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Abstract: Wearable health devices became popular these days and have 
become genuinely intertwined with society. Smartwatches and other fitness 
devices fulfil the consumer needs in continuously tracking human activity, 
which can further decode to analyse the health parameters like heart rate, blood 
pressure, blood glucose levels, and many more. Internet of things (IoT) enabled 
techniques, mobile and desktop-based applications are ameliorating the ease of 
using these techniques. The applications of the wearables are also transforming 
the quality of virtual and tele-healthcare to improve, which is a substitute  
for conventional medical practices. In this paper, we report a descriptive 
analysis on the progress in modelling the healthcare wearable sensors that 
impact the imminent healthcare applications in different domains. Also,  
we made a comparative study on consumer fitness wearable devices to analyse 
how the device facilitates the ease of usage with other specification 
comparisons. We recorded data from a consumer wearable fitness device to 
observe and envisage the user’s effort to accomplish the activity goals each day 
for maintaining good health. We reported the exploratory analysis of the data 
obtained from the recordings. Supervised machine learning algorithms are 
applied to the recorded data and compared the results. Among the supervised 
algorithms applied, the random forest regression gave us the highest accuracy 
of 97.88% in predicting the subject’s activity goal for the respective day. 

Keywords: healthcare; wearables; smartwatches; fitness trackers; wellness 
activity trackers; wireless sensors; data processing; supervised machine 
learning; prediction; decision making system. 
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1 Introduction 

Healthcare services are becoming costlier day by day. As the global population is ageing, 
the number of chronic diseases is also rapidly rising. The technology cannot eradicate 
chronic diseases, nor can it stop the population from ageing. The technology can atleast 
make healthcare more manageable and more accessible. One of the crucial factors in the 
increase of hospital bills is medical diagnostics. If the accuracy of diagnosis increases, 
then there may be a decrease in the hospitalisation need depending on the severity of the 
disease. Because of technology growth, slowly, the hospital-centric (medical checks from 
a hospital) diagnostics move towards the patient’s home (home-centric). In this 
generation of the internet, there is a strong need for an internet-based system that 
monitors health. Also, there is a need for a system that suggests the necessary precautions 
to follow for the respective symptoms before going to a hospital. It is also a difficult task 
for a doctor or hospital to continuously monitor the health of a single patient. Hence, 
doctors and hospitals should look for technological solutions that make their work 
efficient and straightforward. 

To achieve this, we must make use of the Internet of Things. IoT is the collective 
work done by a group of sensors that collect data from different parts. All the data 
collected is processed using signal processing, machine learning, etc., techniques. The 
outcome of the applied techniques is observed by a doctors or medical practitioner to find 
the disorders. According to the observed infirmity and the reports, doctors can suggest a 
medication, respectively. The data-driven insights and the healthcare analytics allow 
healthcare providers to speed up decisions with fewer errors. During life-threatening 
circumstances, it is critical to receive an on-time alert. The devices used to record data 
can continuously communicate with each other. 

In some cases, they make some decisions depending on the need to save lives by 
introducing IoT into healthcare, many advantages that significantly improve the treatment 
outcomes. The health practitioners may minimise the errors as they must attend to 
multiple patients at the same time. If the patient’s criticality is less, they may reside at 
home and follow the physician’s guidelines. All the IoT devices continuously monitor the  
status of the patient and send an update to the hospital staff, who may decide at necessary 
times. This may also reduce the movement of a patient from home to hospital and back to  
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home. Also, IoT technology reduces healthcare costs as disease management is improved. 
Thus, it is good to consider the quantified technology. 

2 Influence of Internet of Things on medical practices 

The applicability of the Internet of Things (IoT) in all kinds of healthcare is extensively 
increased [1,2]. For a better treatment of patients and the competitive operation of the 
medical centres, the IoT paradigm helps to increase mutual hope. The quality and 
efficiency of the treatments could be improved by using this technology in healthcare. 
The aggregation of microelectronics systems, medical and health, computer science, and 
many other fields builds an IoT system. From the current health IoT, 2017 to 2022 stands 
as the growth phase of IoT healthcare and their applications that expedite healthcare and 
the other stakeholders involved in accelerating it [3]. IoT is transforming the healthcare 
sector by redefining the devices and associated people in the healthcare solutions [4].  
The three main components of healthcare IoT systems are body area sensor networks, 
internet-connected smart gateways, cloud, and big data support [5]. 

Figure 1 Remote health monitoring system by tracking data recorded from different sensors 
connected to a human (see online version for colours) 

 

Figure 1 shows the remote health monitoring system by tracking data recorded from 
different sensors that are connected to a human. We can record simultaneous reporting 
and monitoring of several cases of medical emergencies like hypertension, diabetes, heart 
failure, etc. We can collect health and other related medical data by using several smart 
medical devices. All kinds of smart medical devices can operate using the internet. 
Employing an application on a smartphone or a computer, we can operate smart devices. 
We can use these kinds of devices for real-time monitoring of patients. After the data is 
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collected, it can be stored in the cloud. It can also be shared with the nearest or available 
physician [6]. By following such a kind of practice, we also can reduce the readmission 
rate. Figure 2 shows the block diagram of the data exchange and the process flow of a 
typical remote health monitoring system. 

Figure 2 Block diagram of data exchange and processing flow (see online version for colours) 

 
It is also a challenging task to analyse the data collected from different healthcare devices 
manually. There is a need for the cloud to store and manage the data. The IoT devices can 
collect, report, and analyse data. It reduces the need to store the raw data collected in 
realtime. The data collected in the cloud will be processed, and the final reports are 
obtained for access. The data-driven insights and the healthcare analytics allow 
healthcare providers to speed up the decisions with fewer errors. During life-threatening 
circumstances, it is critical to receive an on-time alert. The mobile applications and other 
linked devices are notified after the IoT devices are collecting the data. The doctors 
confirm the severity of the patient’s condition after observing the reports and alerts. This 
helps to provide on-time treatment by making well-versed decisions even when the 
patient cannot reach the hospital. Thus, IoT allows a real-time alerting, tracking, and 
monitoring system [7,8]. Also, IoT enables better accuracy, correct intervention by 
doctors, better hand-on treatments that can improve the delivery results of the patient. 

Also, there are few challenges while using IoT technology and associated healthcare 
devices [9,10]. As IoT devices capture and transmit data, the major threat they possess is 
data security. The data protocols and standards of the IoT devices have no proper and 
fixed format. Hence, they have several privacy issues regarding data ownership. There is 
a chance for cybercriminals to hack the system and misuse the patient’s and doctor’s 
information. By using the patient’s name and other identities, they may even file a 
fraudulent insurance claim. To implement IoT, it needs multiple devices to be integrated. 
The integration of IoT devices may create an impediment during the implementation.  
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As there is no harmony among the device manufacturers of IoT-related products in 
healthcare, there are no collective and standard communication protocols. So, when we 
connect different devices, due to the usage of different protocols for communication, the 
aggregation of data will be complicated [10–12]. The scalability of IoT in healthcare is 
reduced due to different protocols used between the connected devices as it takes more 
time to process the data. However, the amount of data recorded by IoT devices is so huge 
that a doctor may be perplexed, which may affect the quality of making a decision. When 
more devices are connected, more and more data is recorded, and we may encounter this 
concern more often. There are some methods and techniques being implemented to 
overcome a few of the above challenges in several industries [13,14]. 

A nano data acquisition system [15] is a portable system that uses nanosensors. The 
system interfaces with smartphones and is portable. The components that are available 
commercially are used to develop this system. They are emerging portable sensing 
technology at a nanoscale. With the help of smart mobile applications as shown in  
Figure 3, patients can contact a doctor who is far away during emergencies [16].  
By improving mobility solutions, healthcare providers can check the patients instantly 
and spot the disorders. IoT improves the patient’s care in homes or hospitals during 
epidemics. The healthcare industry is also looking forward to building machines that help 
distribute drugs from the patient’s prescription and the availability of data regarding the 
patient’s infirmity via healthcare devices [17]. 

Mobile-powered solutions for smart and improved patient care are the need of the 
day. Healthcare training and innovations are slowly transforming in the healthcare 
industry. The usage and the requirements of healthcare devices gain momentum as 
technology advances [18]. The usage of smart devices is tremendously increased 
nowadays, which is limited to patients and other medical professionals. They are being 
deployed for good tracking of several functionalities of human organs. 

Figure 3 A glucometer add-on for mobile phones (see online version for colours) 

 

3 Wearables 

3.1 Wearable technologies 

Picard [19] introduced a new field of research in 1995 called affective computing to 
consider human effects. Wearable technology is a type of affective computing that 
recognises the activity [20–23]. Wearable technologies have been evolved through 
continuous technological advancements [24]. These are the devices embedded by 
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technology that can be worn by humans [25]. Recently these wearable devices became 
popular, even though they are available for decades, because of their functionality, 
popularity, and fashion [26]. Many companies are trying to boost usage by improving the 
design, wearability, usage, and other aesthetics of wearable devices [27]. There are even 
other aspects that play an essential role in wearable technologies. Wearable devices can 
be on the body or inside the body, which offers hands-free functionality that enables the 
users to perform their own tasks without any conscious observation on to the device [28]. 

Figure 4 (a) Smart hearable [35], (b) smart hearable connected to a mobile app that monitors 
health [36], (c) operation of the ingestible sensor [37], (d) pill-shaped ingestible sensor 
[38] and (e) moodable [39] (see online version for colours) 

 
 (a) (b) 

 
 (c) (d) (e) 

Wearable devices that can be worn on the body are called wearable computers and can be 
defined concerning their features [29]. Wearable computers are defined as body-worn 
devices such as clothes, rings, etc., which provide specific features to the users [16]. 
There are plenty of applications available where IoT is dominantly used nowadays. 
Hearables are hearing aids where we can observe the enormous transformation in the 
design and the technology embedded [30]. Hearables are operated by a smartphone that 
syncs data with the help of Bluetooth. These are the new-age hearing aids. They perform 
many actions to the real-world sounds like filtering, equalising, etc. Figure 4(a) and (b) 
shows how commercial smart hearables look and connect to a mobile application that 
monitors health. A pill-sized sensor that monitors and broadcast the medication in the 
human body are called ingestible sensors [31,32]. These sensors are a modern science 
marvel and Figure 4(c) shows the operation of an ingestible sensor. Figure 4(d) shows a 
pill-shaped ingestible sensor. Moodables are also healthcare IoT devices that help in 
enhancing the mood [33]. These are head-mounted wearables as shown in Figure 4(e). 
They send currents to the brain, which are of low intensity that elevates human mood. 
Behaviour state analysis can also be analysed using head-mounted wearables [34]. 
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Table 1 Comparison of smartwatches 
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Nowadays, healthcare monitoring and activity recognition are the main two applications 
of wearables [35,36]. Some other important fields where wearables are being used are 
education [37], biometric recognition, ambient assistance living systems (AALS) in 
elderly people [38], gesture recognitions to authentication [39]. 

3.2 Types of wrist-worn devices 

Among all the wearable devices, wrist-based or wrist-worn devices (WWD) have gained 
more popularity as they are easy to wear [40]. The commercial versions of WWDs are 
categorised into three types. They are smartwatches, fitness trackers, and armbands [41]. 
Table 1 gives a comparison of highly rated and used smartwatches. The comparison 
includes different specifications like the size of the band, display operating system (OS), 
connectivity, etc. Table 2 gives a comparison of different specifications of highly 
demanded and rated fitness trackers. 

Figure 5 gives the graphical view of comparing the band size, onboard storage, 
battery backup, and display size of the smartwatches mentioned above in Table 1. Among 
all the smartwatches listed, Xiaomi Mi Watch Revolve has the highest battery backup, 
where Apple watch SE has the lowest. Apple watch SE has the largest onboard storage 
space, and Tic watch pro 2020, Samsung Galaxy watch 3 has the lowest. 

Figure 5 comparison between the band size, onboard storage, battery backup, and display size 
of the smartwatches mentioned in Table 1 (see online version for colours) 

 

3.3 Bloodless wearable technology and devices 

Bloodless wearable devices are a kind of wearable device that automatically measures the 
capabilities in sports and other extreme environments. They are used in diagnosing and 
monitoring diabetes mellitus and cystic fibrosis diseases. Sweat has important metabolic 
biomarkers that could provide insightful physiological information. Sweat glucose, sweat 
sodium, sweat potassium, sweat lactate, sweat acidity, temperature, and pH, etc., can be 
analysed by the data collected from these devices. 
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Table 2 Comparison of highly used fitness trackers 

 



   

 

   

   
 

   

   

 

   

   160 A. Peddi and T. Venkata Ramana    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 Comparison of highly used fitness trackers (continued) 
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There is a huge progress in developing wearable sweat biosensors [42–54], which are 
used for measuring detailed sweat profile during several indoor and outdoor activities. 
These sensors are built on flexible substrate materials that can maintain a sure contact 
with skin as shown in Figure 6(a). It uses a significantly less volume of sweat to analyse 
metabolites, electrolytes, heavy metals, etc. Sweat secretion is a complex task as it 
involves several chemicals [55]. Soon after it was secreted on the human skin, we need a 
parallel detection mechanism to process and analyse. Figure 6(b) shows an example 
method for image capture and analysis of calorimetric sensor through mobile phone 
application. There are plastic-based sensors available where human skin is interfaced 
with silicon-based integrated circuits (ICs). As the sensors are connected to IC, signal 
processing techniques can be applied simultaneously after collecting sweat samples 
[46,47,54]. A wearable sweat ethanol sensor, which is a union of the flexible wireless 
circuit board and iontophoresis-based sweat extraction arrangement, gives the clear 
distinction of the ethanol levels in the blood before and after alcohol consumption [51]. 
Diabetes can be monitored from sweat samples, and feedback therapy can be offered 
using wearable devices [53]. A colorimetric sweat-sensing system is available with 
wearable technology for monitoring glucose, pH, lactate, and sweat chloride [52]. 
Glocowatch is a commercial wearable that works as a non-invasive glucose-monitoring 
device. It works on the principle of reverse iontophoresis. By using this method, a portion 
of interstitial fluid is analysed from transdermal extracted glucose [56]. As shown in 
Figure 7(b), a tattoo is used as a wearable platform to extract interstitial fluid and sense 
the glucose. 

Figure 6 (a) Sweat fluid sensor and (b) image capture and analysis of calorimetric sensor through 
mobile phone application (see online version for colours) 

 
 (a) (b) 

After sweat, saliva and tears are salient and complex biofluids. They contain numerous 
vital constituents that are noninvasively available. These biofluids contain excellent 
liquid integrands. Sensors with electrochemical sensing are used as part of soft contact 
lenses to record and monitor glucose and lactate, which are available from the analytes of 
tears [57–59]. Google incorporated a similar idea and built a device called Google contact 
lens [60] that monitors glucose levels (Figure 7 shows the google contact lens). 
Transducers that are made by amorphous indium gallium zinc oxide field-effect 
transistors are integrated into contact lenses. These contact lenses are potential and 
transparent sensors that sense glucose from tear fluids [61,62]. 

Graphene has a nanoscale nature, and it is capable of detecting sensitive analytes.  
The antimicrobial peptides are self-assembled onto graphene to detect bacteria at single-
cell levels. The power and connectivity requirements can be eliminated by including a 
resonant coil. The combination of these two elements forms a new nanosensor that can be 
integrated into a tooth to sense saliva for monitoring respiration and for bacteria detection 
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as shown in Figure 7(c) [63]. There are non-invasive wearables responsible for detecting 
salivary lactate and salivary uric acid continuously, which can communicate to a 
computer wirelessly [64,65]. In diabetic patients, saliva can explore as a substrate that 
measures glucose levels and monitor glycemic control [66,67]. 

Continuous glucose monitoring (CGM) systems use interstitial fluids (ISF) of the skin 
to measure glucose. Figure 8(a) shows the testing kit, which uses a blood drop to capture 
blood glucose levels in a glucose monitor [68]. Though this is the accurate method in 
identifying blood glucose concentration, patients are unwilling to follow the process due 
to pain and a need to dump the used lancets. In the current era, the CGM technology 
enables to use a wearable as shown in Figure 8(b) that monitors the glucose concentration 
in the skin ISF, which is proportionate to the blood glucose concentration. These values 
are transmitted to a smartphone or cloud for storage and analysis purposes. CGMs with 
alarms automatically notify the user when their glucose level is above or below a preset 
threshold. CGMs also measure the rate of change of this analyte [69]. 

Figure 7 (a) Google contact lens [60] (Copyright 2017, Alphabet) (top left), (b) transdermal 
alcohol sensing device using iontophoretic-sensing tattoo (top right) and (c) bacteria 
monitoringdental tattoo sensor (bottom left) (see online version for colours) 

 
 (a) (b) 

 
(c) 

Figure 8 (a) Blood glucose levels test for diabetes patients and (b) continuous glucose 
monitoring product (see online version for colours) 

 
 (a) (b) 

3.4 Wearable technology for sports 

The other potential application of wearable technology where it positively influences the 
practice is sports. In sports, wearable technology benefits monitoring, overcoming 
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injuries, and further strengthen performance. Traditionally, optical motion capture 
technology is used as a gold standard reference to monitor the movements in swimming 
[70], rowing [71], baseball [72]. These systems use a camera that tracks passive or active 
markers. These markers are placed at the anatomical landmarks of the human body to 
capture the movements. For the sports like football [73,74], rugby [73], athletics [75], and 
netball [76], the Vicon motion capture system were used as a gold standard reference to 
wearable technology. The current wearable technology for sports uses inertial 
measurement units (IMU), microelectromechanical sensors (MEMS), flex sensors, 
magnetic fields, and angular rate sensors embedded in the devices to calibrate motion. 
Sensors that are used in these devices to record data have added features and are 
susceptible to extreme environments that withstand cold temperatures and are also 
waterproof [77–82]. There is a drawback with ferromagnetic objects inside wearable 
devices, which may misreport the measurements from inertial-based systems [74]. Due to 
the precise positioning of the sensors, data obtained may not be extrapolated to attain any 
other related results out of the wearable system [83,84]. 

These wearable systems can provide real-time feedback, which should validate with 
the optical systems, which are widely considered a gold-standard method for motion 
capture [85]. Concurrent data validation establishes the resemblance of the data procured 
from wearable system technology and a gold-standard reference. While rating the sensor 
performance with reference to the subjects, testing-retesting and intra-subject reliability 
are also important factors. The sensitivity of the sensors is also crucial to track the data 
according to changes of parameters with respect to time [86]. 

The studies [72,73,77,87–95] describe different applications of wearable technology 
into sports that elucidate the prevention of injuries, computing skill level thereof 
expertise, how the technique can be improved and characterising the movements and 
gaits. Sensors are used for movement recognition and are explored in cricket, football, 
rugby, badminton, rowing, swimming, and table-tennis [70,71,74,90,96–100]. 
Acceleration values are significant in recognising the movement after sensors record and 
process data in non-laboratory sports applications. By comparing the standard deviation 
in acceleration, block movement can be characterised in table tennis, and athlete levels 
can also be discriminated [96]. Characterisation of Nordic walking (NW) can be achieved 
by acceleration and force values [101]. It would be an attractive and safe form to have 
regular NW training to have a positive influence on kinematic parameters [102]. 

3.5 Factors affecting WWDs 

There are several factors that affect the use of WWDs. The user interface is a big 
challenge [103–106] of physical limitations and other parameters of usage. A micro-
interaction technique is proposed in Motti and Caine [107], where the user spends less 
than four seconds to complete the task. Also, it explains the ease of smaller tasks to 
minimise the effort needed. Many wearable devices have respective user interfaces that 
are clear and simple to navigate, allowing users to feel comfortable while using [108]. 
But this can be a little difficult with all the WWDs, as there are very small in size.  
So, they need a computer-based or mobile-based application, where the data is stored, 
processed, and then analysed to meet the user’s needs. The companion application should 
also be user-friendly. 
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Table 3 Comparison of android-based health and fitness, mobile applications (Top nine 
editor’s choice) (see online version for colours) 
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Table 3 Comparison of android-based health and fitness, mobile applications (Top nine 
editor’s choice) (see online version for colours) (continued) 
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3.6 Consumer health, training, fitness mobile applications 

Mobile applications are also the trend in current consumer healthcare approaches.  
The smartphones are embedded with plenty of sensors that can track the data like a 
wearable device. The computational power of smartphones is an advantage to process the 
real-time data and project the suggestions, respectively. The comparison of the different 
available options of the top nine most used health and fitness Android-based mobile 
applications taken from the editor’s choice is given in Table 3. 

Figure 9 compares the customer ratings that were given by the consumers who are 
using the respective apps. The home workout app has the highest user ratings among the 
nine apps, i.e., 4.9, where the calm app has the lowest user ratings, i.e., 4.2. 

Figure 9 Graphical comparison of the user ratings for apps mentioned in Table 3 taken from the 
play store (see online version for colours) 

 

4 Experiment, data, and analysis 

To analyse how wearable technology is influencing humans in maintaining individual 
health respectively, we have taken an activity database of a healthy 25-year-old male 
subject. The data was recorded by a consumer wearable fitness device, i.e., Fitbit Charge 
HT fitness tracker. The data consists of calories, steps, distance in metres, floors, minutes 
sitting, minutes of moderate activity, minutes of intense activity, and the calories burned 
for the activities. The data taken for analysis has 365 rows and 10 columns. Rows include 
details about the day, month, and year, where columns give information about calories, 
steps, distance in metres, floors, minutes sitting, minutes of moderate activity, minutes of 
intense activity, and the calories burned for the activities. 

From Figure 10(a), an overlap of the curves can be observed. It means that the 
number of steps moved in a day is directly proportional to the total activity time of that 
respective day. In Figure 10(b), the graph is plotted to observe the relation between 
distance and number of steps moved. Like plot (a), in the plot (b) also, there is a strong 
relationship between the distance covered and steps moved. Hence, they are directly 
related. 

In Figure 10(c), the plot shows no proper relation between calories burnt and 
sedentary activity time in a day. In Figure 10(d), there is more overlap between calories 
burnt and distance moved. It means, if the distance moved is more, the number of calories 
burnt is more, and both are directly related. Figure 10(e) shows the plot between time 
spent on all types of activity in a day, sedentary activity, light activity, moderate activity, 
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and intense activity vs. the number of calories burnt on that respective day. We can find 
that more time is spent in sedentary activity in the whole day. Hence, more area on the 
plot is occupied by sedentary data points. Though more time in a day is spent doing a 
sedentary activity, there is a linear distribution observed on the plot. After the sedentary 
activity, the subject spent more time doing a light activity, which is also linearly 
distributed. After the light activity, the subject has spent intense active and moderate 
activity in equal time. This is because the subject is performing some health fitness 
activity daily for some time. If the subject is not a fitness enthusiast, we would not have 
got an almost overlap between these two activities. 

In both cases, the plots followed almost linearity. In Figure 10(f), the graph is plotted 
between total activity time and the number of calories burnt, which has a linear 
movement. In Figure 10(g), the amount of time spent performing an intense activity is 
linearly related to the number of calories burnt. In Figure 10(h), the graph is plotted 
between average activity time in a month and normalised average calories burnt. As the 
average calories burnt in a month is far higher than the average activity time, the average 
calories burnt is normalised. We can observe that the highest average activity time is 
391.62 min, and the least is 207.6 min. The highest normalised average calories burnt is 
329.78 calories, and the least is 281 calories. 

Figure 10 Plots showing graphical relation between: (a) steps and total activity time, (b) steps and 
distance, (c) calories burnt and minutes of sedentary activity, (d) calories burnt and 
distance, (e) calories burnt vs. time, (f) total activity time vs. calories burnt, (g) minutes 
of intense activity vs. calories burnt and (h) average activity time and normalised 
average calories burnt for each month (see online version for colours) 

 
 (a) (b) 

 
 (c) (d) 
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Figure 10 Plots showing graphical relation between: (a) steps and total activity time, (b) steps and 
distance, (c) calories burnt and minutes of sedentary activity, (d) calories burnt and 
distance, (e) calories burnt vs. time, (f) total activity time vs. calories burnt, (g) minutes 
of intense activity vs. calories burnt and (h) average activity time and normalised 
average calories burnt for each month (see online version for colours) (continued) 
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5 Decision-making system 

Machine learning has evolved into teaching computers to learn and imitate humans. They 
use fundamental statistics and computational theories in the learning process. While 
learning, the machine finds a pattern among the given data, like humans do [109]. There 
are different learning mechanisms to work for different input data. Supervised learning is 
used to build a model when the given data is labelled. Unsupervised learning is used to 
build a model when the given data does not have any labels. Machine learning models are 
satisfactorily improving the efficiency of health systems [110–117]. This section 
proposed a decision-making system that can be used as a model for health and fitness 
monitoring applications. The data used in Section 4 is labelled data, and hence, 
supervised machine learning is adopted in building the system. 

5.1 Decision tree 

A decision tree algorithm is a supervised machine learning algorithm that has broad 
application areas. The decision tree algorithm is primarily used in biomedical 
applications as they are free of ambiguity and can look after the missing values 
efficiently. They can be used for both classification and regression to classify and predict 
data. The nodes of the decision tree represent features or attributes. Nodes are of three 
types- root node, internal node, and leaf node. The root node is a decision node that 
subdivides the records, where the internal node is a chance node where the top edge is 
connected to the parent node. The bottom edge is connected to the child or leaf node, and 
the leaf node is an end node that gives the event’s decision. Branches represent outcomes 
from the root nodes and internal nodes. The optimal number of splits in the data will be 
decided by the algorithm only. Decision trees are of two types: 

1 A classification tree is used with categorical data that predicts the class’s outcome to 
which the data belongs. Among the core algorithms, ID3 is used to create a decision 
tree that uses top-down, greedy search through the given columns. It selects the 
attribute that is best for the classification of a given set using entropy and 
information gain. Entropy [118] is the measure of uncertainty in the data. 
Information gain (IG) [119] measures the relative change (decrease) in entropy for 
the independent variables. The state S is the effective change in entropy after 
deciding on a particular attribute A 

 ( ) ( ) ( )( )2Entropy logS P I P I= −∑  

 ( ) ( ) ( ) ( )Information Gain , Entropy | Entropy |S A S P S A S A= −∑  

ID3 follows the rule, a branch with an entropy of 0 is a leaf node (endpoint).  
A branch with an entropy of more than 0 needs further splitting. 

2 A regression tree is used with continuous data to predict the outcome is a real 
number. CART in regression cases uses least squares, intuitively splits are chosen to 
minimise the residual sum of squares between the observation and the mean in each 
node. 
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Mathematically, we can write residual as 

   ˆ i i iy yε = −  

and the residual sum of squares (RSS) [120] as 

 2 2 2 2
1 2

1

RSS  (   ) Rˆ , SS      
n

i i n
i

y y ε ε ε
=

= − = + + +∑  

To find out the ‘best’ split, we must minimise the RSS. 

5.2 Random forest 

Random forest performs regression and classification [121,122] tasks by decision tree as 
a base (shown in Figure 11). It is an ensemble learning technique that uses bootstrap 
aggregation or bagging. The idea behind random forest is to merge multiple decision 
trees to direct the final output. 

Figure 11 Random forest structure (see online version for colours) 

 

Base learners (k) and variance are inversely proportional to each other, i.e., as base 
learners increase, the variance decreases and vice versa. ‘k’ can be found using cross-
validation, where bias remains consoptant. 

 Random forest  Base learner  Bagging  Feature bagging  Aggregation= + + +  

The standard scaler assumes your data is normally distributed within each feature and 
will scale them such that the distribution is now centred around 0, with a standard 
deviation of 1. The mean and standard deviation are calculated for the feature, and then 
the feature is scaled based on: 
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5.3 Support vector regression 

Support vector regression (SVR) [123] is a supervised learning model used to perform 
linear and nonlinear regressions. The goal of applying linear regression is to minimise the 
error between the prediction and data. However, the goal of applying SVR to a dataset is 
to make sure that the errors do not exceed the threshold. In SVR, we fit as many instances 
as possible between the lines while limiting the margin violation. This is done by finding 
an appropriate line or hyperplane to fit the data. In contrast, in the least-squares  
method where we try to find accurate coefficients, we try to minimise coefficients,  
i.e., the 12-norm of the coefficient vector, not the squared error. The error term is instead 
handled in the constraints, where we set the absolute error less than or equal to a 
specified margin, called the maximum error, ε (epsilon). We can tune epsilon to gain the 
desired accuracy of our model. Our new objective function and constraints are, 

 21minimise MIN 
2

w=  and 

 constraints    i i iy w x ε= − ≤  

5.4 Flowchart for a decision-making system 

The following flowchart shows the process flow for the proposed decision-making 
system (Figure 12). 

Figure 12 A flow chart of the proposed decision-making system 
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The data is recorded using a wearable device, i.e., Fitbit Charge HT fitness tracker.  
As the available data is recorded without any noise, no preprocessing is required. The 
data analysis can be performed to understand the organisation of data. As we have few 
columns of data with different features of the activity given for the respective day,  
we must carefully select the features while building the model. 

In this experiment, steps, distance in metres, floors, minutes sitting, minutes of 
moderate activity, minutes of intense activity are considered as the input features to train 
the model. We have divided the whole dataset into 75 : 25 randomly, where the earlier is 
used for training, and the latter is used for testing. The machine learning techniques used 
here are decision trees, random forest, and support vector machines. After testing the 
machine learning techniques, scores are evaluated and recorded. One of the applied 
techniques, recording the highest score, is considered and used for prediction or 
classification. R-squared (R2) is measured to represent the proportion of the variance for a 
dependent variable that is explained by an independent variable or variables in the 
regression models. As the data recorded from the experiment is continuous, regression 
techniques can predict the number of calories burnt in a day. Among the three algorithms 
applied, random forest regression gave the highest score of 97.88%, where SVR and 
decision tree reported 91.22% and 96.88%, respectively. The top three trail scores are 
reported in the table for the above techniques (Table 4). 

Table 4 Comparison of the top three trails between support vector regression, random forest 
regression, and decision tree 

 Support vector regression Random forest regression Decision tree 
Trial-1 0.9122 0.9788 0.9522 
Trial-2 0.8871 0.9732 0.9329 
Trial-3 0.8821 0.9553 0.9688 

6 Conclusion 

This paper provided an overview of different wearable technologies-hearables, ingestible 
sensors, moodables, wrist-worn devices-smartwatches, fitness trackers, armbands, 
bloodless wearable devices-interstitial fluid sensors, sweat, saliva and tear sensors, sports 
wearables-IMU, MEMS, flex sensors, magnetic field, and angular rate sensors. Some 
factors affect wearable technologies; one of them is the user interface. There is a need for 
a robust user interface, which can be a computer or mobile-based application, that makes 
the consumer effortlessly use the device and access the data recorded. A comparison is 
provided among the features of highly rated smartwatches and fitness trackers in the 
current consumer market. At present, there is an adequate number of prospective 
computer and mobile applications available for consumers to track some of the health and 
fitness activity and its respective data. Comparing the editor’s choice on android based 
mobile applications may give the potential mobile application for respective user 
interests. The analysis of the data collected from a consumer fitness tracker may give a 
broad comparison and connection between the level of the activity and the number of 
calories burnt in a respective day. The application of machine learning algorithms to the 
data may automate the whole system of collection of data for analysis. The proposed 
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decision-making system, which included a few regressive algorithms of supervised 
machine learning, may help quickly identify whether the user can reach the daily goal of 
the activity or not to maintain good health. The future perspective is to build a user 
interface for the decision-making system and can release into the consumer market. 
Ultimately, a new paradigm of healthcare monitoring systems can implement with 
wearable sensor technology embedded with machine learning, which can alert the subject 
in an unmanned way to reach the goal. This can also be further extended to monitor 
patients from their own houses, transforming hospital-centric medication to home-centric, 
which is much needed during pandemic situations. 
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