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Abstract: This manuscript studies the stability for a class of Cohen-Grossberg neural networks 
(CGNNs) with variable delays. By practicing the scheme of Lyapunov function (LF), M-matrix 
(MM) theory, homeomorphism theory and nonlinear measure (NM) method, a new sufficient 
condition is obtained to ensure the existence, uniqueness and global exponential stability (GES) 
of equilibrium point (EP) for the studied network. As the condition is independent to delay, it can 
be applied to networks with large delays. The result generalises and improves the earlier 
publications. Finally, an example is supplied to exhibit the power of the results and less 
conservativeness over some earlier publications. 
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1 Introduction 
The Cohen-Grossberg neural networks (CGNNs), originally 
submitted and scrutinised by Cohen and Grossberg (2014), 
has drawn increasing attention due to its promising 
applications in image and signal processing. Such 
applications heavily depend on the dynamic actions of the 
network. Therefore, the study of these actions is a necessary 
step for practicable design of the network. In hardware 
implementation, however, time delays occur due to finite 
switching speed of the amplifiers and communication time. 
Time lags may activate divergence, instability, or oscillation 
which may be hurtful to the network. Moreover, it was 
displayed that the converting of moving images requests the 
inclusion of delays in signal conducted over the networks. It 
is appreciated that consistent time lags in delayed response 

systems perform good approximation in uncomplicated 
circuits with a small number of cells. In most cases, delays 
are variable. Therefore, the research of networks with 
variable delays is more valuable than consistent delays. In 
past decades, many rules were developed to insure the 
global exponential stability (GES) of equilibrium point (EP) 
for CGNNs with variable delays (Huang et al., 2007a, 
2007b; Li and Cao, 2006; Oliveira, 2011; Song and Cao, 
2006; Xiong and Cao, 2005; Zheng et al., 2013, 2019). 

Under different assumptions of amplification function, 
Zhang et al. (2009) inferred some rules for the global 
asymptotic stability (GAS) of a sort of CGNNs with varied 
time lags. On the basis of M-matrix (MM) theory, Oliveira 
(2011) setup sufficient rules to ensure the existence and 
global attractivity of an EP for CGNNs with varied delays, 
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and the GES of the EP for CGNNs with variable delays. For 
a sort of CGNNs with variable delays, Lien et al.  
(2011) proposed delay-dependent and delay-independent 
stability conditions to ensure the robust stability and 
uniqueness of EP via LMI approach. By employing a 
Lyapunov-Krasovskii functional and equivalent descriptor 
system, Li et al. (2009) presented conditions to ensure the 
GES for a sort of CGNNs with varied delays. By 
formulating suitable Lyapunov function (LF) and 
integrating with matrix inequality procedure, Guo (2012) 
produced a rule for the GAS of a sort of CGNNs with 
variable delays. Without assuming the differentiability and 
boundedness of the activation functions, Gao and Cui 
(2009) derived some rules for the existence, uniqueness, and 
robust GES of the EP for a sort of interval CGNNs with 
variable delays. By exploiting H-matrix and MM theory, 
homeomorphism principle, LF method, and linear matrix 
inequality (LMI) technique, Du and Xu (2013) obtained 
some rules for the existence, uniqueness, and robust GES of 
the EP for a sort of interval CGNNs with varied delays. By 
virtue of LF and Halanay delay differential inequality, 
Wang and Qi (2013) proposed several rules in LMIs form 
for the GES in Lagrange sense of CGNNs with varied 
delays. By adopting the LF method and differential 
inequality techniques, Chen and Gong (2014) proposed 
some rules ensuring the exponential convergence of CGNNs 
with continuously distributed leakage delays. By proposing 
a generalised convex combination inequality to deal with 
multiple variable delays, Shan et al. (2013) obtained a new 
stability rule for a sort of CGNNs with variable delays. 

Sparked by above argument, this paper deals with the 
issue of existence, uniqueness and the GES of the EP of 
CGNNs with variable delays. Our condition generalises and 
improves some earlier ones (Huang et al., 2007a, 2007b; 
Song and Cao, 2006; Xiong and Cao, 2005; Zhang et al., 
2004). An example is demonstrated to reveal the efficiency 
of the obtained results. 

Throughout this paper, set ϒ̂  = {1, 2, …, υ}. For vector 
ξ = (ξ1, ξ2, …, ξυ)T ∈ ,υ  ξ > 0 symbolises ξι > 0, ι ∈ ˆ .ϒ . 
For matrix Σ = (σιϕ)υ×υ, denote |Σ| = (|σιϕ|)υ×υ, ( )ι υ υσ ×Σ =  φ  

with ιι ιισ σ=  and | |ι ισ σ= φ φ  for ι ≠ ϕ, ι, ˆ .∈ ϒφ  

2 Preparation 
Examine the below CGNNs with variable delays: 
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where xι(t) symbolises the case of the ιth member, ζϕ(xϕ(t)) 
symbolises the activation function, τι(xι(t)) symbolises the 
amplification function, ψι(xι(t)) symbolises the performed 
function, Ω = (ωιϕ)υ×υ, Λ = (λιϕ)υ×υ symbolise the strength of 
the neuron interconnections within the network, ϑιϕ(t) 
symbolises the variable delay with 0 ≤ ϑιϕ(t) ≤ ϑ, ϑ′ιϕ(t) ≤ 0; 
ηι symbolises the external bias, μι(t) is continuous on  
[–ϑ, 0]. 

Now, we make the following assumptions: 

H1 (see Ozcan, 2018): τι(v) is continuous and there exist 
positive constants φι and Φι such that φι ≤ τι(v) ≤ Φι, 

ˆ,  .v ι∈ ∈ ϒ  

H2 (see Lien et al., 2011; Xiong et al., 2017): ψ′ι(v) ≥ ψι  
> 0, ˆ,  .v ι∈ ∈ ϒ  Set Ψ = diag{ψ1, ∙∙∙, ψυ}. 

H3 (see Wang et al., 2018): 

( ) ( ) ˆ0 , , , , .ι ι
ι

ζ θ ζ ρ κ θ ρ θ ρ ι
θ ρ

−≤ ≤ ∀ ∈ ≠ ∈ ϒ
−

  

Set Kζ = diag{κ1, ∙∙∙, κυ}. 
Next, we require the below definitions. 

Definition 1 (see Berezansky et al., 2014): Γ = (γιϕ)υ×υ is said 
to be MM if γιϕ ≤ 0(ι ≠ ϕ) and Γι > 0, where Γι is the ι-order 
successive principal minor of Γ, ι, ˆ .∈ ϒφ  

Definition 2 (see Zhang et al., 2014): A mapping 
: υ υϒ →   is homeomorphic if ϒ is continuous, bijection 

and the inverse mapping is also continuous. 

Definition 3 (see Li and Cao, 2006): Suppose that υD ⊂   
is open and : .υZ D →   The constant 

2, , 2

( ) ( ),
( ) sup

|| ||D
a b D a b

Z a Z b a b
φ Z

a b∈ ≠

Θ − Θ −
=

−
 

is called the nonlinear measure of Z on D. 

Definition 4 (see Zhang et al., 2004): A matrix A is said to 
belong to a class   if all principal minors of A are  
non-negative. 

Lemma 1 (see Li and Cao, 2006): If φD(Z) < 0, then Z is 
injective. Especially, if ,υD =   then Z is homeomorphic. 

Lemma 2 (see Berman and Plemmons, 1979): Given  
Γ = (γιϕ)υ×υ with γιι ≤ 0, ˆ .ι∈ ϒ  The following statements are 
equivalent to the statement that Γ is an MM: 

a σTΓ > 0 for a vector σ > 0. 

b ΓΘ + ΘΓT > 0 for some Θ = diag{θ1, θ2, …, θυ} > 0. 

c 
1,

ˆ( )
υ

ιι ι ιι
γ θ γ θ ι

= ≠
> ∈ ϒ φ φφ φ

 for some Θ = diag{θ1, θ2, 

…, θυ} > 0. 
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3 Main results 
Now we provide the result. 

Theorem 1: Assume that (H1)–(H3) are satisfied. If 
| |ζ ζK KΨ − Ω − Λ  is an MM, then system (1) has one 

unique EP x* which is GES for any ˆ( ).ιη ι∈ ϒ  

Proof: Define : υ υΞ →   by Ξ(x) = (Ξ1(x), Ξ2(x), ∙∙∙, 
Ξυ(x))T with 
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Note that ( )* * * *
1 2, , , T

υx x x x=   is an EP of (1) if and only if 

Ξ(x*) = 0. Since Π = Ψ – ζKΩ  – |Λ|Kζ is an MM, one has 
ΘΠ + ΠTΘ > 0 for some Θ = diag{θ1, θ2, ∙∙∙, θυ} > 0. Set  
π = (π1, π2, ∙∙∙, πυ)T, ϵ = (ϵ1, ϵ2, ∙∙∙, ϵυ)T, then 
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Thus, ( ) 0.υφ ΘΞ <  Thus, ΘΞ is homeomorphic from 
Lemma 1. This implies that ΘΞ(x*) = 0 for a unique 

* .υx ∈  As Θ is invertible, Ξ(x) = 0 has a unique solution 
x*. Hence, system (1) has a unique EP x*. 

Next, we prove the GES of the EP x* of (1). Set 
*( ) ( ) ,ι ι ιξ t x t x= −  then system (1) becomes 

( ) ( ) ( )

( )( )( )
1

1

d ( ) ( ) ( ) ( )
d

( ) ,

υ
ι

ι ι ι ι ι

υ

ι ι

ξ t τ ξ t ψ ξ t ω ζ ξ t
t

λ ζ ζ t t

=

=


= − −




− − 










φ φ φ
φ

φ φ φ φ
φ

ϑ

 (2) 

where * * *( ( )) ( ( ) ),  ( ( )) ( ( ) ) ( ),ι ι ι ι ι ι ι ι ι ι ι ιτ ξ t τ x t x ψ ξ t ψ ξ t x ψ x= + = + −  
* *( ( )) ( ( ) ) ( ).ζ ξ t ζ ξ t x ζ x= + −φ φ φ φ φ φ φ  

Note that Π is an MM, from Lemma 2, there exists  
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where δ+ = max(δ, 0), then inequality (3) is equivalent to  
βι < 0, ˆ .ι∈ ϒ  Set β = –max1≤ι≤υ βι, then β > 0. 

Define an LF as 
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Set Δ1 = {t: t > 0 such that *( )ι ιx t x−  for some ˆ},ι∈ ϒ   
Δ2 = (0, +∞) \ Δ1. Calculating the upper right derivative of 
V(ξ(t)) along the solution of (2), from assumptions  
(H1)–(H3), for t ∈ Δ2, we get that 
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Obviously hι(0) = β < 0, ( ) 0ιh ρ >  and hι(ρ) → +∞ as  
ρ → +∞. Therefore, hι(ρι) = 0 for unique ρι > 0. Set  
ρ = min1≤ι≤υ ρι, then ρ > 0, and hι(ρι) ≤ 0, ˆ .ι∈ ϒ  

From equations (2) and (3), for t > ϑ 
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For t > ϑ, integrating the inequality (5) from 0 to t gives 
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Changing the order of the double integral in equation (6) 
gives that 
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From equations (4), (6) and (7), one obtains 
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Thus, one has 

( ) ( )( )( ) (0) , .ρtV ξ t ε V ξ e t−≤ + > ϑ  

Finally, combining equations (3) and (6) yields 
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It is easy to verify that inequality (8) also holds for t ∈ Δ1. 
This completes the proof. 
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4 Comparisons and example 
To compare with the earlier publications, the results in 
Huang et al. (2007a, 2007b), Song and Cao (2006), Xiong 
and Cao (2005) and Zhang et al. (2004) are restated as 
follows: Theorem 2 (Xiong and Cao, 2005; Zhang et al., 
2004). Assume that every activation function is partially 
Lipschitz continuous and monotone increasing function, 
then model (1) has a unique EP which is absolute 
exponential stable if 

| | ,−Ω− Λ ∈  

where ( )ι υ υω ×Ω = φ  with max{ , 0}ιι ιιω ω=  and | |ι ιω ω=φ φ  
for ι ≠ ϕ. 

Remark 1: Theorem 1 improves the result of Theorem 2. It 
is easy to see that 

ˆ| | | | ,−Ω− Λ = −Ω− Λ +Ω   

where 11 11ˆ { , ..., } 0.υυ υυdiag ω ω ω ωΩ = − − ≥  As Ψ and Kζ 
are positive diagonal matrices, if | | ,−Ω− Λ ∈  then 

| |ζ ζK KΨ − Ω − Λ  is an MM. That is, the condition of 
Theorem 2 is stronger than Theorem 1. 

Theorem 3 (Huang et al. (2007a, 2007b; Song and Cao, 
2006): Assume that (H1)–(H2) are satisfied and every 
activation function is Lipschitz continuous. If Ψ – |Ω|Kζ  
– |Λ|Kζ is an MM, then system (1) has one unique EP which 
is GES for any ˆ( ).ιη ι∈ ϒ  

Remark 2: Theorem 1 improves the result of Theorem 3. It 
is easy to see that 

| | | | | | ,ζ ζ ζ ζ ζK K K K KΨ − Ω − Λ = Ψ− Ω − Λ + Ω
  

where 11 11{| | , ..., | | } 0.υυ υυdiag ω ω ω ωΩ = − − ≥


 As Kζ > 0 
is a diagonal matrix, if Ψ − |Ω|Kζ – |Λ|Kζ is an MM, then 

| |ζ ζK KΨ − Ω − Λ  must be an MM. That is, the condition 
of Theorem 3 is stronger than Theorem 1. 

Example 1: Set υ = 2 and 
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in system (1). Then, (H1)–(H3) hold with 
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Figure 1 The state orbit of the network with eight random initial 
values in Example 1 (see online version for colours) 

 

 

It is easy to verify that 
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is an MM, based on Theorem 1 one gets that system (1) has 
a unique EP that is GES for any η1, η2. Set η1 = η2 = 0, the 
time responses of the states are shown in Figure 1 with eight 
random initial values μι(t) ∈ [–20, 20](ι = 1, 2). We see that 
all the states are convergent to the unique and GES EP of 
the system. The EP is at the origin. 

However, as 
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is not an MM, that is, nether Theorem 2 nor Theorem 3 
holds. As a result, none of the conditions in Xiong and Cao 
(2005), Zhang et al. (2004), Huang et al. (2007a, 2007b) and 
Song and Cao (2006) can be applied to verify the stability. 
Thus one can conclude the condition of the paper is more 
effective and less conservative than those of Huang et al. 
(2007a, 2007b), Song and Cao (2006), Xiong and Cao 
(2005) and Zhang et al. (2004) for this system. 

5 Conclusions 
By constructing an LF, utilising MM theory, 
homeomorphism theory and nonlinear measure (NM) 
method, this paper established a condition to ensure the 
existence, uniqueness and GES of EP for a type of CGNNs 
with variable delays. As the condition independent of the 
delay, it can be applied to networks with large delays. An 
example is given to show the effectiveness of the results and 
less conservativeness over some earlier publications. One of 
our future research topics is to apply the method to analyse 
more complicated networks, namely genetic regulatory 
networks, reaction-diffusion networks, and semi-Markovian 
networks. 

References 
Berezansky, L., Braverman, E. and Idels, L. (2014) ‘New global 

exponential stability criteria for nonlinear delay differential 
systems with applications to BAM neural networks’, Applied 
Mathematics and Computation, 1 September, Vol. 243, 
pp.899–910, DOI: 10.1016/j.amc.2014.06.060. 

Berman, A. and Plemmons, R.J. (1979) Nonnegative Matrices in 
the Mathematical Sciences, Academic Press, New York. 

Chen, Z. and Gong, S. (2014) ‘Exponential convergence of  
Cohen-Grossberg neural networks with continuously 
distributed leakage delays’, Journal of Inequalities and 
Applications, DOI: 10.1186/1029-242X-2014-48. 

Cohen, M. and Grossberg, S. (1983) ‘Absolute stability and global 
pattern formation and parallel memory storage by competitive 
neural networks’, IEEE Transactions on Systems, Man and 
Cybernetics, September/October, Vol. SMC-13, No. 5, 
pp.815–826, DOI: 10.1109/tsmc.1983.6313075. 

Du, Y. and Xu, R. (2013) ‘Global robust exponential stability and 
periodic solutions for interval Cohen-Grossberg neural 
networks with mixed delays’, Discrete Dynamics in Nature 
and Society, DOI: 10.1155/2013/ 963897. 

Gao, M. and Cui, B. (2009) ‘Robust exponential stability of 
interval Cohen-Grossberg neural networks with time-varying 
delays’, Chaos, Solitons and Fractals, 30 May, Vol. 40,  
No. 4, pp.1914–1928, DOI: 10.1016/j.chaos.2007.09.072. 

Guo, Y. (2012) ‘Global stability analysis for a class of  
Cohen-Grossberg neural network models’, Bulletin of the 
Korean Mathematical Society, Vol. 49, No. 6, pp.1193–1198, 
DOI: 10.4134/BKMS.2012.49.6.1193. 

Huang, T., Chan, A., Huang, Y. and Cao, J. (2007a) ‘Stability of 
Cohen-Grossberg neural networks with time-varying delays’, 
Neural Networks, October, Vol. 20, No. 8, pp.868–873,  
DOI: 10.1016/j.neunet.2007.07.005. 

 

Huang, T., Li, C. and Chen, G. (2007b) ‘Stability of  
Cohen-Grossberg neural networks with unbounded 
distributed delays’, Chaos Solitons and Fractals, November, 
Vol. 34, No. 3, pp.992–996, DOI: 10.1016/j.chaos.2006. 
04.008. 

Li, P. and Cao, J.D. (2006) ‘Stability in static delayed  
neural networks: a nonlinear measure approach’, 
Neurocomputing, August, Vol. 69, Nos. 13–15,  
pp.1776–1781, DOI: 10.1016/j.neucom.2005.12.031. 

Li, T., Fei, S-M., Guo, Y-Q. and Zhu, Q. (2009) ‘Stability analysis 
on Cohen-Grossberg neural networks with both time-varying 
and continuously distributed delays’, Nonlinear Analysis Real 
World Applications, August, Vol. 10, No. 4, pp.2600–2612, 
DOI: 10.1016/j.nonrwa.2008.04.003. 

Lien, C-H., Yu, K-W., Lin, Y-F., Chang, H-C. and Chung, Y-J. 
(2011) ‘Stability analysis for Cohen-Grossberg neural 
networks with time-varying delays via LMI approach’,  
Expert Systems with Applications, May, Vol. 38, No. 5, 
pp.6360–6367, DOI: 10.1016/j.eswa.2010.11.103. 

Oliveira, J.J. (2011) ‘Global stability of a Cohen-Grossberg  
neural network with both time-varying and continuous 
distributed delays’, Nonlinear Analysis Real World 
Applications, October, Vol. 12, No. 5, pp.2861–2870,  
DOI: 10.1016/j.nonrwa.2011.04.012. 

Ozcan, N. (2018) ‘New conditions for global stability of  
neutral-type delayed Cohen-Grossberg neural networks’, 
Neural Networks, October, Vol. 106, pp.1–7, DOI: 10.1016/ 
j.neunet.2018.06.009. 

Shan, Q., Zhang, H., Yang, F. and Wang, Z. (2013) ‘New  
delay-dependent stability criteria for Cohen-Grossberg neural 
networks with multiple time-varying mixed delays’, Soft 
Computing, September, Vol. 17, No. 11, pp.2043–2052,  
DOI: 10.1007/s00500-013-1114-7. 

Song, Q. and Cao, J. (2006) ‘Stability analysis of  
Cohen-Grossberg neural network with both time-varying and 
continuously distributed delays’, Journal of Computational 
And Applied Mathematics, 1 December, Vol. 197, No. 1, 
pp.188–203, DOI: 10.1016/j.cam.2005.10.029. 

Wang, F-X., Liu, X-G., Tang, M-L. and Hou, M-Z. (2018) 
‘Improved integral inequalities for stability analysis of 
delayed neural networks’, Neurocomputing, 17 January,  
Vol. 273, pp.178–189, DOI: 10.1016/ j.neucom.2017.07.054. 

Wang, X. and Qi, H. (2013) ‘New LMI-based criteria for Lagrange 
stability of Cohen-Grossberg neural networks with general 
activation functions and mixed delays’, International Journal 
of Computational Intelligence Systems, September, Vol. 6, 
No. 5, pp.836–848, DOI: 10.1080/18756891.2013.805587. 

Xiong, W. and Cao, J. (2005) ‘Absolutely exponential stability of 
Cohen-Grossberg neural networks with unbounded delays’, 
Neurocomputing, October, Vol. 68, pp.1–12, DOI: 10.1016/ 
j.neucom.2005.02.005. 

Xiong, W., Shi, Y. and Cao, J. (2017) ‘Stability analysis of  
two-dimensional neutral-type Cohen-Grossberg BAM neural 
networks’, Neural Computing and Applications, April,  
Vol. 28, No. 4, pp.703–716, DOI: 10.1007/s00521-015-2099-
1. 

Zhang, H., Wang, Z. and Liu, D. (2009) ‘Global asymptotic 
stability and robust stability of a class of Cohen- Grossberg 
neural networks with mixed delays’, IEEE Transactions on 
Circuits and Systems – I: Regular Papers, March, Vol. 56, 
No. 3, pp.616–629, DOI: 10.1109/TCSI.2008.2002556. 

 
 



 New delay-independent exponential stability rule of delayed Cohen-Grossberg neural networks 131 

Zhang, J., Suda, Y. and Iwasa, T. (2004) ‘Absolutely exponential 
stability of a class of neural networks with unbounded delay’, 
Neural Networks, April, Vol. 17, No. 3, pp.391–397,  
DOI: 10.1016/ j.neunet.2003.09.005. 

Zhang, Z., Cao, J. and Zhou, D. (2014) ‘Novel LMI-based 
condition on global asymptotic stability for a class of  
Cohen-Grossberg BAM networks with extended activation 
functions’, IEEE Transactions on Neural Networks and 
Learning Systems, June, Vol. 25, No. 6, pp.1161–1172,  
DOI: 10.1109/ TNNLS. 2013.2289855. 

Zheng, C-D., Gong, C-K. and Wang, Z. (2013) ‘New  
delay-dependent exponential stability for discrete-time 
recurrent neural networks with mixed time-delays’, 
International Journal of Innovative Computing and 
Applications, Vol. 5, No. 2, pp.65–75, DOI: 10.1504/ 
IJICA.2013.053173. 

Zheng, C-D., Jia, H-H. and Shan, Q. (2019) ‘New stochastic 
synchronisation condition of neutral-type Markovian chaotic 
neural networks under impulsive perturbations’, International 
Journal of Innovative Computing and Applications, Vol. 10, 
No. 2, pp.100–106, DOI: 10.1504/IJICA.2019.102113. 


