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Abstract: This paper presents fly cutting surface profile mathematical model 
using the spindle and guideways kinematic motion errors, as well as cutting 
parameters. Surface residual height model was firstly established using the 
feeding velocity, cutting spindle rotational speed and tool tip radius, it indicates 
that the cutting depth will not affect the surface geometric profile. Surface 
profile dispersion was carried out using cutter spindle rotation speed and 
guideways feeding velocity parameters. Guideways kinematic motion errors 
were introduced into the surface profile model through overlying method, and 
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cutter spindle axial runout error was also introduced by filtering process using 
filtering convolution operations between the tool tip window filter and 
guideways kinematic overlapped surface profile. Their mathematical model 
expressions and illustrations were given, respectively. They were coherent with 
the cutting experiments results. The proposed model could be used for the 
surface profile prediction and machine tool error budget. 

Keywords: fly cutting; kinematic motion error; process parameters; surface 
profile; overlying; convolution. 
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1 Introduction 

Fly cutting process was the relative movement between the single point diamond tool and 
workpiece, it was generally used to manufacturing non-ferrous workpiece. As the single 
diamond cutting was deterministic process, cutting surface profile accuracy and 
roughness value influence factors could be identified and evaluated (Zhang et al., 2016a; 
Brinksmeier et al., 2017). Influence of the spindle vibration towards fly cutting surface 
finish was investigated theoretically and experimentally, it indicates that the spindle 
vibration was the major factors influence of the surface roughness (Xi et al., 2020). Based 
on the cutting heat-generation and thermal transfer theory, temperature field model was 
established to guide the selection of cutting parameter and tool tip for the KDP fly-cutting 
process (Li et al., 2021). The fly-cutting tool flank wear and its influences on surface 
roughness in ultra-precision raster fly cutting was investigated through examination of 
cutting chip morphologies, and a mathematical model was established to identify the 
width of flank wear land and the theoretical surface roughness under tool flank wear 
effects (Brinksmeier et al., 2017). Cutting chips and size effect were also used to evaluate 
the raster milling surface quality (Zhang et al., 2016b; Chen et al., 2017). Based on the 
assumption that size effect would affect the formation of surface roughness pattern in  
fly-cutting process, the optimisation strategy of cutting parameters for the multiphase 
alloy was proposed (Zhang et al., 2020). Spindle error influence towards surface 
frequency domain error formation was investigated using analysis of two different 
evaluation directions of the machined surface profile, and relationship between the 
surface topography and spindle dynamic performance was established using simulation 
and experiment method (Yang et al., 2016; An et al., 2018). Dynamic error of spindle 
was tested using five-capacitance displacement sensors to research waviness errors along 
feed-direction on fly cutting surfaces (Miao et al., 2017). Additionally, external 
aerodynamic forces caused the air flow between the tool holder and workpiece was 
studied using CFD and experiment analysis (Kong and Cheung, 2012). Fly cutting 
process for hard ceramics was also studied, according to the simulation and experiments 
results, the crack-free nanometre-level surface roughness could be obtained by 
controlling the chip thickness less than 1 μm for zirconia ceramics (Deng et al., 2019). 
The error budget methodology for designing and characterising machines used to 
manufacture or inspect parts with spatial frequency-based specifications was established 
(Sun et al., 2015). A novel surface analytical model for cutting linearisation error in fast 
tool/slow slide servo diamond turning was built based on the surface analytical model 
and cutting linear error analysis (Neo et al., 2015). 

This paper proposes fly cutting surface profile mathematical model. Cutter spindle 
rotation speed and workpiece linear feeding velocity were used to disperse the surface, 
number of the transverse discrete nodes was determined by the ratio of spindle rotary 
speed and feeding velocity, while the longitudinal number was calculated by the 
roughness sampling length. Spindle runout error and guideway straightness would overly 
onto the dispersed surface, and they were compounded together thereafter. The final cut 
surface could be obtained through the window filtering between the tool tip filter and the 
previous compound surface. The proposed model would be used to evaluate the surface 
profile influence factors, predict profile accuracy and guide the fly cutting machine 
design. 
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2 Geometry cutting model for surface profile 

The fly cutting process was illustrated in Figure 1, it consists of cutter tool spindle and 
workpiece feeding guideways. The single point diamond tool was fixed onto the tool 
holder that could be aligned in two directions for the cutting angle’s subtle adjustment, 
and the cutter has a circular arc. Tool cutter counterbalance was arranged on the opposite 
side of tool disk for the rotation imbalance reduction. The cutter spindle uses the 
aerostatic bearings of porous restrictors, the torque motor was adopted to drive the shaft, 
high speed magnetic encoder supplied the speed feedback signal. The linear guideways 
also adopted the aerostatic bearings while the linear motor was used to drive the carriage, 
the enclosed grating sensor with a resolution of 50nm was equipped to supply the 
displacement feedback signal. 

Figure 1 Illustration of fly cutting process (see online version for colours) 

 

Figure 2 Residual height generating model 
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Fly cutting surface profile was generated through the tool sweeping movement across the 
workpiece surface, as shown in Figure 2, Dc, Lc and Rc are cutting depth, feed step size 
and tool radius, respectively. According to the geometric relationship illustrated in  
Figure 2, the residual height Dr could be expressed as equation (1) without considering 
the kinematic motion errors. 

( ) ( ) ( )2 22 2, , 2 2= = − − = − −r c c c c c c c c f sD f D f R R R L R R V n  (1) 

The feed step size Lc is the ratio of the feeding velocity Vf to the cutting spindle rotation 
speed ns. According to equation (1), surface residual height was illustrated in Figure 2, 
tool tip radius Rc equals to 100 mm. According to the simulation results, as shown in 
Figure 3, the cutting surface profile could be controlled under 10 nm, however, the actual 
cut surface profile error is barely less 20 nm. According to equation (1), surface residual 
height model could be used to optimise the cutter spindle speed and feeding velocity 
selection instead of comprehensively predicting the actual cut surface profile, and the 
cutter spindle and guideways motions errors need to be taken into consideration to 
thoroughly investigate the surface profile generation mechanism. 

Figure 3 Surface residual height simulation map (see online version for colours) 

 

3 Mathematical model using cutting parameters and kinematic motion 
errors 

Cutter spindle and guideway kinematic motion errors, cutting parameters and tool tip 
would affect the cut surface profile whose mathematical model could be built using 
surface dispersion, kinematic motions error overlying and tool tip filtering method. 

3.1 Surface dispersion using cutting parameters 

To establish the surface profile mathematical model, the surface needs to be represented 
numerically, fly cutting surface was dispersed into numerous nodes firstly, and the 
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kinematic motion errors would overly onto this dispersed surface thereafter. The 
longitudinal nodes number in the guideway feeding direction equals to the residual height 
number which is determined by the cutter spindle rotation speed ns and feeding velocity 
Vf, while the transverse interval is 0.08 mm determined by the roughness sampling length 
as shown in Figure 4. The longitudinal number M and transverse number N could be 
determined using equation (2) for the given workpiece with length L and width B. 

0.08
= ∗

 =

s fM L n V
N B

 (2) 

Figure 4 Surface dispersion illustration 

 

3.2 Kinematic motion errors overlying and tool tip filtering 

Kinematic motion error measurement is generally 1-D, before they are overlaid onto the 
dispersed surface, 2-D expansion of the kinematic motion errors needs to be done. And 
the ‘interp1’ and ‘interp2’ functions of MATLAB could be used to generate the 
kinematic motion node error surface with the grid points corresponding to the nodes 
determined by the cutter spindle rotation speed and guideways feeding velocity. 

3.2.1 Guideway straightness and overlying 
Guideways straightness in Z direction was prominent for the surface roughness, it was 
tested using straightness edge and TESA LVDT inductive sensor, and the error map was 
illustrated in Figure 5, straightness error curve g(x) is function of the workpiece feeding 
step size x. Straightness would overly onto transverse line during cutting process as 
shown in Figure 6. MATLAB function ‘interp1’ was used to generate the error line 
function g(x), and equation (3) was derived using impulse sampling. As each longitudinal 
line was the same for guideways straightness surface overlying, it could be expressed as 
equation (4) and illustrated as Figure 7. 

1

( ) ( ) ( ) ( 1, 2, 3, , )
=

= ∗ − = 
N

l

g n g k δ n l l N  (3) 
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1 1

( , ) ( , ) ( , ) ( 1, 2, 3, , ; 1, 2, 3, , ) 
= =

= ∗ − − = =  
M N

k l

g m n g k l δ m k n l m M n N  (4) 

Figure 5 Guideways line straightness (see online version for colours) 

 

Figure 6 Guideways straightness line overlying map (see online version for colours) 
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Figure 7 Guideways straightness surface overlying map (see online version for colours) 

 

3.2.2 Tool tip filtering using cutter spindle axial runout 
Cutter spindle axial runout influence is prominent comparing with the radial runout, and 
it was measured using the quartz standard sphere and TESA LVDT. The error map was 
illustrated in Figure 5, axial runout error f(ψ) is function of the spindle rotary angle ψ. 
Axial runout would overly onto transverse line during cutting process as shown in  
Figure 6. MATLAB function ‘interp1’ was used to generate the error line function f(y) 
based on the axial runout error illustrated in Figure 7, and equation (3) was derived using 
impulse sampling for the discrete representation of the axial runout line overlying. As 
each transverse line was the same, axial runout surface overlying could be expressed as 
equation (4) using the impulse sampling method. 

1

( ) ( ) ( ) ( 1, 2, 3, , )
=

= ∗ − = 
M

k

f m f k δ m k m M  (5) 

Unlike the guideways straightness, cutter spindle axial runout error was introduced into 
the surface profile through the cutting process. As the single diamond tool sweeps across 
the surface, it could be viewed as the filtering process. Single diamond cutting tool was 
the window filter function H(m, p) which could be expressed as follows: 

1

( , ) ( ) [ ] [ ]   
=

= 
M

i

H m p f m U p U m  (6) 

where the index M is transverse number, and P is determined by the longitudinal interval 
and window filter width, it could be expressed as follows. The width of the window filter 
function U(p) is 3 mm that is equal to the single point diamond tool tip width, and the 
filter amplitude f(m) of equation (5) is the cutter spindle axial runout error as illustrated in 
Figure 8, and the cutting process could be expressed as the convolution filtering between 
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the kinematic motion overlaid surface g(m, n) and the cutting tool filter H(m, n). The final 
cut surface profile mathematical model could be expressed as equation (7). 

( , ) ( , ) ( , )= ∗S m n C m n H m n  (7) 

Figure 8 Cutter spindle axial runout (see online version for colours) 

 

Figure 9 Spindle axial runout line overlying map (see online version for colours) 
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The final cut surface profile was simulated according to equation (7) using the parameters 
listed in Table 1, and the surface profile was illustrated in Figure 10 with two sets of 
given cutting parameters as shown in Table 1. 
Table 1 Parameters for the mathematical model and cutting experiments 

Items Symbol Parameters 
Tool radius R 100 mm 
Workpiece size L × B 120 × 80 mm 
Cutter spindle rotational speed ns 2,000 rpm 3,000 r/min 
Guideways feeding velocity Vf 10 mm/min 10 mm/min 
Transverse nodes number M 24,000 36,000 
Longitudinal nodes number N 1,000 1,000 

Figure 10 Surface simulation after tool tip filtering (see online version for colours) 

  
(a)     (b) 

4 Fast fly cutting experiments and discussion 

Using the parameters listed in Table 1, the model validating experiment was carried out 
on the developed fly cutting machine tool as shown in Figure 11, and its kinematic 
motion error was tested using the methods described in Section 3. 

The cut profile surface was tested using plane phase shift interferometer, the 
measurement profile was illustrated in Figure 12, its P-V value were 0.441 μm and  
0.291 μm while the simulation surface P-V values were 0.089 μm and 0.075 μm as shown 
in Figure 10, as the actual cutting process include the cutting vibration caused by the 
cutting force, tool tip roughness and room temperature variation, etc. However, the 
surface profile error distribution was coherent which suggested that the proposed 
mathematic model was quiet reliable and could be used to investigate the kinematic 
motion error influence, optimise the cutter spindle rotation speed and feeding velocity 
parameters. 
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Figure 11 Experimental machine tool and cutting picture, (a) fly cutting machine (b) cutting 
process (see online version for colours) 

  
(a)     (b) 

Figure 12 Cut surface profile measurement result (see online version for colours) 

  
(a)     (b) 

5 Conclusions 

This paper explored the numerical relationship between the surface profile and machine 
tool’s kinematic motion errors and cutting parameters for the fly cutting process, the 
specific conclusions from the study are as follows: 

1 Surface dispersion method was proposed, and the cutter spindle rotation speed and 
guideways feeding velocity were used to determine transverse discrete nodes number 
while the longitudinal number was calculated by the roughness sampling length. 

2 Guideways straightness error was introduced into the surface profile model by line 
and surface overlying method, and the final flyer cut surface mathematical model 
was obtained through the convolution operation between the straightness overlaid 
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surface profile and single diamond tool tip window filter whose amplitude was 
determined by the cutter spindle rotation axial runout value. 

3 The proposed model was validated by comparing the cutting surface measured 
results and predicted model, and it is proved that proposed model could be used to 
predict the cut surface profile value and distributions. 
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