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Abstract: This paper proposes a comprehensive review of Electroencephalography (EEG) data 
analytics. The EEG signal definition and the analysis process are presented. The public EEG data 
sets that were utilised by the researchers are explored. EEG data acquisition methods are 
investigated. This paper covers and summarises the work and techniques that have been done to 
compress EEG data. Significant approaches for feature extraction for EEG signal processing are 
illustrated. The collected features are then utilised to classify signals based on their properties. 
Machine learning techniques have become very important in this field in recent years because of 
their incredible ability to assess complicated volumes of data. Therefore, machine learning and 
deep learning for EEG data have been introduced. For researchers interested in EEG data 
analysis, this work can serve as a basic strategy and a roadmap. 
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1 Introduction  

The translation of vast amounts of data into usable 
information has become more crucial in different sectors in 
the era of ‘big data’. It includes picture recognition, voice 
recognition and EEG signals, among other things. With the 
current exponential growth in the amount of data available, 
many studies have begun to focus on EEG research, taking 
into consideration the expectations created by the huge 
volume of data available, the large number of different file 
formats and the growing computational power of Artificial 
Intelligence (AI), which is now a powerful tool in the service 
of humans and companies. For example, IBM created a 
platform that analyses patient medical data to provide  
 

physicians with treatment alternatives. Most researchers 
prefer programming the method to extract meaningful 
information from EEG signals and computers since deep 
learning’s prominence. This is owing to the machine  
learning algorithms’ superior performance when dealing with 
a variety of real-world, complicated, and dynamic issues 
(using various methods, like those based on classification, 
regression and or unsupervised learning such as clustering) 
(Li et al., 2020). 

EEG data compression has been shown to be an effective 
energy-saving strategy for reducing the quantity of data that 
must be transmitted across a network. Data compression 
reduces the amount of energy it takes to deliver compressed 
data by removing duplicated data (Ketshabetswe et al., 2021;  
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Titus and Sudhakar, 2020). Most research has so far focused 
on EEG processing, which can help researchers better 
comprehend the connections between brain activity and 
electrical signals. Using machine learning, we can evaluate, 
understand and extract sophisticated patterns from 
complicated inputs. People frequently convert the raw data 
into a wavelet or frequency before utilising it as input data 
since the signals collected are usually some forms of mixed 
noise and artefact combination. Raw EEG data, on the other 
hand, has been employed for anomaly classification concerns 
and brain activity decoding as Convolutional Neural 
Networks (CNN) have improved (Bidgoly et al., 2020). 

In this regard, Figure 1 depicts the general process used in 
published research to extract, analyse and classify brain 
signals. This procedure is commonly broken down into  
four categories: signal acquisition, pre-processing,  
feature extraction and classification (Nicolas-Alonso and 
Gomez-Gil, 2012). 

To begin, brain signals must be collected for future 
processing. As will be demonstrated, various techniques can 
be used by placing numerous electrodes on the surface of 
the head or inside the brain. Following that, the data 
collected must be pre-processed because it has certainly 
been altered by noise and exterior interferences. The noise 
in the signal is caused by the electrical power distribution 
system, nearby electrical devices, or by body functions such 
as sweating, breathing, eye blinking or body movements. 
Filtering techniques can be used to eliminate noise from a 
signal (Huster and Calhoun, 2018; Jiang et al., 2019). In 
addition, The EEG signal will be compressed before 
sending it to the destination across the network in the case 
of the remote patient monitoring. This can decrease the 
volume of transmitted data and increase the performance of 
network. Owing to the large amount of EEG signal data 
recorded, which essentially makes computation incredibly 
complex, feature extraction is achieved once the brain signal 
is free of interference and artefacts (Ai et al., 2019; Hira and 
Gillies, 2015). Feature extraction focuses on the reduction 
of data by generating new features from the initial 
collected data set that are non-redundant, contain the 
relevant information of the input data and allow for better 
classification by using a reduced representation acquired 
rather than the entire initial data set (Hira and Gillies, 2015).  
Li et al. (2020) introduced a review about using deep  
 

learning in the analysis of EEG. They are focused on using 
deep learning techniques like Convolutional Neural 
Networks (CNN), Long-Short Term Memory (LSTM), 
Deep Belief Network (DBN) and Recurrent Neural 
Networks (RNN) to show their ability on analysing the non-
fixed EEG data. They investigated some studies to show 
some applications in EEG signal processing and analysis 
such as human factors, neuromarketing, BCI and social 
interaction. 

Bidgoly et al. (2020) proposed a survey about the 
authentication in the EEG and explain the main challenges 
that face these methods. This work is focused on some 
elements like required tasks by the user to achieve the 
authentication, EEG data sets and devices and the 
classification methods with their pre-processing approaches 
that are applied to EEG authentication (Bidgoly et al., 2020). 

Luján et al. (2021) introduce a comprehensive survey 
about classification-based machine learning, classical 
techniques for signal processing, and neural recording for 
brain activity monitoring. Most of these studies did not 
introduce comprehensive review about the data analytics of 
EEG data.  

The main contribution in this paper is to introduce a 
comprehensive review of Electroencephalography (EEG) data 
analytics. For researchers interested in EEG data analysis this 
work can serve as basic strategy and a roadmap. EEG signal 
processing is investigated via various studies about the 
compression techniques that have been done to compress 
EEG data. Several important approaches for feature 
extraction for EEG signal processing are illustrated. We 
survey some papers about machine and deep learning for 
EEG data classification. The fog computing is introduced as 
an important layer between the IoT devices and cloud for 
EEG data analytics. 

This paper is organised as follows: The theoretical 
background of the EEG signals is introduced in the next 
section. Section 3 gives the public data sets on EEG.  
Section 4 explains the EEG acquisition. The EEG 
compression is presented in Section 5. In Section 6, the 
machine learning for EEG classification is introduced. The 
fog computing is introduced in Section 7. Further discussion 
is presented in Section 8. The conclusion and perspectives are 
given in Section 9. 

Figure 1 EEG signal analysis process 
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2 Theoretical background of EEG 

The Electroencephalogram (EEG) is a method of measuring 
electrical activity in the brain, commonly along the surface of 
the scalp. Ionic flows mediated by coordinated synaptic 
stimulation of brain neurons cause these electrical events 
(Schomer and Da Silva, 2012), and they manifest as rhythmic 
voltage variations with amplitudes ranging from 5 to 100 V and 
frequencies ranging between 0.5 Hz and 40 Hz. Examining the 
EEG’s significant frequencies and amplitudes waves in 
different areas of the brain might reveal information about a 
person’s physical or mental condition (Newson and 
Thiagarajan, 2018). Brain waves are categorised into 5 
frequency ranges according to their frequency (Tangkraingkij, 
2016; Blankertz et al., 2003): The delta waveform (14 Hz) is 
the slowest and has the highest amplitude in general. During 
deep sleep, the delta band may be visible in infants and adults. 

 Children, fatigued adults and those reliving memories all 
have theta (4.88 Hz) frequency. Theta waves have an 
amplitude of less than 100 V in most cases. 

 Active contemplation, concentration and focused 
attention are all connected to beta (12.25 Hz). 
Additionally, doing or watching others conduct physical 
movements boosts Beta power. Beta waves have an 
amplitude of less than 30 V in most cases. 

 During multimodal sensory processing, gamma (above 
25 Hz) is detected. The amplitude of gamma patterns is 
the smallest. 

Because of this, it is essential to pay attention to not only the 
dominant frequency but also the recording from a specific 
part of the brain during the investigation of brain waves. 

Electrodes with low impedance are put into operation in 
order to gather EEG signals. The electrodes can be applied 
using conductive gel, referred to as a ‘wet electrode’ or 
directly to the skin, referred to as a ‘dry electrode’. The 10–20 
standard (Fu et al., 2020) is one example of a set of rules for 
placing and identifying electrodes on the scalp. The 
electrodes in the (10–20) standard are along the latitude and 
longitude, respectively, and are categorised by the lobe to 
which they correspond. On the other hand, the poles in the 
right hemisphere may be assigned even numbers, while the 
poles in the left hemisphere may be assigned odd numbers 
(see Figure 2). 

Figure 2 The placement of the electrode, the lobes of the brain 
are beneath each electrode in the 10–20 standard 

 

3 Data sets types 

This section presents the most often used public data sets in 
EEG data analytics. 

3.1 Motor motion array/EEG image  
data from Physionet 

One of the most prominent and widely available data sets 
created by the Brain-Computer Interface (BCI) 2000 (Schalk 
et al., 2004) technology is the Physionet EEG Motor 
Movement/Imagery data set. This data set contains EEG 
recordings from 109 healthy volunteers who completed a 
variety of motor and imaging activities. At a 160 Hz sampling 
rate for two 1-minute baseline runs (one with open eyes, the 
other closed), 64 channels of EEG waves were recorded for 
three 2-minute rounds for each of the four activities 
performed by each subject. Think about opening and shutting 
the left or right hand, as well as both fists and feet. Also, 
visualise opening and shutting both feet (DelPozo-Banos  
et al., 2015). 

3.2 BCI Competition II 

This large data set contains a complete record of real BCI 
performance from three trained individuals over the course of 
10 sessions. The patient sat in a reclining chair in front of a 
video screen in each trial and was required to stay immobile 
throughout the performance. A total of 64 channels of EEG 
were recorded on the scalp, each referring to an electrode on 
the right ear (amplification 20,000; band-pass 0.1–60 Hz). At 
160 Hz, all 64 channels were digitised and saved. Cursor 
movement was controlled online using just a minimal number 
of channels (LeCun et al., 2015). 

3.2 BCI Competition III data set 

The data sets comprise EEG recordings of one to five people 
engaged in a variety of activities. As part of one of these data 
sets, the EEG recordings of three people (identified as K3b, 
K6b and L1b) were made using the Neuroscan amplifier with 
62 EEG channels (60 electrodes + 2 reference electrodes) and 
a sampling rate of 250 Hz. Participants in the research 
envisioned the movement of four body parts as a reaction to 
this. Triggers can be found on the left, right, foot and tongue. 
These data sets are used in a wide range of research projects 
(Alanazi, 2009). 

3.3 BCI Competition IV data sets 

The fourth BCI competition, featuring five distinct data sets, 
was held in 2008 to continue the BCI contests. More subjects 
and tasks are included in these data sets. As an illustration, in 
data set 3A (Altuwaijri and Muhammad, 2022), the EEG 
signals of nine people were recorded at a sample rate of 250 
Hz on 22 EEG channels and 3 EOG channels. The 
participants were given four different tasks, including 
picturing left- and right-hand motions. Each session consists 
of six runs separated by brief rests. Several articles have also 
used these data sets (Lawhern et al., 2018). 



 A comprehensive review of electroencephalography data analytics 81 

3.4 EEG database at UCI KDD 

This data set was collected using 64 electrodes and a 256 Hz 
sampling rate. The study enrolled a total of 122 males, both 
healthy and inebriated. The investigations, which were 
available to all participants, employed images from the 
Snodgrass and Vanderwart (1980) collections as visual 
stimuli. Two stimulants were used, one of which lasted 300 
milliseconds and the other of which lasted 1.6 seconds. If S1 
and S2 are identical, then they were indeed asked to respond 
to the question. Certain circumstances necessitated the usage 
of a single trigger (Bay et al., 2000). 

3.5 The EEG database for Australia 

During an 11-year research at J H Hospital (2002–1991), 40 
patients’ EEG signals were analysed (20 men and 20 
females). Using 23 electrodes and a sample rate of 167 Hz, 
the EEG was recorded for around 20 minutes with both eyes 
open and closed. In a variety of research, this data gathering 
method has been employed (Hunter et al., 2005). 

3.6 Bonn database 

The database is divided into five sets, each containing  
100 records. Pre-processing, feature extraction and machine 
learning classification are the three steps of the decision-
making process. We employ single channel EEG recordings 
as input to our categorisation system. We chose channel T5-
O1 from the multi-channel TUH data, which is generated 
from the TCP montage presented by Obeid et al. Based on the 
same source, we evaluate the first 60 seconds of each 
recording in the data set for categorisation. The findings may 
be directly compared by selecting identical areas (Obeid and 
Picone, 2018). Table 1 presents an overview of the Bonn  
data set. 

Table 1 Overview of Bonn data set 

Set Patients Setup Phase 

A healthy surface EEG open eyes 

B healthy surface EEG closed eyes 

C epilepsy intracranial EEG interictal 

D epilepsy intracranial EEG interictal 

E epilepsy intracranial EEG seizure 

3.7 DEAP 

The DEAP data set is well-known in the field of emotion 
recognition, but it is also utilised for EEG authentication in 
some investigations. EEG data was collected from 32 healthy 
subjects using 32 channels and a sample rate of 512 Hz. Each 
one received 40 one-minute movies, each of which evokes a 
different feeling in pride, pleasure, fulfilment, hope, despair 
and fear, to name only a few examples (Schalk et al., 2004). 

4 EEG acquisition protocols 

Extrinsic stimulus activities include extrinsic activity states, 
mental tasks, and stimuli, which are the three types of 

protocols used in EEG recording in general. Authentication 
procedures or validity may be affected by the protocol 
chosen. Resting states and mental processes, for example. 
Tasks requiring external stimuli, on the other hand, 
necessitate the use of extra equipment beyond EEG recording 
devices. To provide the appropriate stimulation, several 
devices are required. Noise and disruptions in the 
environment may readily affect simple activities like resting 
states. The ‘signal-to-noise ratio’ of mental processes and 
actions that are followed by external stimuli is higher.  
Event-related potentials, which are electrical potentials in the 
brain triggered by any kind of sensory event, information 
from the outside, or mental effort, are used to achieve this 
goal. In this event, the ERP time is just one second long. As 
‘challenge-based response’ technologies, ERP systems 
reverse the manner in which a non-biometric authentication 
command requires the user to reply (Idrus et al., 2013). 

The most common methodology for obtaining EEG 
readings is resting states (Di et al., 2019). The individual is 
instructed to be fully calm, generally sitting The EEG signal 
is then collected in a chair in a tranquil environment. 
Although both closed and open eyes, referred to as ‘REC’ and 
‘REO’, are employed in this technique, the dominating 
frequency range and the more effective EEG channels differ. 
The central region produces the highest outcomes in REO, 
whereas the parietal region produces the best results in REC. 
Furthermore, during REC, band is the dominating band. This 
protocol’s popularity stems from its simplicity. Furthermore, 
there are no further prerequisites or instructions; nonetheless, 
the surroundings must be peaceful, and the participant  
must be free of other mental activity or the findings  
will be skewed (Barry et al., 2007). ERPs elicited by visual 
stimuli are referred to as ‘Visual Evoked Potentials’ (VEPs). 
The individual is asked to silently read some unconnected 
material. External equipment is required to provide the 
stimuli, as well as temporal limitations, which are a  
limitation of all VEPs. On the other hand, VEP components 
have been found to be highly stable over time and can meet 
the permanence criteria of biometric authentication. 
Furthermore, there is no need to synchronise recordings in 
SSVEP (Gasper et al., 2011). Acoustic stimuli is a type of 
ERP that happens when you hear music or a specific tone; 
however, it is less common than VEP (Keirn and Aunon, 
1990). It presents participants with four distinct styles of 
music, each of which elicits various emotions and interests. 
Musical tastes were also requested as a form of self-
identification. 

The EEG is recorded using a variety of methods and 
stimuli. For example, people are instructed to watch short 
movies with music that elicits various emotional responses in 
them. The combination of EEG and EOG data is another 
multi-model strategy for enhancing classification accuracy 
(Bhateja et al., 2019). 

5 EEG compression 

The Electroencephalography (EEG) signal’s relevance is 
that it is used to interpret brain activity in the form of 
electrical patterns. Head traumas, epilepsy, seizures, brain 
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tumours, dizziness and sleep deprivation all need EEG data 
to identify brain irregularities. As a result, greater 
bandwidth and storage space are necessary in IoT networks 
for effective data transmission and storage. As a result, one 
of the major issues in the IoT network’s medical health 
monitoring system is detecting and reducing the patient’s 
large amount of EEG data in order to improve the network’s 
performance while maintaining the accuracy of the data 
received at the end destination. 

The potential of health data compression algorithms has 
been emphasised as a result of these issues. Several ways 
have been investigated to limit the amount of delivered health 
data while extending the battery life of the device. Lossless 
data compression is used in situations when information must 
stay 100% intact when compared to the original data. 
Lossless compression technologies, on the other hand, can 
yield a lower data reduction ratio. It makes use of data 
similarity; no more data is introduced, and the original data 
does not lose any information when certain bits of data are 
eliminated (Gravina et al., 2017).  

Al-Nassrawy et al. (2020) proposed a high-performance 
fractal compression scheme for EEG health network traffic. A 
feasible EEG fractals compression model is presented in this 
work for lowering EEG traffic transported from the Patient 
Data Aggregator (PDA) to the destination (doctor, smart 
hospitals, emergency response, etc.). By lowering network 
traffic, the suggested approach allows EEG patient data transfer 
and improves the Wireless Body Sensor Network. The 
calculated fractal block size was discovered to play a critical 
function in creating greater Compression Ratio (CR) and 
driving the requisite Percentage Residual Difference (PRD). 
The suggested model has entirely surpassed existing strategies 
in terms of both outcomes and performance. The resulting CR 
can be as high as 160 while maintaining a PRD of less than one. 

Al-Nassrawy et al. (2022) proposed a novel Lossless EEG 
Compression Model Using Fractal Combined with Fixed-
Length Encoding Technique. This research presented a lossless 
fractals compression method for reducing the amount of EEG 
data transferred from the gateway cloud Patient Data 
Aggregator (PDA). By lowering the quantity of data traffic 
through the network, the proposed approach improves data 
communication in WBSNs. This method is tested and 
compared to various existing approaches, with the findings 
indicating that the proposed method outperforms the others.  

Hejrati et al. (2017) introduced an efficient, lossless 
multi-channel EEG compression based on channel clustering. 
A new lossless compression approach has been proposed that 
is both efficient and easy. Correlation between channels and 
within channels is used. A pre-processing step is performed in 
the first stage to extract intra-channel correlation using the 
differential pulse code modulation approach. The centroid of 
each cluster is determined and encoded using arithmetic 
coding, and the channels are grouped into discrete clusters. In 
the second step, the difference between the centroid and other 
channels’ data is determined and encoded using arithmetic 
coding in each cluster. 

Karimu and Azadi (2016) proposed a lossless EEG 
compression method using DCT and Huffman coding. Based 
on the characteristics of the DCT frequency spectrum and 
Hoffmann coding, a lossless hybrid compression technique 

for EEG has been devised in this study. It generates DCT 
coefficients for EEG segments below 40 Hz (dominant 
components). The quantitative DCT parameters are then 
encoded using a Huffman encoder at the transmitter location. 
We add a zero set of DCT coefficients above 40 Hz at the 
receiver location and then rebuild EEG segments using 
inverted DCT. We used our technique on the University of 
Bone database’s five groups (labelled A-E). 

Maazouz et al. (2015) proposed a DCT-Based Algorithm 
for Multi-Channel Near-lossless EEG Compression. For 
compression purposes, the Electroencephalogram (EEG) 
signals are discussed in this article. In the temporal domain, 
the EEG signal is correlated and this fact is employed to 
compress the signal. Data compression is useful for lowering 
transmission speed, energy consumption and the amount of 
memory required for storage (reducing the cost accordingly). 
Lossy compression based on the Discrete Cosine Transform 
(DCT) is employed in this article. This is a conservative 
procedure that forms the foundation of the well-known JPEG 
still format. Quantisation causes the loss of information. The 
compression approach also employs entropy coding. The 
compression ratio and Percent Root mean-square Distortion 
(PRD) are used to assess the results obtained. Rajasekar and 
Pushpalatha (2020) propose a Huffman quantisation method 
for EEG compression. The discrete cosine transform and 
inverse discrete cosine transform are used to improve data 
privacy while reducing data complexity. A new lossless EEG 
data compression scheme is proposed in Idrees and Idrees 
(2022) for IoT networks. The agglomerative hierarchical 
clustering and Huffman encoding are the two steps of the 
EEG data compression technique.  

Dao et al. (2015) presented a lossy compression technique 
for EEG signals. The Electroencephalogram (EEG) signal has 
been extensively utilised to evaluate brain processes and 
diagnose several brain-related disorders in this article. They’re 
frequently recorded for a long period at good quality, which 
necessitates a lot of memory for storage and transmission. 
Signal compression is required to minimise signal size. Lossy 
compression techniques, as compared to lossless compression 
techniques, will yield a substantially greater Compression Ratio 
(CR) by making use of human cognition's limits. However, this 
comes at the expense of increased pressure distortion, which 
decreases the EEG signal’s precision.  

Titus and Sudhakar (2020) introduced a simple but 
efficient EEG data compression algorithm for neuromorphic 
applications. The research provides a simple and unique 
computational way for compressing MCEEG signals using 
Pseudo-spatial-standard Coding (n-SPC). After calibrating the 
signals, two processes, the spatial encoder and the pseudo 
encoder, work on the integer and fractional parts of the 
measured data, respectively. The technique delivers 
considerably improved signal quality. The uncompressed 
sleep spindle detection signal was extracted from an EEG 
recording and compared to two expert visual recordings 
available in the DREAMS Sleep Spindles database to 
determine efficacy. As a result, the suggested compression 
strategy may be applied to the recording, archiving, BCI 
systems and neural systems processes of MCEEG. 

Birvinskas et al. (2015) proposed fast DCT algorithms for 
EEG data compression in embedded systems. The use of 
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rapid Discrete Cosine Transform (DCT) algorithms for lossy 
EEG data reduction is discussed in this work. The signal is 
partitioned into eight samples using this method, and each set 
is DCT-transformed. Before transmission, the least-
significant transform coefficients are eliminated and the 
inverse transform is filled with zeros. When high speed and 
minimal computing complexity are required, this technique 
can be applied in real-time embedded systems.  

Alsenwi et al. (2016) suggested a performance analysis of 
hybrid lossy/lossless compression techniques for EEG data. 
Two lossless compression methods are utilised in this study 
to convert random EEG data into high-frequency data: 
Discrete Cosine Transformation (DCT) and Discrete Wave 
Transformation (DWT). As a result, using a lossless 
compression technique after lossy compression is a smart way 
to get a high-compression ratio while avoiding signal 
distortion. We employ two lossless compression methods: 
Run Length Encoding (RLE) and Arithmetic Encoding. To 
evaluate the effectiveness of the suggested system, the total 
compression and rebuilding decompression times, 
Compression Ratio (CR), Root Mean Square Error (RMSE) 
and Structural Similarity Index (SSIM) are examined. 

Alsenwi et al. (2017) proposed a hybrid compression 
technique with data segmentation for electroencephalography 
data. Because of the extended recording duration, high-
sampling rate and large number of electrodes used in medical 
applications, Electroencephalogram (EEG) data volumes are 
huge. As a result, more space and bandwidth are required to 
efficiently transport and retain data. As a result, EEG data 
compression is a critical issue for efficiently transmitting 
EEG data with less bandwidth and storing it in less space. An 
effective EEG compression technique is presented in this 
research. The EEG data is first separated into N segments and 
then processed using the Discrete Cosine Transform (DCT). 
The transformed parameters are subjected to a threshold 
procedure, with any values falling below the threshold being 
set to zero. Finally, the Run Length Encoding (RLE) 
technique is used to encode the obtained parameters. A 
reverse method can be used to recover the EEG signal. In this 
calculation, the total compression and reconstruction time (T), 
Compression Ratio (CR) and root mean error difference 
(PRD) ratio are calculated. In order to verify the effectiveness 
of the proposed algorithm, simulation results show a 
significant improvement in compression time using data 
segmentation.  

Idrees et al. (2022) proposed a lossless data compression-
based k-means clustering and Huffman encoding at the edge 
to decrease the volume of EEG data before sending it to the 
fog node in the Internet of Medical Things network. 
Campobello et al. (2021) presented a simple encoding 
compression method to reduce the EEG data at the limited 
resources IoT devices. For data compression, an optimal 
tensor truncation mechanism is required. In the proposed 
work, researchers first transform the multi-channel EEG 
signal as a tensor and then decide the compact tensor’s 
optimal size. To depict the data embedded in the tensor, 
researchers accomplish tensor decomposition and acquire a 
core tensor of considerably smaller volume (Das and Kyal, 
2021). Table 2 contains a summary about the compression 
techniques used for EEG signals.  

Table 2 Summary of the compression techniques 

Name (Year) Lossless Lossy 
Dataset 

Technique 
Bonn Others 

Al-nassrawy 
et al. (2019) 

    Fractal 
compression 

Al-nassrawy 
et al. (2022) 

    Fractal 
compression with 
fixed length 
encoding 

Hejrati and 
Fathi (2017) 

    Arithmetic coding 

Ykarimu and 
Azadi (2016) 

    DCT + Huffman 
coding 

Maazouz et 
al. (2015) 

    DCT algorithm

Rajasekar and 
Pushpalatha 
(2020) 

    Huffman-based 
discrete cosine 
transforms 

Idrees and 
Idrees (2021) 

    Hieratical 
Clustering + 
Huffman coding 

Dao and Li 
(2015) 

    Wavelet-based, 
filter-based, 
predictor and other 
non-wavelet 
compression 

Sudhakar and 
Titus (2018) 

    Normalised spatial 
pseudo code(n-
SPC) 

Birvinskas 
and Jusas 
(2015) 

    Fast DCT 
Algorithm 

Alsenwi et al. 
(2016) 

    DCT + DWT 
(lossy) 
RLE + arithmetic 
encoding(lossless) 

Saeed et al. 
(2017) 

    DCT+RLE 

Idrees  
et al. (2022) 

    K-means 
Clustering + 
Huffman coding 

Campobello 
et al. (2021) 

    Simple and 
efficient encoding 
scheme 

Das and Kyal 
(2021) 

    Tensor truncation 
method 

6 Machine learning for EEG data classification 

Most people preferred to train data using machine learning 
techniques such as Naïve Bayes or support machine learning 
due to a lack of data and low-performance computers. Early 
techniques sought to explicitly program the needed 
knowledge for certain tasks; nevertheless, they ran into 
problems when coping with complicated real-world situations 
since defining all of the information requested for an AI 
system to get excellent outcomes by hand is such a tough 
effort (Hameed and Idrees, 2022). Several methods are used 
to extract features of EEG data. In this section, some methods 
can be presented (Luján et al., 2021): Temporal analysis 
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allows for the identification of normal and abnormal wave 
patterns in EEG signals, as well as the existence or absence  
of brain rhythms. EEG signals are frequently linked in time.  
As a result, time samples can be predicted by using 
autoregressive for stationary signals or adaptive 
autoregressive for nonstationary signals, such as Linear 
Prediction (LP) and Independent Component Analysis (ICA). 

Temporal approaches are sometimes unable to give 
substantial characteristics. This can occur when a captured 
signal has weak temporal or spatial resolution, allowing only 
oscillatory activity to be preserved. These oscillations can 
potentially be represented by fundamental sinusoid functions 
using the Fourier Transform (FT). In these circumstances, the 
spectral analysis provides extra information by clarifying the 
EGG signal’s prominent frequencies. Fast Fourier Transform 
(FFT), Short-Time Fourier Transform (STFT), spectrogram, 
Autoregressive Method (ARM) and Eigenvectors are the key 
approaches used in this situation, with band power and high-
order spectra being the main characteristics recovered (HOS). 
In most cases, ‘Short-Time Fourier Transform’ (STFT) or 
‘spectrograms’ provide superior results for neural signals 
since short-time windows are used to divide the data into tiny 
time intervals. 

To enhance EEG studies, the benefits of temporal and 
frequency investigations can be combined. The signal 
breakdown for nonperiodic signals is commonly done using 
time-frequency transformations, which provide a lot of useful 
information. Various techniques, such as the Wigner–Ville 
distribution, scalogram, Hilbert–Huang spectrum or discrete 
wavelet transform, can be used to divide signals into single 
instantaneous frequencies throughout time (DWT). This 
approach has the benefit of converting non-linear, non-
stationary brain input into linear and stationary components. 
Furthermore, this approach enables such a compromise 
between temporal and frequency resolutions, resulting in the 
best possible representation of the signals. 

Machine learning, as we all know, offers a lot of potential 
for teaching AI systems cognitive capabilities via experience 
gained through training enormous volumes of data. However, 
feature extraction from raw data has limits. It may be 
necessary to devote a significant amount of effort to coding a 
complicated algorithm capable of manually extracting 
characteristics of raw data. Despite the limitations of these 
techniques, machine learning has been utilised to evaluate 
EEG data in a number of studies. Figure 3 shows the machine 
learning classification for EEG data (Jiang, 2021). 

This section gives a quick overview of the machine 
learning techniques used in EEG categorisation. After 
successful feature extraction, the treated EEG data is ultimately 
ready for categorisation using machine learning techniques. 
Machine learning is described as computer models and 
algorithms that can learn and adapt without explicit instructions 
or human involvement from data and experience. Machine 
learning techniques are divided into four groups, as shown in 
Figure 3, deep learning, reinforcement learning, unsupervised 
learning and supervised learning (Hull, 2021). 

Supervised learning methods use predetermined inputs 
and predefined outputs to build a model utilising data points 
with known outcomes. Following that, the system may use 
the obtained training and expertise to make judgments or 
predictions (i.e., predict future outputs using fresh inputs). 
Regression and classification are the two types of 
supervised learning available. Linear regression, non-linear 
regression, Gaussian process regression, and regression 
trees are examples of regression learning techniques that are 
commonly used to forecast statistical parameters. For 
classification output variables, classification algorithms 
such as ‘Support Vector Machines’ (SVM), ‘logistic 
regression’, ‘decision trees’, ‘Naïve Bayes’, ‘discriminant 
analysis’ and ‘K-Nearest Neighbour (KNN)’ are used. Only 
two classes of values are feasible, such as male–female, 
yes–no, true–false, and so on (Jo, 2021). 

Figure 3 Machine learning for EEG data classification  

 

Source: Luján et al. (2021). 
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Unsupervised learning, on the other hand, uses just input data 
sets and no outputs, inferring result patterns without  
any reference, therefore, the computer may learn from the 
data without any external supervision. Clustering and 
dimensionality reduction are two types of this technology. 
Clustering algorithms like K-means, k-medoids, hierarchical 
clustering, self-organising map, fuzzy c-means and Gaussian 
mixture match input data, which show similarities in clusters 
and classify them depending on the existence or missing of 
such similarities. ‘Principal component analysis’, ‘factor 
analysis’, ‘independent component analysis’ and ‘random 
projection’ are examples of dimensionality reduction 
techniques that reduce the number of input variables in a data 
set to optimise classification and great fit a predictor whilst 
still lowering risk of data loss. Unsupervised learning is 
capable of doing more complicated tasks than supervised 
learning, but it is also more difficult to implement into 
practice (Yan et al., 2022). 

The algorithms used in reinforcement learning learn from 
their own expertise, whereas an agent learns from the 
environment in which they are placed to attain a goal. In other 
words, the algorithms are capable of determining the 
optimum decision based on a system that rewards good 
selections. The agent, the environment, the action, the policy 
and the reward are the essential components of a 
reinforcement learning system. The agent is software that has 
been programmed to complete a certain task. The 
environment is the physical or virtual world in which the 
agent operates. An action is a change made by an agent that 
alters the environment’s condition, and a policy is the 
collection of rules that the agent uses to make decisions. A 
reward is a monetary value assigned to a positive or bad 
activity (Yan et al., 2022). 

Model-free and model-based strategies are two types of 
reinforcement learning algorithms. Model-free algorithms, 
like trial-and-error algorithms, do not build an explicit model 
of the environment, but instead conduct operations on the 
environment to directly extract the best policy. Value-based 
techniques (like ‘Q-learning’, ‘Deep Q Neural Network’ 
(DQN) and ‘State-Action-Reward-State-Action’ (SARSA)) 
reflect an optimal strategy as a result of precisely guessing the 
value function in every state, whereas policy-based 
algorithms (like ‘Q-learning’, ‘Deep Q Neural Network’ 
(DQN) and ‘State-Action-Reward-State-Action’ (SARSA)) 
reflect an optimal strategy as a result of precisely guessing the 
value function in every state. Without modelling the value 
function, policy-based algorithms (such as policy gradient) 
evaluate the best policy. Model-based algorithms (such as 
learn and given model) build a concrete model of the world, 
which the agent then explores to learn. The model calculates 
the predicted reward and future state for each state and action 
(Yan et al., 2022). 

Deep learning is primarily based on multi-layered (input, 
hidden and output layers) neural networks that train from 
massive quantities of data, imitating the functions and  
 
 
 

working system of the brain by calculating data with millions 
of neurons. The data set’s input characteristics are provided to 
the neural network’s input layer. The hidden layers are 
positioned between the input and output layers, and each 
layer provides an output from a set of weighted inputs. The 
number of hidden layers varies depending on the complexity 
of the issue being solved. For given inputs, the output layer 
generates the final results. Deep learning algorithms execute 
computations and forecasts periodically in each layer in this 
fashion, progressively learning and increasing the accuracy of 
the findings over time. ‘Artificial Neural Networks’ (ANN), 
‘Convolutional Neural Networks’ (CNN) and ‘recurrent 
neural networks’ are the three main types of deep learning 
techniques (RNN). ‘Artificial Neural Networks’ (ANNs), also 
known as ‘Simulated Neural Networks’ (SNNs), are at the 
heart of deep learning algorithms and their structure is 
inspired by the human brain, replicating organic neuron 
function (Jiang, 2021). 

Based on an activation function that aids the network in 
learning any complicated relationship between inputs and 
outputs, ANNs are capable of learning any non-linear 
function. Universal function approximators are another name 
for these networks. CNNs (or ConvNets) are neural networks 
that are primarily used to handle auto-correlated input. CNNs 
are built around filters, sometimes known as kernels, that use 
convolutional processes to extract meaningful characteristics 
from the input. According to CNNs, the initial hidden layers 
can detect basic patterns, the following levels can identify 
patterns, and the last hidden layers are specialised and can 
recognise complicated patterns. ‘Recurrent Neural Networks’ 
(RNNs) are neural networks with recurrent connections 
between hidden layers. This recurrent feedback guarantees 
that the incoming data contains sequential information. As a 
result, RNNs are commonly utilised to solve issues involving 
time series data. ‘Long Short-Term Memory’ (LSTM), Side-
output Residual Network (SRN), and gated recurrent unit are 
the most often used techniques for developing RNNs (GRU) 
(Hull, 2021). 

The data processing nature and the way of learning the 
classifiers from it represent the principal difference between 
deep learning and machine learning. The machine learning 
techniques use only the structured and labelled data for 
learning, while the deep learning can use structured and 
labelled data and unstructured and unlabelled data for 
learning. The deep learning techniques are able to use several 
layers to achieve feature extraction from data and improve 
classification. Table 3 summarises the key differences 
between the two classification approaches, focusing on 
several properties such as training, data format, algorithm, 
database size and applications. Finally, deep learning 
techniques can strengthen learning, which is a highly 
developed unsupervised learning process during which the 
classifier ‘learns’ to be more precise based on strong feedback 
from previous estimates (Luján et al., 2021). 
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Table 3 Main differences between machine learning and deep 
learning 

 Deep learning Machine learning 

Application Complex tasks Simple tasks 

Algorithm Neural network of 
algorithms 

Variable algorithm 

Data format Unstructured data Structured data 

Training System is self-
learning. 

System requires 
human for training 

Database size More than 106 od 
data points 

Data set volume is 
manageable 

7 Fog computing 

The high bandwidth, high security and privacy and fast 
response in the case of high risk to the patient represent the 
main requirements for every smart medical system. These 
requirements cannot be provided by the current architecture 
of the IoT because it suffers from long delay response, limited 
bandwidth and increased cost for uploading data (Ferreira et 
al., 2021; Singh et al., 2021). Therefore, Cisco introduced fog 
computing as an addition to deal with these challenges. The 
cloud computing is extended by using the fog computing. 
This extension starts from the network core to the network 
edge. It provides several services like high powerful data 
processing and saving and analysing the collected IoT data in 
the middle point between the smart end IoT devices and the 
cloud platform. Figure 4 shows a fog computing based the 
architecture of IoT network (Yu et al., 2017). The fog 
computing layer is located closer to the smart IoT devices 
(data generators), providing several advantages like a fast 
response to the IoT sensor devices and a decrease in the 
volume of transferred data to the cloud, thus saving the 
bandwidth of the network. Hence, the huge volume of EEG 
data sensed from the patients can utilise this service to 
improve the performance of the network and provide a fast 
decision in the case of increasing the level of risk for the 
patients (Yu et al., 2017). 

Figure 4 Fog computing based the architecture of IoT network 

 

 

8 Further discussion 

EEG is an additional sensitive objective measure, which 
could be utilised not only in the neuroscience research, but 
also in practical clinical applications that are closely related to 
human life and health. The EEG data analysis is made by 
using machine learning and deep learning to predict the 
epileptic seizure and the Alzheimer’s disease. EEG data 
analytics provides a significant diagnostic benefit for different 
intracranial lesions like encephalitis, cerebral apoplexy, 
metabolic encephalopathy and brain tumours. The research 
direction and open issues for EEG data analytics include: 

 Providing a new deep learning architecture for EEG 
data processing to provide high accuracy for predicting 
the level of the risk of the patient remains one open 
issue that requires extensive study and research. 

 A decision-making model based on big EEG data at the 
fog layer is an open issue that needs to be investigated.  

 EEG data authentication and security represent a big 
challenge in this field.  

9 Conclusion and perspectives 

A comprehensive review of EEG signal processing and 
analysis is given in this paper. EEG data collection and  
pre-processing are studied. Various studies about the 
techniques used to compress EEG data are being 
investigated. The feature extraction methods for EEG signal 
processing are introduced. Machine and deep learning have 
become more important in this sector in recent years due to 
their incredible ability to analyse large amounts of data. As 
a result, EEG data has been subjected to machine learning 
and deep learning. The main differences between machine 
learning and deep learning are presented. Fog computing is 
introduced as an important layer between the IoT devices 
and cloud for EEG data analytics. It can reduce the required 
bandwidth for sending data from IoT devices to the cloud 
and decrease the latency. Some open research directions are 
introduced. In the future, we plan to extend this study to 
include big data analytic techniques and their role in future 
EEG data analytics. The impact of EEG data analytics on 
the use of Tactile Internet architecture and 6G networks will 
also be investigated.  
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