of efficient and appropriate GA operators. In our approach,
we use a vector A(S) to present a solution S. This vector always started by the depot
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(D) and the remaining elements of the vector give the set of customers which form
the different tours in the solution. Notice that each chromosome must contain all the
vertices of T since they represent the vertices that must be visited while the vertices of
W should not be present in the solution. To illustrate the representation of a solution S,
we consider an example with single depot, 12 customers and 2 vehicles (see Figure 3).

Figure 3 An example of m-CTP solution representation

In this example two routes are presented where each one started from the same depot.
In the first route customer 4 is followed by customers 7 while in the second route three
customers (2, 3, 12) are visited where one of them belongs to T . As we see in this
example customers 6 and 8 are covered by the visited customer 12 while customer 9
was covered by customer 4. In the initial population, a set of individuals was randomly
generated. An initial individual S is initially constructed by the insertion of all customers
that must be visited (T ) at random in a vector A, then by generating a random insertion
of the remaining set of customer until all customers of W will be covered.

4.1.2 Selection operator

The second step in a standard GA is how to select parents from the initial population.
In this step of the algorithm we do not create a new chromosome, we only pick good
parents from the initial population that will be used in the next step to create new
offsprings. Various traditional selection mechanisms are used in the literature: roulette
wheel selection, rank selection, tournament selection and elitism selection. In our work
we applied the roulette wheel selection to select two parents from the initial population
to survive and create new offspring. We calculate the fitness and the probability
distribution for each individual. Then, we calculate the cumulative probability for the
population. The parents are selected according to their probability distribution. Our
selection procedure is described in Algorithm 2.
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Algorithm 2 SELECT (Pop)

1: for i = 0; i < psize do
2: Calculate FEV AL(Si);
3: end for
4: Let M = max(FEV AL(S1), FEV AL(S2), ..., FEV AL(Spsize));
5: for i = 0; i < psize do
6: Pi = 1 + (M − FEV AL(Si)) ; /*the selection probability*/
7: end for
8: for i = 0; i < psize do
9: Pc = Pc + Pi; /*the cumulative probability*/
10: end for
11: Generate a random number r in the range [0, Pc];
12: t← P0;
13: for i = 0; i < psize do
14: if r < t then
15: S ← Si;
16: else
17: t = t+ pi+1;
18: end if
19: end for

4.1.3 Crossover operator

After selecting two parents, the crossover takes place to create the new offspring. The
crossover operator consists of recombining the parents to form the new chromosome.
In this study we apply the one point crossover (cp) and we copy the part of the
chromosome before the cp from the first parent into the new offspring. Then, we clean
up the second parent by removing the genes formed the new offspring from them.
Finally, we insert the gene from the second parent into the offspring and repeat this
step until a feasible offspring is reached. The crossover procedure is given with more
details in Algorithm 3 and then illustrated in Figure 4(a).

Algorithm 3 CROSSOV ER(S1, S2)

1: Select randomly a cp from the first parent S1; /*crossing point*/
2: for i = 0; i < cp do
3: S′ ← S1;
4: end for
5: clean up S2 /*delete gene in S′ from S2*/
6: repeat
7: Insert genes from S2 into S′;
8: until a feasible offspring S′ is reached;

4.1.4 Mutation operator

The mutation operator preserves the diversification in the population since it produces a
neighbouring chromosome by changing some genes of the original one and prevent the
algorithm to trapped in local optima. This operator consist of selecting randomly a set
of customers and removing them from the solution. The mutation procedure developed
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in our work is summarised in Algorithm 4 and then illustrated in Figure 4(b) where
cp = 3 and one depot and 12 customers are considered.

Algorithm 4 MUTATION(Snew)

1: Let I be the set of genes in the chromosome Snew and R = V \I;
2: Remove randomly l genes from Snew;
3: repeat
4: Select randomly a customer i fromR;
5: Insert i randomly in Snew;
6: until the chromosome Snew become feasible;

Figure 4 An example of a genetic operators, (a) an example of a crossover operator
(b) an example of a mutation operator (see online version for colours)

(a)

(b)

4.1.5 Fitness function

The evaluation function gives us an idea about the quality of the solution which helps
on comparing between individuals and gives the individual with best fitness more
chance to survive. In this work, we define the evaluation function of an individual
Si by FEV AL(Si). In our relevant problem (m-CTP-p) the objective is to minimise
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the total travel cost with respecting the capacity constraint under a restriction on the
number of vertices in the solution. The cost of the individual Si is represented by
Cost(Si). In addition if the capacity constraint is violated a penalty will be added to
our evaluation function. Let PENALTY (Si) be the penalty on the violation of the
capacity constraints. Therefore, the evaluation function FEV AL(Si) of an individual
Si is calculated as follow:

FEV AL(Si) = Cost(Si) + PENALTY (Si) (1)

According to the value of the penalty the algorithm visit unfeasible solutions or visit
only the feasible one. In this work, the PENALTY (Si) is computed as follows:

PENALTY (Si)

=
∑

αmax{0, demand of customers− capacity of the vehicles} (2)

where α is a constant parameter that affects on the value of the penalty and thereafter
on the algorithm. In this work, α is a constant taken as a big number to consider only
feasible solutions.

4.1.6 The IIP method

In the following, we present the IIP hopping for an efficient update of the set of
neighbouring solutions. This procedure has a role of diversification in our algorithm. It
consist of relocating vretices and move from from one feasible solution to neighbouring
solution. The neighbour detaied solutions are performed by swapping a customer from
the solution with another one from the remaining set of customers. All the customers of
W must be covered after any swap move. The IIP procedure is described in Algorithm 5
and then illustrated in Figure 5. After GA have been performed, we develop a LS
method to improve the resulting offspring. In the sequel, we detail the local search (LS)
method.

Algorithm 5 IIP (S)

1: repeat
2: Select a gene i from the offspring S;
3: let g be the set of gene in the offspring S and R = V \g;
4: Determine R′ ⊂ R that guarantee the feasibility of S by applying a swap move between

a gene i and any element from R′ to get a new offspring S′

5: Select customer j from R′

6: Swap i and j and find the best position of j in the chromosome Si

7: if FEV AL(S′
i) < FEV AL(Si) then

8: S ← S′;
9: Update S and go back to step 2
10: else
11: Go back to step 6
12: end if
13: until no possible improvement

In this example, customer 4 was selected from the chromosome and to maintain a
feasible solution it can be replaced only by two customers from the remaining set
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(customers 10 and 2). We select customer 10 from R′ and then a swap move between
customers 4 and 10 was performed. We notice that customer 10 try to find the best
position in the chromosome. In step 4 we select the offspring 3 as the best chromosome.
In the last step we compare the resulting offspring with the first one and if we have
an improvement we update the remaining set by adding customer 4 in R and repeat the
process until no possible improvement otherwise go to step 3 and swap customer 4 with
another customer from R′.

Figure 5 The swap improvement method

4.1.7 Replacement phase

Finally we finish our GA by a replacement phase which is used to maintain good
solutions in the population. Many methods in the literature are used to replace one
individual from a population with another one. This can be done randomly or by
removing a specific individual from the population. In this paper, our replacement
procedure consists in selecting the individual with the worst fitness function and
remove it from the population. In this phase we compare the worst individual with the
new obtained offspring and keep the best one inside the population. The replacement
procedure is presented in Algorithm 6.
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Algorithm 6 REPLACEMENT (Snew1, Sworst, Pop)

1: Sworst ← Snew1;
2: Update Pop;
3: Update Sworst;
4: Update Sbest;

In the sequel, we propose an hybrid approach to improve the solution using a LS
method.

4.2 Hybrid GA for m-CTP-p

The idea of combining the GA with a LS heuristic is initially used to intensify the search
since GA guarantee only the diversification due to the use of many genetics operators.
We propose to hybridise GA with a VND method that explores several neighbourhood
structures in a deterministic way. In this section the hybridisation (HGA) is discussed.

Figure 6 N1 −N2 insertion (see online version for colours)

Generally, a LS algorithm starts from an initial solution and then moves to a neighbour
one by modifying some components of a given solution. Therefore, we cannot design a
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VND method without defining the neighbourhood structure which aim at investigating
a large number of solutions in a short time. The choice of the different neighbourhood
structures is performed according to the studied problem. Relocating vertices between
two routes are tested: neighbourhoods structures that removes one customer from a route
and insert it in a different tour was used besides other neighbourhood that swaps the
position of two customers from two different routes.

Figure 7 N3 −N4 swap (see online version for colours)

Let Nk, k = 1, ..., kmax be the set of neighbourhoods used in our VND algorithm and
Nk(S) be the neighbours of a solution S, w.r.t a neighbourhood structure Nk. In this
work, we aim at generating a new neighbouring solution S′ of S by exploring four
neighbourhood structures: N1, N2, N3 and N4 based on two classical neighbourhoods.
The classical insertion and swap moves are applied inside the same route and between
two different routes.

Neighbourhood N1 and N2 use the INSERT operator which is employed either
intra-route and inter route to get the first neighbouring solution S1. This move changes
the order of customers in those routes. For the neighbourhood N1, the insertion
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is carried out inside the same route by removing a customer and inserting it in a
new position as shown in Figure 6(a). For neighbourhood N2, the insertion move is
performed between two different routes in which one customer is removed from its
position and inserted into another route. Neighbourhood N2 modify the corresponding
routes not only the order of customers but also changes the number of customers in
those routes. Figure 6(b) represents such move.

Algorithm 7 V ND(S)

1: Input: initial solution S, neighbourhood structures Nk, k = {1, ..., kmax};
2: Begin
3: k = 1;
4: repeat
5: Find S′ the best neighbour of S using the neighbourhood structure Nk;
6: if FEV AL(S′) < FEV AL(S) then
7: S′ ← S;
8: k = 1;
9: else
10: k = k + 1;
11: end if
12: until (k > kmax);
13: End;

Algorithm 8 HGA for m-CTP-p

1: Initialise: psize = 10, Pm = 0.1, Pc = 0.9, nbg = 100; /*Global parameters*/
2: Generate Pop; /*First generation of individuals*/
3: Calculate the evaluation function FEV AL of each individual Si in Pop;
4: Let Sbest the individual with the best fitness;
5: Let Sworst the individual with the worst fitness;
6: while number of generations is not reached do
7: S1 ← SELECT (Pop);
8: S2 ← SELECT (Pop);
9: Snew ← CROSSOV ER(S1, S2);
10: S′

new ←MUTATION(Snew);
11: S′′

new ← IIP (S′
new);

12: Snew1 ← V ND(S′′
new);

13: if FEV AL(Snew1) < FEV AL(Sworst) then
14: Sbest ← REPLACEMENT (Snew1, Sworst, Pop);
15: end if
16: end while

For neighbourhoods N3 and N4, a SWAP move is applied to S1to get a second
neighbouring solution S2. This move is aimed at creating new solutions by interchanging
customers in the same route or between different routes. For neighbourhood N3, two
customers inside the same route can be swapped while we consider one route and swap
the positions of two customers inside the same route as shown in Figure 7(a). But for the
neighbourhoods N4, we consider two different routes and the swap move is performed
by randomly selecting one customer from each route and exchanging them as shown in
Figure 7(b).

The outline of our VND procedure is summarised in Algorithm 7. In both Figures 6
and 7 we first present the initial solution (a) in which a neighbourhood was applied by
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modifying some components of this solution and then the new neighbouring solution
(b) was created. The initial solution is represented by black lines while dashed lines
correspond to the arcs removed from the original routes by applying one neighbourhood
and red ones present the new arcs obtained after a move is applied.

Our resulting hybrid approach is summarised in Algorithm 8.

5 Computational results

A set of numerical experiments were performed using two benchmark sets of instances
available in the literature. These instances was proposed by Há et al. (2013) and
consists of 64 small instances and 32 large instances where the total number of
customers is respectevely 100 and 200. Each of these instances was generated based
on benchmark instances KroA100, KroB100, KroC100 and KroD100 of TSPLIB.
These instances are first used to create a set of nbtotal = |V |+ |W | = 100 vertices.
Tests are run for n = [0.25 nbtotal] and n = [0.5 nbtotal] and |T | = 1 and |T | = [0.20 n]
and W is defined by taking the remaining point (|W | = 100− |V |). As a second step,
we use instances KroA200 and KroB200 with nbtotal = 200 vertices to generate
another set of instances. The instances are labelled X − T − n−W − p, where X is
the name of TSPLIB instance. To better understand, we give an example of a large
instance which is derived from KroB200 of TSPLIB. Let B2-1-50-150-4 a generated
instance with only one required vertex (|T | = 1), 50 vertices that can be visited (|V |
= 50), 150 vertices that must be covered (|W | = 150) and each tour must contain less
than four vertices (p = 4). For further information about the considered instances, see
Gendreau et al. (1997), Jozefowiez (2011) and Há et al. (2013).

Our algorithms described in the previous section was coded in C++ programming
language and was run on a computer with an Intel Core i5-4200U and 2.3 Ghz processor
and 6 GB memory.

A computational study is performed to evaluate the performance of our algorithms
compared with the optimal solution and the solutions of Murakami (2018). In each
benchmark instance, we show the results obtained using the GA, HGA and the results
of other algorithms, as well as their computation time (in seconds). We also show the
gap between our results and the results of the optimal solution and the results obtained
using the ICG algorithm proposed by Murakami (2018) in each benchmark instance.

Let HA be the cost obtained by our HGA algorithm and BNC be the best khnown
cost, i.e., the cost of the optimal solution or the value of the solution of the metaheuristic
if optimal solutions could not be found. The percentage deviation of our method, Gap
is computed as follows:

Gap = 100 · (HA−BNC)/BNC (3)

After a set of tests We also show the gap between the cost of our solution and the cost
obtained using the ICG algorithm in each benchmark instance.The Gap is computed as
follows:

Gap = 100 · (HA− ICG)/ICG (4)

We use the following genetic parameters in our experimentation. First we fixed the
population size psize = 10, i.e., at each population we have ten individuals (solutions



262 M. Kammoun

represented by chromosomes). Then we define the probability of genetic operations. We
consider Pm = 0.1 the probability of mutation operator and Pc = 0.9 the probability
of crossover operator. The algorithm was executed until 100 generations. At each
generation we force our algorithm to visit only feasible solutions by fixing a large value
of the parameter α, α = 1,000 in the PENALTY (S).

Figure 8 Computation time for the GA, HGA and ICG algorithms

Figure 9 The average gap between the HGA and the results of Há et al. (2013) and
Murakami (2018) algorithms

The results are summarised in Tables 1 and 2 for the test problems. Table 1 presents
the results for 64 instances with 100 vertices and Table 2 presents the results for 32
instances with 200 vertices. The column headings are as follows: column gap shows the
deviation between the cost of our solution and the cost obtained by Há et al. (2013) and
Murakami respectively. Column time is the running time in seconds. The italic numbers
indicate the solution generated by GA that cannot be improved by the proposed hybrid
approach. The numbers in bold indicate the optimal solution found by our HGA. The
numbers marked with an asterisk correspond to feasible solutions obtained using Há’s
metaheuristic that not proved optimal. The underline numbers indicate improved results
using HGA algorithm compared with feasible solutions of Há’s metaheuristic.
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Table 1 Computational results with 100 vertices of experiments based on HGA

Data GA HGA Optimal solution ICG

Result Time Result Time Result Gap Result Time Gap

A1-1-25-75-4 8,479 0.016 8,479 0.003 8,479 0 8,479 6.28 0
A1-1-25-75-5 8,479 0.025 8,479 0.01 8,479 0 8,481 5.09 –0.024
A1-1-25-75-6 8,479 0.06 8,479 0.001 8,479 0 8,481 3.39 –0.024
A1-1-25-75-8 7,985 0.104 7,985 0.003 7,985 0 7,985 3.05 0.000
A1-5-25-75-4 11,184 63.851 10,827 0.003 10,827 0 10,827 12.24 0.000
A1-5-25-75-5 9,341 2.409 8,659 0.002 8,659 0 8,659 11.69 0.000
A1-5-25-75-6 9,341 3.448 8,659 0.001 8,659 0 8,659 9.09 0.000
A1-5-25-75-8 9,341 1.674 8,265 0.003 8,265 0 8,265 2.6 0.000
A1-1-50-50-4 10,271 0.182 10,271 0.002 10,271 0 10,519 3.87 –2.358
A1-1-50-50-5 9,220 0.472 9,220 0.008 9,220 0 9,637 6.81 –4.327
A1-1-50-50-6 9,130 0.385 9,130 0.013 9,130 0 9,508 2.83 –3.976
A1-1-50-50-8 9,130 0.06 9,130 0.004 9,130 0 9,372 2.31 –2.582
A1-10-50-50-4 20,343 238.644 17,953 2.001 17,953 0 18,396 8.23 –2.408
A1-10-50-50-5 20,810 34.311 15,440 0.008 15,440 0 15,595 6.27 –0.994
A1-10-50-50-6 20,152 38.278 14,064 6.379 14,064 0 14,458 3.09 –2.725
A1-10-50-50-8 19,756 11.142 13,369 2.008 13,369* 0 13,641 4.43 –1.994
B1-1-25-75-4 7,146 0.067 7,146 0.005 7,146 0 7,146 6.02 0.000
B1-1-25-75-5 6,901 0.093 6,901 0.003 6,901 0 6,901 4.4 0.000
B1-1-25-75-6 6,450 0.038 6,450 0.001 6,450 0 6,450 1.48 0.000
B1-1-25-75-8 6,450 0.077 6,450 0.002 6,450 0 6,450 1.53 0.000
B1-5-25-75-4 9,465 1.497 9,465 0.002 9,465 0 9,465 3.73 0.000
B1-5-25-75-5 9,460 1.722 9,460 0.002 9,460 0 9,460 1.62 0.000
B1-5-25-75-6 9,460 19.356 9,148 0.001 9,148 0 9,287 5.6 –1.497
B1-5-25-75-8 9,156 5.196 8,306 0.002 8,306 0 8,599 3.97 –3.407
B1-1-50-50-4 10,107 0.455 10,107 0.023 10,107 0 10,255 4.28 –1.443
B1-1-50-50-5 9,723 0.002 9,723 0.007 9,723 0 9,729 3.19 –0.062
B1-1-50-50-6 9,382 0.441 9,382 0.017 9,382 0 9,580 2.42 –2.067
B1-1-50-50-8 8,348 37.078 8,348 0.048 8,348 0 9,075 2.62 –8.011
B1-10-50-50-4 18,350 0.969 15,209 0.003 15,209 0 15,283 2.11 –0.484
B1-10-50-50-5 17,847 0.948 13,535 0.076 13,535 0 13,684 2.8 –1.089
B1-10-50-50-6 17,870 11.469 12,067 0.029 12,067 0 12,403 4.19 –2.709
B1-10-50-50-8 16,308 3.324 10,344 1.443 10,344 0 10,409 3.7 –0.624
C1-1-25-75-4 6,161 0.002 6,161 0.001 6,161 0 6,283 1.24 –1.942
C1-1-25-75-5 6,161 0.001 6,161 0.001 6,161 0 6,288 6.58 –2.020
C1-1-25-75-6 6,161 0.001 6,161 0.001 6,161 0 6,161 1.52 0.000
C1-1-25-75-8 6,161 0.001 6,161 0.002 6,161 0 6,165 1.24 –0.065
C1-5-25-75-4 9,898 2.321 9,898 0.002 9,898 0 9,898 3.71 0.000
C1-5-25-75-5 9,898 11.882 9,707 0.002 9,707 0 9,707 4.82 0.000
C1-5-25-75-6 10,026 12.124 9,321 0.002 9,321 0 9,363 5.3 –0.449
C1-5-25-75-8 9,898 3.292 7,474 0.001 7,474 0 7,474 5.41 0.000
C1-1-50-50-4 11,372 0.093 11,372 0.015 11,372 0 11,626 5.68 –2.185
C1-1-50-50-5 9,900 0.425 9,900 0.002 9,900 0 9,914 3.69 –0.141
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Table 1 Computational results with 100 vertices of experiments based on HGA (continued)

Data GA HGA Optimal solution ICG

Result Time Result Time Result Gap Result Time Gap

C1-1-50-50-6 9,895 0.008 9,895 0.002 9,895 0 9,903 2.1 –0.081
C1-1-50-50-8 8,699 29.058 8,699 0.005 8,699 0 9,355 1.83 –7.012
C1-10-50-50-4 22,247 27.174 18,212 1.179 18,212 0 18,288 6.89 –0.416
C1-10-50-50-5 22,519 1.824 16,362 2.005 16,362 0 16,485 7.14 –0.746
C1-10-50-50-6 20,809 18.132 14,749 0.078 14,749 0 14,927 4.55 –1.192
C1-10-50-50-8 21,205 84.688 12,394 2.03 12,394 0 13,183 3.91 –5.985
D1-1-25-75-4 7,671 0.023 7,671 0.004 7,671 0 7,729 6.03 –0.750
D1-1-25-75-5 7,465 0.311 7,465 0.013 7,465 0 7,922 1.56 –5.769
D1-1-25-75-6 6,651 0.063 6,651 0.005 6,651 0 6,709 2.93 –0.865
D1-1-25-75-8 6,651 0.16 6,651 0.003 6,651 0 6,730 2.23 –1.174
D1-5-25-75-4 13,279 9.74 11,820 0.001 11,820 0 12,498 2.24 –5.425
D1-5-25-75-5 11,943 0.172 10,982 0.001 10,982 0 11,526 4.59 –4.720
D1-5-25-75-6 12,040 27.412 9,669 0.003 9,669 0 9,676 4.93 –0.072
D1-5-25-75-8 11,569 12.533 8,200 0.002 8,200 0 8,334 4.02 –1.608
D1-1-50-50-4 11,606 15.53 11,606 0.018 11,606 0 11,606 3.13 0.000
D1-1-50-50-5 10,770 3.637 10,770 0.036 10,770 0 11,289 1.54 –4.597
D1-1-50-50-6 10,710 0.937 10,525 0.011 10,525 0 10,636 1.91 –1.044
D1-1-50-50-8 9,459 11.591 9,361 0.022 9,361 0 11,004 1.43 –14.931
D1-10-50-50-4 28,418 4.008 20,982 0.024 20,982 0 21,137 6.31 –0.733
D1-10-50-50-5 26,447 2.025 18,576 0.478 18,576 0 18,765 5 –1.007
D1-10-50-50-6 28,174 49.215 16,330 0.027 16,330 0 17,152 4.34 –4.792
D1-10-50-50-8 30,739 3.154 14,204 1.611 14,204 0 16,061 5.12 –11.562

Our results clearly show the performance of our approach. We noted that the GA
takes a long execution time and cannot give all best known solutions whereas the
hybridisation with VND improves the solution and accelerates the running time. In
Figure 8, the average computation times of the GA algorithm become significantly larger
when the scale of instance is increased (KroA200 and KroB200). On the other hand, the
computation times of the HGA were not much larger, even with larger instances. This
is one of the advantages of the LS heuristic.

It is clear that our hybrid algorithm performs better than our proposed GA. Our
HGA can find all optimal solutions except one instance (A2-20-100-100-8) with small
optimally gap 0.21. Our HGA perform better than the metaheuristic based on the ELS
proposed by Há et al. (2013) and improves the solution in three instances whose optimal
solution is unknown: B2-1-100-100-6, B2-20-100-100-4 and B2-20-100-100-8 with
respectively gaps 0.39, 0.03 and 0.33. According to the computational experiments, our
HGA out performs the ICG algorithm proposed by Murakami (2018) and competitive
compared with the metaheuristic proposed by Há et al. (2013).

The comparison is performed for benchmark sets of instances. In Table 3, we report
the results average values obtained over all the tested instances. The first and the second
columns report the average gap (Avg.Gap) between our hybrid approach and the results
of the solution obtained by by Hà et al. and Murakami respectively. The average gap
between the cost of the optimal solution and the cost obtained using the HGA is smaller
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than 5%. However, the Avg.Gap between the cost of our hybrid algorithm and the cost
obtained using the ICG are more than 30%. Again, the average gaps show that for the
easiest instances (with 100 nodes), the performance of the ICG algorithm provide worst
solutions than our HGA. For the large instances (with 200 nodes), the gap was increased
(see Figure 9). The ICG does not perform well in almost all the tested instances. We
believe that the ICG is absolutely inferior to our hybrid algorithm.

Table 2 Computational results with 200 vertices of experiments based on HGA

Data GA HGA Optimal solution ICG

Result Time Result Time Result Gap Result Time Gap

A2-1-50-150-4 11,550 9.167 11,550 0.099 11,550 0 11,550 5.99 0.000
A2-1-50-150-5 10,407 0.223 10,407 0.012 10,407 0 10,491 7.25 –0.801
A2-1-50-150-6 10,068 3.72 10,068 2.318 10,068 0 10,483 7.43 –3.959
A2-1-50-150-8 8,995 14.945 8,896 0.03 8,896 0 10,695 6.32 –16.821
A2-10-50-150-4 23,189 5.157 17,083 0.006 17,083 0 17,230 30.04 –0.853
A2-10-50-150-5 23,705 25.876 14,977 0.023 14,977 0 15,108 10.42 –0.867
A2-10-50-150-6 22,209 31.714 13,894 0.447 13,894 0 14,245 5.52 –2.464
A2-10-50-150-8 21,650 18.732 11,942 0.305 11,942 0 11,963 6.44 –0.176
A2-1-100-100-4 11,885 0.365 11,885 0.065 11,885 0 12,533 2.52 –5.170
A2-1-100-100-5 10,234 0.874 10,234 0.183 10,234 0 10,937 7.41 –6.428
A2-1-100-100-6 10,020 7.144 10,020 0.045 10,020* 0 10,565 3.17 –5.159
A2-1-100-100-8 9,093 0.574 9,093 0.436 9,093* 0 10,494 4.97 –13.350
A2-20-100-100-4 46,326 35.051 26,594 4.155 26,594* 0 26,796 7.97 –0.754
A2-20-100-100-5 45,530 13.318 23,419 7.796 23,419* 0 23,882 6.17 –1.939
A2-20-100-100-6 44,976 1,078.364 20,966 38.258 20,966* 0 21,382 10.3 –1.946
A2-20-100-100-8 44,676 1,078.364 18,458 35.001 18,418* 0.217 19,413 21.21 –4.919
B2-1-50-150-4 11,175 24.738 11,175 0.088 11,175 0 11,322 3.69 –1.298
B2-1-50-150-5 10,502 26.111 10,502 0.359 10,502 0 10,974 4.54 –4.301
B2-1-50-150-6 9,799 12.578 9,799 0.045 9,799 0 10,734 3.49 –8.711
B2-1-50-150-8 8,846 52.701 8,846 0.145 8,846 0 9,196 3.95 –3.806
B2-10-50-150-4 19,181 278.648 16,667 0.117 16,667 0 16,849 5.93 –1.080
B2-10-50-150-5 18,391 119.237 14,188 0.131 14,188 0 14,299 8.01 –0.776
B2-10-50-150-6 17,804 154.208 12,954 0.131 12,954 0 13,021 6.73 –0.515
B2-10-50-150-8 18,102 110.802 11,495 0.379 11,495 0 11,684 5.24 –1.618
B2-1-100-100-4 19,170 486.064 18,370 1.857 18,370 0 18,560 10.32 –1.024
B2-1-100-100-5 16,519 44.806 15,876 9.203 15,876 0 16,651 6.04 –4.654
B2-1-100-100-6 15,629 197.587 14,867 0.6263 14,926* –0.395 16,048 2.76 –7.359
B2-1-100-100-8 13,427 63.906 13,137 1.029 13,137* 0 14,592 4.68 –9.971
B2-20-100-100-4 51,497 320.829 34,062 12.178 34,073* –0.032 34,301 7.97 –0.697
B2-20-100-100-5 51,228 818.119 29,412 365.325 29,412* 0 29,850 10.5 –1.467
B2-20-100-100-6 51,843 42.374 25,960 926.01 25,960* 0 26,488 8.03 –1.993
B2-20-100-100-8 50,986 185.05 22,082 342.01 22,156* –0.333 23,697 11.35 –6.815
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Table 3 The average gap of HGA with other algorithms on benchmark instances

Avg.Gap HGA/BNC HGA/ICG

KroA100 0 –1.338
KroB100 0 –1.337
KroC100 0 –1.390
KroD100 0 –3.691
KroA200 0.013 –4.100
KroB200 –0.047 –3.505

6 Conclusions

This paper deals with a challenging routing problem where the demands of all customers
must be satisfied without visiting all of them. In this work, we solve a special case
of this covering tour problem where a restriction on the number of vertices in each
route was considered. We propose two approaches to solve the m-CTP-p. The main
component of the proposed algorithms is an iterative improvement mechanism and
a LS method that have two important features. The first feature is the possibility
of improving the assignment decisions of customers to routes. The second feature
is the ability to explore a set of neighbourhoods structures that substantially reduces
the execution time of our algorithms. Computational results show that our proposed
algorithms are competitive with existing meta-heuristics in the literature. Furthermore,
the extensive experiments show the impact of the hybridisation to improves the results.
The neighbourhood structures used in this algorithms give a promising results which
encourage us to develop another approach based on other neighbourhood structures.
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