
 
International Journal of Computer Applications in
Technology
 
ISSN online: 1741-5047 - ISSN print: 0952-8091
https://www.inderscience.com/ijcat

 
Experimental study for makespan reduction in enterprise
application integration processes using bio-inspired algorithms
 
Maira S. Brigo, Fernando Parahyba, Rafael Z. Frantz, Sandro Sawicki, Fabricia Roos-
Frantz
 
DOI: 10.1504/IJCAT.2023.10056445
 
Article History:
Received: 21 December 2021
Last revised: 29 March 2022
Accepted: 02 May 2022
Published online: 23 May 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijcat
https://dx.doi.org/10.1504/IJCAT.2023.10056445
http://www.tcpdf.org


18 Int. J. Computer Applications in Technology, Vol. 71, No. 1, 2023  

Copyright © 2023 Inderscience Enterprises Ltd. 

Experimental study for makespan reduction in 
enterprise application integration processes using 
bio-inspired algorithms 

Maira S. Brigo*, Fernando Parahyba,  
Rafael Z. Frantz, Sandro Sawicki and  
Fabricia Roos-Frantz 
Unijuí University, 
Rua do Comércio, Ijuí, Rio Grande do Sul, Brazil 
Email: maira.brigo@sou.unijui.edu.br 
Email: fernando.parahyba@sou.unijui.edu.br 
Email: rzfrantz@unijui.edu.br 
Email: sawicki@unijui.edu.br 
Email: frfrantz@unijui.edu.br 

Abstract: Enterprise Application Integration area seeks to support the companies’ business 
processes by enabling data and functionality of the applications to become reusable. Integration 
platforms are tools that develop and execute integration processes. This execution is done by a key 
component of the platforms called run-time system; that said, the performance from integration 
processes heavily depends on the efficiency of the run-time system. The task-based execution model 
implemented by the run-time system can use a strategy based on local pools to store computational 
threads associated with each task that make up the workflow of the integration process, in order to 
execute them. The challenge in this strategy is to evenly distribute the threads in each pool, 
minimising the makespan. We propose an experimental study, which uses two meta-heuristics to 
find the best distribution with the optimal number of threads. We compared both Particle Swarm 
Optimisation and Cat Swarm Optimisation, with the latter showing better results. 

Keywords: makespan; task-based; run-time system; optimisation; integration platforms; 
integration process; meta-heuristics; particle swarm optimisation; cat swarm optimisation; 
threads. 

Reference to this paper should be made as follows: Brigo, M.S., Parahyba, F., Frantz, R.Z., 
Sawicki, S. and Roos-Frantz, F. (2023) ‘Experimental study for makespan reduction in enterprise 
application integration processes using bio-inspired algorithms’, Int. J. Computer Applications in 
Technology, Vol. 71, No. 1, pp.18–32. 

Biographical notes: Maira S. Brigo is a PhD student in the Post-Graduation Program in 
Mathematical and Computational Modelling at Unijuí University. Her current research interest 
includes systems integration and analysis, optimisation and mathematical and computational 
models. 

Fernando Parahyba is a PhD student in the Post-Graduation Program in Mathematical and 
Computational Modelling at Unijuí University. His current research interest includes systems 
integration and analysis, model verification and smart contracts in the context of integration 
processes modelling and implementation to ensure agreements and detect contract violations. 

Rafael Z. Frantz is an Associate Professor at Unijuí University and Leads the Applied Computing 
Research Group. He received the PhD degree in Software Engineering from the University of 
Seville, Spain. His current research interests focus on integration of enterprise applications, 
optimisation, decentralised technologies including blockchain, smart contracts and data 
integration. 

Sandro Sawicki is an Associate Professor at Unijuí University. He received his PhD degree in 
Computer Science from Federal University of Rio Grande do Sul, Brazil. His current research 
interests include mathematical optimisation, graph theory, hypergraph partitioning and search-
based software engineering. 

Fabricia Roos-Frantz is an Associate Professor at Unijuí University. She received the PhD degree 
in Software Engineering from the University of Seville, Spain. Her current research interests 
include data integration and analysis, optimisation, petri nets and learning analytics. 

 



 Experimental study for makespan reduction 19 
 

1 Introduction 

Over time, companies have either developed software 
applications or bought them from third parties to support their 
business processes, which are in constant transformation. A 
company’s set of applications is called software ecosystem 
(Manikas, 2016). A large part of these applications were 
developed in different programming languages, to be 
executed on different operating systems. Since they have 
different data models, the software ecosystem is 
heterogeneous. Often, such applications are not projected for 
exchanging data and sharing functionality. Therefore, making 
it possible for applications to work together and supporting 
the growing volume of data currently involved in business 
processes is a recurrent challenge for companies’ Information 
Technology (IT) sectors. 

The Enterprise Application Integration (EAI) area 
provides methodologies, techniques and tools to carry out the 
integration of software ecosystem applications, through the 
design, construction and execution of integration processes 
(Hohpe and Woolf, 2003; Frantz et al., 2021). An integration 
process is implemented as a piece of software so that it can be 
executed to integrate different applications involved in a 
business process. On the other hand, integration platforms are 
tools that offer resources to model, implement and execute 
integration processes (Freire et al., 2019a). Generally, an 
integration platform has: (i) a Domain-Specific Language 
(DSL), proposed to conceptually model an integration 
process; (ii) a development toolkit, which transforms the 
model into executable code; (iii) a run-time system, 
responsible for executing processes and (iv) monitoring tools, 
which analyse the integration process performance. 

Several open-source message-based platforms use  
the pipes-and-filters architectural style (Alexander, 1977).  
On these platforms, pipes are communication channels 
connecting two tasks and allowing them to asynchronously 
execute messages that flow within the integration process. 
Messages are structures that encapsulate data flowing  
through the process. Filters are atomic tasks that generally 
perform one of the integration patterns documented by Hohpe 
and Woolf (2003), and perform concrete actions on the 
messages. 

Figure 1 illustrates a typical integration process. Integration 
processes are usually composed of an entry and an exit port, 
and a set of organised tasks that make up the workflow. 
Through ports, the process communicates with applications of 
the software ecosystem. In an integration process, tasks are 
linked in such a way that a message can only be executed by a 
task if it has already been executed by the predecessor task. A 
message is considered processed when it has been executed by 
all tasks that make up the workflow. A recurrent challenge in 
integration platforms is how to improve the performance of 
run-time systems and to optimise the computational resources 
used. Owing to the increasing generation of data in the 
companies software ecosystem – including data from sensors, 
mobile devices and digital media, run-time systems from 
integration platforms need to be adapted to efficiently handle 
the growing volume of data (Freire et al., 2019b). 

There are two theoretical models in the literature that 
can be followed for the implementation of run-time systems: 
the Process-Based (Alkhanak et al., 2016; Boehm et al., 
2011) model and the Task-Based (Blythe et al., 2005; Frantz 
et al., 2012) model. In both cases, the computational 
resources used are threads. In the Process-Based model, 
threads are allocated at process level and when a message 
arrives at an integration process input port, one thread is 
designated to process the message along all process tasks. 
Concrete occurrence tasks are named workunits. In the 
process-based, a workunit of the whole process is created 
and a thread executes in sequence all algorithms of tasks 
that make up the flow in a single workunit of the process. 
Note that in this model, there is no need for slots, as the set 
of tasks is executed by the same thread on the message. In 
the Task-Based model, threads are allocated at task level. In 
this model, threads execute the task algorithm on the 
message and are free to execute any other task in the 
process. In this very case, workunits are created for each 
task. This paper addresses the Task-Based execution model, 
once it is better suited to scenarios with large volumes of 
data, which eventually demand higher performance (Boehm 
et al., 2011). Also according to Blythe et al. (2005), the 
desynchronisation of tasks avoids a possible waiting time 
and allows a better use of computational resources, thus 
providing a more efficient execution. 

Figure 1 Example of a typical integration process 

 

 

 

 



20 M.S. Brigo et al.  

Figure 2 Elements involved in the task-based run-time system with the global and local pool strategies. ‘T’ represents a type of task and 
‘in’ represents the instant in time the instance was added to the workqueue 

 
 

Commonly, there are two strategies to allocate threads in the 
Task-Based model: global and local pools strategy, as 
shown in Figure 2. The global pool strategy consists of a 
single pool to store all threads available to execute messages 
in the integration process; a single thread from the global 
pool is shared by all internal tasks of the process. When 
there are messages in all task entries, this task is able to be 
executed. Then, a workunit of it is created and stored in a 
workunit queue, called workqueue. The workqueue receives 
all workunits for all tasks in the integration process. In this 
strategy, when the process needs to handle a large volume 
of data, that is, the message arrival rate is very high, it is 
likely that threads shall concentrate to prioritise the 
execution of tasks at the beginning of the workflow, once 
messages entering the process will generate workunits from 
the first workflow tasks in the workqueue, harming tasks 
arranged at the end of the workflow and consequently, the 
execution of the integration process. 

The local pool strategy minimises the problem of 
accumulation of threads in the initial tasks of the process, as 
it uses several pools of threads – with one pool per task – 
making each task have its own set of threads and 
consequently, a workqueue for each task. The Observer has 
the role of observing the integration process so that 
whenever there are messages in all entries of a task, it 
creates a workunit of the task by adding that workunit in the 
corresponding workqueue. Although this strategy minimises 
the problem of concentration of threads at the beginning of 
the workflow (caused by using a single global pool), the 
challenge is to correctly distribute threads in each pool, so 
that this distribution can improve performance. A widely 
used metric to calculate the performance of a run-time 
system is the average processing time of a message in the 
integration process, known as makespan (Chirkin et al., 
2017). A low makespan is indicative of more messages 
processed per unit of time, which means better performance. 
While a high makespan indicates fewer messages processed 
per unit of time and, consequently, poorer performance 
(Parahyba et al., 2021). 

Meta-heuristics can be used to find the best thread 
distribution and the optimal number for each pool.  
 
 

A meta-heuristic is a method used to solve optimisation 
problems in a generic way (AbdelAziz et al., 2020). Through 
it, an initial population is generated and undergoes 
transformations of different principles to reach a result that 
maximises or minimises the objective function. In this paper, 
we propose a comparative experimental study to analyse the 
efficiency of Particle Swarm Optimisation (PSO) (Slowik, 
2020; Freire et al., 2020) and Cat Swarm Optimisation (CSO) 
(Slowik, 2020; Lima et al., 2019) meta-heuristics to find the 
best distributions with the optimal numbers of threads for 
local pools to minimise the makespan in an integration 
process. We chose to use PSO at first, as it is an easy 
technique to implement, widely used in scheduling problems 
in Software Engineering, and one of the most popular among 
algorithms based on a technique (Kaleche et al., 2020). 
Despite being a more recent technique, CSO is also easy to 
implement and widely used in this area. Singh et al. (2017) 
implemented CSO and compared it through different numbers 
of independent tasks, with the Genetic Algorithm (GA) and 
with the standard PSO; the results indicated that CSO is 50% 
better than PSO, and that it is 27% better than GA when it 
comes to run-time. Thus, in this paper we design and execute 
an experiment by using a single protocol, turning heuristics 
into input variables with the adopted parameters. Algorithms 
from two of these meta-heuristics are executed in the same 
controlled environment, aiming at finding the best thread 
distribution to generate the lowest makespan in the 
integration process. The results were analysed through 
comparison to identify which meta-heuristic is the most 
adequate to solve the thread distribution problem. At the end 
of the experiments, we found out that CSO delivered a 
superior performance and a better average result than PSO. 

The remainingder of this paper is organised this way:  
Section 2 introduces the PSO and CSO meta-heuristics used 
in the experiments, and adds important information and 
characteristics of them; Section 3 presents related works; 
Section 4 describes the formulation of the problem; Section 5 
presents the experiments performed, and discusses all stages 
of the experimentation protocol; Section 6 presents the 
analysis from results and lists possible future works. 



 Experimental study for makespan reduction 21 

2 Background 

In this section we discuss, in a broad sense, what the meaning 
of heuristic is, and more specifically what the meaning of 
meta-heuristics is. We explain the algorithms based on nature 
and the organisms that live in it; we also mention the classes 
into which they are divided. The focus is on swarm-based 
algorithms, and then there is a debate on the two algorithms 
which belong to this class, and were used in the experiments. 

According to Game et al. (2020), a heuristic is an 
exploratory technique that aims to improve performance and 
solve problems. A heuristic algorithm uses information 
available to advance towards the solution. This is an 
approximate method, that is, it provides good solutions to a 
given problem in a reasonable amount of time. A meta-
heuristic is a heuristic method that finds the best solutions to 
the problem. According to Kaleche et al. (2020), heuristics 
are specific to a problem, while meta-heuristics are 
independent from a problem. The bio-inspired optimisation 
algorithm was created based on the characteristics and 
behaviour of living organisms in nature. This natural 
computation has been divided into three main classes: 
computation inspired by nature; simulation and emulation of 
nature; and computation with natural materials. Therefore, 
nature has served as a source of inspiration, and these nature-
based algorithms are meta-heuristic algorithms divided  
into three parts: evolutionary algorithms, physics-based 
algorithms and swarm intelligence algorithms. The choice of 
working with meta-heuristic swarm intelligence algorithms is 
explained by the fact that, according to Game et al. (2020), 
swarm intelligence algorithms are advantageous because they 
use few parameters, they can memorise the best previous 
results and are ease of implementation. 

The PSO meta-heuristic is motivated by the simulation of 
social behaviour (Shi and Eberhart, 1999), and we can infer 
that it is a collective iterative method that emphasises 
cooperation (Clerc, 2010). It was introduced by Eberhart and 
Kennedy (1995), who were inspired by biological organisms, 
more precisely in the ability of some beings when it comes to 
group social work behaviour, and how they find sources of 
food (Bratton and Kennedy, 2007). It can be inferred that 
PSO has a cooperative behaviour, and when it is applied, 
there is an exchange of information among those involved in 
solving a problem. It is, therefore, based on a swarm of 
particles that move in the space they are inserted in, and the 
communication among them points the direction in the search 
they wish to follow. This technique can be applied to 
scheduling tasks in network environments and can also 
reduce the overall execution time of scheduling tasks in 
computational grids. It is the most used technique based  
on swarm intelligence for scheduling tasks in the cloud 
(Singh et al., 2017). 

According to the creator of PSO, a swarm looks like a 
disorganised population of moving individuals which tend to 
cluster together, while each individual appears to be moving 
in a random direction. The swarm of particles has artificial  
 

roots and evolutionary calculus, in addition to being a simple, 
easy-to-implement concept, effective in several problems. An 
interesting feature is that each particle controls its best 
position in hyperspace. PSO moves around its own research 
space, and its current particles decide their next positions in 
this very space. From a population of solutions that are 
candidates for the best solution there is a movement, and the 
movement of each of these solutions – which can be called 
particles – is influenced by its position at the best-known 
location. Since the purpose is precisely to bring the entire 
swarm of particles close to the best solution, the position is 
always updated to the best position found. 

The CSO meta-heuristic, implemented by Chu et al. 
(2006), is based on the behaviour of cats. Considering that 
such animals pay close attention to everything and are always 
alert, it can inferred that they are intelligent and deliberate 
beings. This technique models two main behaviours from 
cats: the seeking mode and the tracing mode (Chu et al., 
2006). The seeking mode is used to model the behaviour of 
the cat in its rest period. When a cat chases its preys, it enters 
the tracing mode (Shojaee et al., 2012). 

According to Shojaee et al. (2012), in order to use CSO in 
an optimisation problem you must first decide the number of 
cats to be used, noting that each one of them has a 
dimensional position, velocities for each dimension and 
fitness value, which represents the cat accommodation and a 
search or trace flag, to reveal in which mode the cat finds 
itself. The behaviour of cats technique was used because, 
from this point on, spaces for complex solutions are searched 
for optimal solutions. The initial population of cats is 
randomly divided into seeking and tracing mode. The best 
approximation results per cat are recorded in the memory. 
When all cats have their best position, the final solution is the 
best position of one of these cats (Lima et al., 2019). 

3 Related work 

Through experiments, a set of works seek to reduce 
makespan by applying optimisation techniques in different 
types of processes. Algorithms were analysed and compared 
in the related works studied, with some authors improving 
existing algorithms, and others proposing new algorithms. 
Table 1 presents a comparative summary of these works 
based on a set of properties. Column 1 identifies the works 
analysed. Column 2 indicates whether the work uses PSO, 
CSO or some variation of these meta-heuristics. Column 3 
refers to the use of makespan and workflow in the analysis 
performed. Column 4 summarises the techniques used, in 
addition to those already mentioned in column 2. Finally, 
column 5 reproduces what technique is the best according to 
the authors. Our proposal - used of original algorithms - 
stands out for using two unmodified meta-heuristics, which 
minimises the makespan of a workflow. Subsequently, we 
present the related works one by one, with their main 
characteristics. 

 



22 M.S. Brigo et al.  

Table 1 Summary of related works 

Proposal Meta-heuristic Makespan/Workflow Techniques used Best technique 

Junaid et al. (2020) ACOPS, CPSO, QMPSO, 
CSO 

makespan SVM, ACO, D-ACOELB SVM 

Natesha et al. (2018) PSO, CSO makespan GWO, FCFS, MT, GA GWO 

Jing et al. (2018) PSO, CSO makespan / workflow D-ITGO, GA, ABC, Cuckoo, 
BA 

D-ITGO 

Abdullahi et al. (2017) PSO makespan / workflow CSOS, SOS CSOS 

Maurya and Tripathi 
(2018) 

PSO, CSO makespan / workflow IC-PCP, SCS CSO 

Gupta et al. (2018) PSO, CSO, MCSO makespan / workflow – MCSO 

Xu et al. (2017) PSO makespan ICSO, CSO (Chicken) ICSO 

Semlali et al. (2018) – makespan CSOSA, CSO (Chicken), AS CSOSA 

Bousselmi et al. (2020) BiO-CSO, BiO-PSO makespan / workflow – BiO-CSO 

Gupta et al. (2019) PSO, CSO makespan / workflow Jaya, GA, ACO, Honey bee Jaya 

Gabi et al. (2017) OTB-CSO, PSO-LDIW, 
HPSO-AS 

makespan Min-Max OTB-CSO 

Du et al. (2019) CSO-FA makespan – CSO-FA 

Gabi et al. (2019) CSO-LDIW makespan – CSO-LDIW 

Irman et al. (2019) PSO makespan Proposed algorithm, CDS Proposed algorithm 

Zarrouk and Jemai (2018) PSO-JMS, PSO-OMS makespan – PSO-OMS 

Freire et al. (2020) PSO-based makespan / workflow – – 

Lima et al. (2019) CSO-based makespan / workflow – – 

Our proposal PSO e CSO makespan / workflow Original algorithms CSO 

 
Junaid et al. (2020) seek to maintain accuracy in load 
balancing in cloud computing, with large volumes of data 
through the use of meta-heuristics. They propose a new 
hybrid model that classifies an amount of files present in the 
cloud through file type formatting. The classification is 
carried out with Support Vector Machine (SVM). This new 
model is further fed into a meta-heuristics algorithm called 
Ant Colony Optimisation (ACO). In addition, a comparative 
analysis was performed with recent meta-heuristics such as 
Ant Colony Optimisation-Particle Swarm Optimisation 
(ACOPS), Chaotic Particle Swarm Optimisation (CPSO), Q-
learning Modified Particle Swarm Optimisation (QMPSO), 
Cat Swarm Optimisation (CSO) and D-ACOELB. The 
proposed algorithm surpasses them and offers good 
performance with scalability and robustness. 

Natesha et al. (2018) proposed to manage the cloud 
datacentre heavy load by using a multi-objective technique 
for task scheduling they call Gray Wolf Optimisation (GWO). 
The main objective is to achieve optimal utilisation of cloud 
resources, as to reduce the power consumption of the 
datacentre and the scheduler’s total makespan to the provided 
to-do list, while providing the services requested by the users. 
The comparison is performed with First-Come-First-Serve 
(FCFS) and Modified Throttle (MT) non-meta-heuristic 
algorithms, and meta-heuristic algorithms (Genetic Algorithm 
(GA), PSO and CSO). Experimental results demonstrate that 
the proposed GWO-based scheduler outperforms all 
algorithms considered for performance evaluation in terms of 
makespan for the task list, resource utilisation and energy 
consumption. 

Also to solve the task scheduling problem in a cloud 
environment, Jing et al. (2018) proposed an optimisation of 
the Invasive Tumor Growth Optimisation (ITGO) meta-
heuristic, which was called Discrete Invasive Tumor Growth 
Optimisation (D-ITGO). The main strategy is to make a 
match between cloud tasks and virtual machines, then map 
that type of match to the coordinates of a tumour cell, to 
finally solve the problem by improving some search strategies 
from the original ITGO. In the experiment, we used the 
CloudSim toolkit for testing, and the non-parametric test 
(Wilcoxon Test) to assess effectiveness. Experimental results 
and analysis showed that the new algorithm has better results 
than GA, PSO, Artificial Colony Algorithm (ABC), Cuckoo 
Search Algorithm (Cuckoo), Bat Search Algorithm (BA)  
and CSO. 

Abdullahi et al. (2017) focused on the task scheduling 
problem by using a new algorithm to minimise makespan and 
cost they call Chaotic Symbiotic Organisms Search (CSOS). 
The main idea is to avoid premature convergence of the 
Symbiotic Organisms Search (SOS) algorithm in the early 
stages of the optimisation process by implementing a chaotic 
map, which expands the search space and provides diversity. 
The performance of the proposed CSOS algorithm is 
evaluated by extensive simulation through the CloudSim 
toolkit simulation framework, and by comparing with SOS 
and PSO. The simulation results reveal a significant 
performance improvement of the proposed CSOS in reducing 
costs and makespan in scheduling tasks. 

Still on the task scheduling issue in cloud computing 
environments, Maurya and Tripathi (2018) reported this issue 



 Experimental study for makespan reduction 23 

for Bag-of-Task (BoT) applications. Applications can have 
numerous tasks, which can increase execution costs if the 
scheduling is improperly done. This problem was solved 
using scheduling algorithms, and the authors tested two 
heuristic algorithms and two meta-heuristic algorithms. The 
heuristic algorithms were IaaS Cloud Partial Critical Path 
(IC-PCP) and Scaling Consolidation Scheduling (SCS) and 
the meta-heuristic algorithms were PSO and CSO. All the 
mentioned algorithms tried to minimise the manufacturing 
cost (already mentioned by the authors as a problem) and yet, 
to meet the observed time restrictions. Three BoT categories 
were used, so that it was possible to compare algorithms by 
their performance. Finally, the result of the performed 
experiments was that the CSO algorithm has a better 
performance than the others. 

Gupta et al. (2018) reported that task scheduling is a very 
important aspect when it comes to cloud computing. Thus, 
their objective was to minimise cost and execution time to 
achieve an optimised cost mapping based on an algorithm. 
For doing so, they learned that several algorithms could be 
executed to schedule tasks in cloud computing, based on 
intelligent swarms. The authors chose PSO and CSO. A 
merged CSO (MCSO) was proposed, where combinations of 
merits from both CSO and PSO were presented with the aim 
of achieving better results. The MCSO algorithm was 
implemented in the CloudSim simulator and the experiment 
obtained good results, concluding that the MCSO algorithm 
has a better performance compared to the PSO and CSO 
algorithms in terms of execution time and convergence. 

To solve the Flexible Job Scheduling Problem (FJSP) 
more effectively, Xu et al. (2017) proposed an algorithm 
called Improved Chicken Swarm Optimisation (ICSO) to 
minimise the makespan of the machine. The algorithm 
combined the advantages of the simulated annealing 
algorithm and the dynamic inertia cosine weighting strategy, 
which achieved an effective balance of global search and 
local exploration. It was performed a comparison between 
PSO and the Chicken Swarm Optimisation (CSO), and the 
effectiveness and superiority of the ICSO was validated. In 
this same context, Semlali et al. (2018) presented an 
adaptation of a meta-heuristic algorithm, which they called 
Chicken Swarm Optimisation with Simulated Annealing 
(CSOSA) to solve the workshop scheduling problem. The 
aim of the authors was to optimise production involving this 
new algorithm. The performance of the proposed algorithm 
was improved from a hybridisation of the CSO algorithm 
with the SA algorithm. The empirical results were obtained 
through the application of the new algorithm with instances 
of the OR Library. The computational results concluded the 
effectiveness of CSOSA in terms of solution quality and 
execution time compared to other meta-heuristics in the 
literature. 

Scientific workflows handling large volumes of data need 
to be run in scalable distributed environments, such as cloud 
infrastructure services. Bousselmi et al. (2020) formulated a 
big data scientific workflow scheduling problem as a bi-
objective optimisation problem that aimed to minimise 
makespan and cost of the workflow. The problem was solved 

by using a Bi-Objective Cat Swarm Optimisation (BiO-CSO) 
algorithm, which is an extension of the bio-inspired CSO 
algorithm. The performance of the proposed method was 
compared to that of the multi-objective PSO. Experimental 
results showed that BiO-CSO had a better performance than 
the multi-objective PSO, as it provided more and better final 
scaling solutions. Also in the context of workflow scheduling, 
Gupta et al. (2019) implement a Jaya optimisation algorithm 
to solve this problem in the context of cloud computing. The 
efficiency of the algorithm was compared with four nature-
inspired algorithms, which are PSO, GA, Ant Colony 
Optimisation (ACO), honey bee and Cat Swarm Optimisation 
(CSO), keeping the same function for all of them by using 
CloudSim. The results were compared based on the execution 
cost and makespan of the algorithm on an independent set of 
tasks and on a set of tasks that follow a workflow schedule. It 
was observed that Jaya outperforms the other algorithms as it 
produces similar results in the shortest possible time, once it 
converges very quickly. 

Gabi et al. (2017) proposed an algorithm called 
Orthogonal Taguchi Based Cat Swarm Optimisation (OTB-
CSO) to minimise the total task execution time in a cloud 
computing datacentre. In the algorithm, the Taguchi 
orthogonal approach was incorporated into the CSO 
algorithm tracking mode for better task mapping in VMs, and 
minimal execution time. The algorithm was implemented in 
the CloudSim tool, and evaluated based on the makespan 
metric. Comparisons were made with Job First Minimum and 
Maximum (Min-Max), Particle Swarm Optimisation Linear 
Descender Inertia Weight (PSO-LDIW) and Hybrid Particle 
Swarm Optimisation Simulated Annealing (HPSO-SA). The 
results obtained showed that OTB-CSO is effective in 
optimising task scheduling and improving overall cloud 
computing performance. with better system utilisation. 

Du et al. (2019) make an attempt to minimise both 
makespan and cost, and to balance the load rate of scheduling 
processes for manufacturing resources in clouds. The authors 
created a multi-objective programming model in order to 
achieve the aforementioned goals. Then, CSO and Firefly 
Algorithm (FA) were combined into a single hybrid multi-
objective programming algorithm to be verified through a 
CloudSim simulation. As a result of this simulation, they 
obtained an algorithm that generates an ideal programming 
plan in a short time. Thus, they also learned that the 
application of swarm intelligence algorithms in scheduling 
problems is promising. Gabi et al. (2019) worked in a similar 
vein, as they sought to minimise production time for the 
efficient scheduling of tasks in a cloud datacentre. To that 
end, they introduced a conventional CSO based task 
scheduling technique, by incorporating a Linear Descending 
Inertia Weight (LDIW) equation in the CSO local search. 
This incorporation led to better convergence speed and 
decreased execution time. This experiment was implemented 
by the CloudSim simulator with five heterogeneous virtual 
machines, thus finding an ideal solution to the problem. 

Irman et al. (2019) propose an algorithm to reduce 
makespan in the production time of an industry in Indonesia. 
The authors compared the efficiency of their algorithm in 



24 M.S. Brigo et al.  

solving the problem also applying the Camppbell Dudek 
Smith (CDS) and PSO heuristic methods. In this work they 
demonstrate that when using CDS, makespan was the highest; 
when using PSO, it had medium performance; and with the 
algorithm proposed in the article, they obtained the smallest 
makespan. The work of Zarrouk and Jemai (2018) is intended 
to minimise production and total workload. To do so, the 
performance of two PSO variants with different particle 
representations were evaluated and compared: the PSO with 
the Job-Manchine Scheme coding (PSO-JMS), and the PSO 
with the Only-Manchine Scheme coding (PSO-OMS). As a 
result, PSO-OMS offered the best performance. 

Freire et al. (2020) implemented in an ad-hoc way a PSO-
based meta-heuristic for the EAI area. Likewise, Lima et al. 
(2019) also implemented in an ad-hoc way a meta-heuristic 
based on CSO. Both sought to find the best distribution with 
the optimal number of threads for local pools, but different 
from our proposal, each of them has targeted a single 
heuristic. Although they have addressed the problem of 
distributing threads, their implementation was developed by 
different person, which can introduce differences in the 
implementation depending on the skills of that person. 
Furthermore, the experiments carried out by both authors 
follow a different protocol, did not execute a large number of 
repetitions (which is important in this kind of study) and their 
algorithm implementations changed the velocity and 
discarded some variables and constants found in the original 
implementation of PSO and CSO, which can compromise the 
performance. We take the original algorithm implementation 
proposed by Eberhart and Kennedy (1995) and Chu et al. 
(2006), for PSO and CSO, respectively, and used the same 
protocol for conducting the experiments with both PSO and 
CSO, so that resulting data can be fairly compared. 

4 Problem formulation 

The workflow of an integration process can be compared to a 
Directed Acyclic Graph (DAG). This graph is represented by 

 = ,DAG Z H , where Z  is the set of n  tasks and H  are 

the edges that represent the dependency relationship between 
tasks, that is, tasks depend on each other and relate to each 
other. We assume that a set of resources used for processing 
is represented by r  and its storage is indicated by Dr , and 
all these resources are located in different P  places. In a 
DAG there are nodes connected by edges. In our context, 
nodes are tasks, edges are communication channels that 
desynchronise tasks and workunits are concrete occurrences 
of tasks executed by threads. Threads are available in local 
pools. A path is a sequential set of tasks in a workflow, and 
the longest path in the integration process is called a critical 
path. In each node there is an associated processing time, and 
in the nodes there is a set of workunits that allow a parallel 
execution of the node. 

The objective is to find the perfect number of resources r  
for each node, so that the processing time may be as short as 
possible. We consider that the resources used are nTr  threads 

to be distributed in each of the local pools referring to the n  

tasks minimising makespan. We consider that there is a 
restriction that limits the total number of threads (which in the 
DAG is Dr  and we call it )threadsRestriction , and that it is 

necessary to have at least one thread for the task to be 
executed, as shown in equation (1). The processing time of a 

message  iTTp  is the sum of the execution time  ( , )n iT  and 

the waiting time in the workqueue  ( , )n iTm , as shown in 

equation (2). Thus, the ( )iTTp  of a message throughout the 

workflow of tT  tasks combined with the threads used ( nTr ) 

can be simplified by the sum of the ( , )n iT , and the sum ( , )n iTm  

between a set of tasks that are dependent on each other. 

1 <nTr Dr  (1) 

( ) ( , )=i n i mTTp T T   (2) 

The makespan is the average processing time of a message, 
which is obtained by adding the ( )iTTp  of all messages, 

divided by the total number of messages  k  (Bilgaiyan  

et al., 2014). As we want the processing time to be as little as 
possible, the objective function is: 

Minimise makespan of message processing through the 
critical path of an integration process, by finding the best 
distribution of local pools of thread, and by using a 
predefined number of threads to be distributed for all local 
pools.  

Makespan calculation can be described by equation (3): 

 ( )
1=

k

iTTp
Makespan

k


 (3) 

The ObjectiveFunction  can be represented by equation (4), 

where threadsSum  stands for the sum of threads present in the 

pools in a distribution, while threadsRestriction  represents the 

restriction on the number of threads that can be distributed. 
Therefore, Sumthreads must be lower or equal to 
Restrictionthreads (Freire et al., 2020). 

= ( )Objective Function Minimise Makespan  (4) 

Subject to restriction:  

threads threadsSum Restriction  

5 Experiment 

We used the objective function proposed in a meta-heuristic, 
which is a technique to seek optimisation. It is based on a 
population, in which the objective function is tested for 
individuals in this initial population and operations are carried 
out to improve the convergence of the result, in order to 
minimise it. Initially, it is generated a population with 
possible thread distributions for local pools, which is the 
initial population. Then, the average time for processing 
messages on the workflow is calculated, the makespan for 



 Experimental study for makespan reduction 25 

each distribution. Whenever the current makespan is lower 
than the previous one, the minimum makespan is updated 
along with its distribution. At the end, the best setting is 
found, the one that has the lowest makespan of all repetitions. 

We fitted the PSO and CSO original algorithms (Slowik, 
2020) to the context of our object of study. For doing so, two 
functions proposed by Freire et al. (2020) were used: the 
function called Population Generation and the one called 
Makespan Calculation. The former performs the generation 
of populations of distributions from thread pools, while the 
latter performs the calculation of the corresponding makespan 
to each population generated, and then optimised by the 
algorithm. Source codes from Matlab algorithms are available 
for download 

The experimentation protocol applied to conduct this 
experimental study is based on the work of Jedlitschka and 
Pfahl (2005), Perry et al. (2000) and Wohlin et al. (2012). It 
must follow some procedures, like the presentation of the 
research question, the presentation of the hypothesis, the 
experimentation environment, variables, the object of study, 
execution and data collection, results and discussion and 
threats to validity. 

5.1 Research question 

The Research Question (RQ) we want to answer is: 

RQ: Which of the techniques (PSO/CSO) meets the best 
distribution of threads with the optimal number of threads in 
the local pools of the run-time system, also minimising 
makespan? 

As a hypothesis, we expect that Cat Swarm Optimisation 
meets the best makespan, as there are authors who have 
implemented CSO and compared it with some techniques, 
including PSO and concluded that CSO was more efficient. 
Since our distribution problem is similar to that of the 
aforementioned authors, we believe that such hypothesis can 
be confirmed. 

5.2 Experimentation environment 

The experiments were carried out on a machine equipped with 
32 processors Intel Xeon CPUs E5-4610 1.80 GHz CPU, 32 
GB RAM and Microsoft Windows 10 64-bit operating system. 
Matlab (Leonard and Levine, 1995) software version R2018 
was used to implement the algorithms. 

5.3 Variables 

The independent variables we considered in our experiments 
were: 

 Number of solutions: the population of initial thread 
pool distribution. The value of this variable was 25 
solutions.  

 Number of threads: the total number of threads 
distributed in local pools. The value of this variable was 
divided into four: 25, 50, 75 and 100 threads.  

 Number of messages: the workload of the integration 
process, where the value tested was 1,000,000 
messages.  

 Algorithms: PSO algorithm or CSO algorithm.  

The dependent variable was: 

 Makespan: the average processing time a message takes 
to be processed by all tasks part of the critical path of 
the integration process.  

5.4 Object of study 

The object of study adopted is the integration process called 
order processing, proposed by Hohpe and Woolf (2003) and 
showed in Figure 3. The integration process has five 
applications: Ordering System, Widget Inventory, Gadget 
Inventory, Invalid Items Log and Inventory System. The 
Ordering System represents the order application which 
delivers data from new orders to the integration process. An 
order data composes a message that flows through the on-
boarding process. Each message with a new order is divided 
into separate messages by the workflow of tasks, containing 
only one item. The message destination is either for the 
Widget Inventory application or for the Gadget Inventory 
application, depending on what is in its content. Messages 
with items not belonging to any of these inventories are 
routed to the Invalid Items Log. The Inventory System 
application represents the final destination application, which 
responds by recording the availability of the items. 

As an integration process can be represented by a DAG, 
the integration process used as the object of study is 
represented by the DAG in Figure 4. We emphasise that 
ports are internally implemented by the integration process 
as tasks that represent a specific type of adaptor for 
communication with the applications and that, therefore, 
they are also modelled as nodes in the graph. 

This integration process has distinct paths for the 
messages. They are represented in the DAG from Figure 4. 
The critical path is called this way because it has more time-
consuming task execution times. Table 2 shows the 
processing times of each task in the critical path in 
millisecond, taken from the work of Haugg et al. (2019). 

5.5 Execution and data collection 

The execution experimentation of this process was carried out 
in the described experimentation environment with Matlab 
software, by using the critical path with a processing of 
1,000,000 messages. With such message arrival rate, we 
aimed to evaluate how the system behaves when exposed to a 
large volume of data, something increasingly common now. 
Algorithms perform 100 iterations, and at the end the best 
result found is selected as answer. A function was created to 
carry out each experiment 25 times, thus creating 25 different 
distributions in the local thread pools, with one pool per task. 
11 pools were found in the definition of the critical path. 

 



26 M.S. Brigo et al.  

Figure 3 Conceptual model of the integration process 

 

Figure 4 Integration process represented as a Directed Acyclic Graph 

 

Table 2 Time of critical path tasks in milliseconds 

Task startT  1T  2T  3T  4T  1xT  5T  6T  7T  8T  1endT  

Time (ms) 2.005 2.005 3.005 3.005 2.005 2.005 4.553 2.005 4.553 2.005 2.005 

 
Four different scenarios were used, with the combination of 
the following independent variables: the number of 
solutions, the number of threads, the number of messages, 
and the number of algorithms (25 4 1 2)   , therefore 

resulting in 200 executions. Four different options for the 
number of maximum threads to be employed were used in 
the execution of each of the algorithms, totalling 25, 50, 75 
and 100 threads. The choice for these values came from the 
empirical knowledge of software engineers, and it is usually 
four arbitrary amounts of threads. As integration processes 
that use more than 100 threads are not commonly found, for 
comparison purposes, we divided into four values that had 
the same thread difference among them. The simulation for 
each option per number of threads of each algorithm 
resulted in 25 distributions, and each one of them generated 
a corresponding makespan. Each distribution, makespan and 
averages were generated through Matlab software and 
tabulated for analysis. 

5.6 Results and discussion 

The results of the experiments were obtained with the 
execution of the PSO algorithm and the execution of the CSO 
algorithm. For a better composition of the analysis and 
comparison purposes, four different scenarios were chosen: 
25, 50, 75 and 100 threads. An algorithm was created, which 
performed 25 repetitions of the same experiment for each 
scenario chosen without the need for user intervention. Each 
iteration yielded a result that presented a vector of thread pool 
distributions and a corresponding makespan. Originally, 
makespan was taken in milliseconds and later converted to 
seconds. 

We will report the results found for the PSO algorithm 
and for the four predicted scenarios, which is explained  
in Table 3. The table beholds results for the four different 
numbers of threads used. On the first part of the table,  
25 threads; on the second one, 50; on the third part,  
75 threads; and on the fourth one, 100 threads. The  
 



 Experimental study for makespan reduction 27 

information reported below follows this organisation of the 
tables. For 25 threads, the algorithm found 758.86 s as the 
lowest makespan, which was shown in repetition 10. The 
largest makespan, 2276.53 s, was demonstrated in repetitions 
3, 20 and 21. For 50 threads, the algorithm found 334.20 s as 
the lowest makespan with repetition settings 4, 12 and 22 and 
the largest makespan was 1002.53 s with 13 settings – i.e., 

repetitions 1, 2 and 5. For 75 threads, the algorithm found the 
lowest makespan 227.68 s in repetitions 2 and 8 and the 
largest makespan was 1002.53 s with repetition settings 5, 11, 
21 and 24. Finally, with 100 threads, the algorithm found the 
lowest makespan 187.84 s with the distributions of repetitions 
1 and 5 and the largest makespan was 1002.53 s in repetitions 
14, 19 and 22. 

Table 3 Thread distributions found and the makespan for PSO experiments 

 25 THREADS  50 THREADS  

Repetition Threads in each pool Makespan* Threads in each pool Makespan*

1 [03; 03; 03; 02; 03; 02; 03; 01; 03; 01; 01] 1002.53 [02; 01; 03; 05; 05; 09; 02; 06; 03; 03; 01] 1002.53 

2 [02; 03; 03; 02; 03; 02; 03; 02; 03; 01; 01] 1002.53 [04; 02; 04; 08; 05; 06; 13; 03; 03; 01; 01] 1002.53 

3 [07; 05; 04; 01; 01; 01; 02; 01; 01; 01; 01] 2276.53 [03; 04; 06; 07; 03; 03; 08; 04; 06; 03; 03] 379.44 

4 [02; 02; 03; 02; 02; 02; 03; 02; 04; 01; 01] 1002.53 [04; 03; 05; 05; 04; 03; 07; 03; 07; 05; 04] 334.20 

5 [04; 03; 03; 04; 01; 01; 03; 01; 03; 01; 01] 1002.53 [07; 09; 04; 03; 05; 09; 03; 03; 05; 01; 01] 1002.53 

6 [03; 02; 02; 03; 02; 02; 03; 03; 03; 01; 01] 1002.53 [14; 04; 02; 02; 10; 05; 04; 04; 03; 01; 01] 1002.53 

7 [03; 02; 02; 02; 02; 03; 04; 02; 03; 01; 01] 1002.53 [09; 12; 02; 02; 07; 04; 05; 03; 04; 01; 01] 1002.53 

8 [02; 02; 03; 02; 02; 03; 03; 02; 03; 01; 01] 1002.53 [05; 05; 04; 04; 04; 03; 06; 05; 06; 05; 03] 379.45 

9 [02; 02; 03; 02; 02; 03; 03; 03; 03; 01; 01] 1002.53 [02; 05; 14; 08; 04; 05; 04; 02; 04; 01; 01] 1002.53 

10 [02; 02; 03; 02; 02; 02; 03; 02; 03; 02; 02] 758.86 [05; 03; 06; 04; 04; 05; 07; 03; 07; 03; 03] 375.65 

11 [03; 02; 04; 02; 02; 02; 03; 02; 03; 01; 01] 1002.53 [06; 04; 06; 06; 04; 03; 06; 03; 06; 03; 03] 379.44 

12 [03; 02; 02; 02; 02; 03; 04; 02; 03; 01; 01] 1002.53 [03; 03; 05; 05; 03; 03; 08; 05; 08; 03; 03] 334.20 

13 [03; 02; 02; 02; 02; 02; 03; 04; 03; 01; 01] 1002.53 [04; 04; 04; 02; 03; 02; 06; 08; 03; 01; 01] 1002.53 

14 [02; 02; 03; 03; 02; 02; 04; 02; 03; 01; 01] 1002.53 [08; 03; 10; 04; 09; 03; 03; 02; 06; 01; 01] 1002.53 

15 [02; 02; 02; 02; 02; 03; 03; 02; 03; 01; 01] 1002.53 [03; 05; 07; 05; 04; 04; 06; 03; 06; 03; 04] 379.44 

16 [02; 02; 02; 04; 02; 02; 03; 02; 04; 01; 01] 1002.53 [03; 03; 09; 03; 06; 05; 03; 05; 03; 01; 01] 1002.53 

17 [03; 02; 02; 03; 02; 02; 04; 01; 04; 01; 01] 1002.53 [03; 03; 06; 04; 04; 04; 06; 06; 06; 03; 05] 379.45 

18 [03; 03; 02; 02; 02; 02; 03; 03; 03; 01; 01] 1002.53 [04; 03; 05; 06; 03; 04; 06; 05; 06; 05; 03] 379.44 

19 [03; 02; 03; 02; 02; 03; 03; 02; 03; 01; 01] 1002.53 [05; 08; 12; 03; 02; 03; 10; 03; 01; 01; 01] 1002.53 

20 [04; 04; 01; 04; 01; 03; 04; 01; 01; 01; 01] 2276.53 [03; 03; 05; 05; 05; 04; 05; 03; 07; 03; 07] 455.33 

21 [11; 03; 01; 02; 01; 01; 02; 01; 01; 01; 01] 2276.53 [07; 02; 07; 03; 04; 11; 06; 05; 03; 01; 01] 1002.53 

22 [02; 02; 03; 03; 02; 03; 03; 02; 03; 01; 01] 1002.53 [04; 06; 05; 05; 03; 04; 07; 03; 07; 03; 03] 334.20 

23 [03; 02; 02; 02; 02; 04; 03; 02; 03; 01; 01] 1002.53 [09; 04; 07; 07; 02; 02; 07; 05; 05; 01; 01] 1002.53 

24 [02; 03; 02; 03; 03; 02; 03; 01; 04; 01; 01] 1002.53 [09; 04; 02; 11; 03; 03; 03; 10; 03; 01; 01] 1002.53 

25 [02; 03; 02; 03; 02; 03; 03; 02; 03; 01; 01] 1002.53 [03; 03; 05; 05; 03; 03; 06; 05; 06; 06; 05] 379.44 

 75 THREADS  100 THREADS  

1 [04; 10; 06; 08; 06; 09; 10; 04; 10; 04; 04] 250.65 [07; 14; 08; 08; 07; 08; 14; 08; 13; 06; 07] 187.84 

2 [06; 05; 07; 08; 07; 05; 10; 07; 10; 05; 05] 227.68 [11; 05; 14; 10; 10; 05; 14; 05; 13; 06; 07] 200.53 

3 [06; 10; 09; 06; 05; 07; 09; 05; 10; 04; 04] 252.97 [06; 09; 08; 09; 10; 06; 12; 13; 14; 07; 06] 189.74 

4 [07; 04; 08; 08; 06; 06; 10; 06; 11; 05; 04] 250.65 [06; 07; 12; 09; 07; 10; 13; 08; 13; 08; 07] 175.14 

5 [20; 05; 06; 26; 03; 05; 03; 02; 03; 01; 01] 1002.53 [07; 10; 10; 08; 06; 08; 13; 06; 13; 10; 09] 187.84 

6 [11; 04; 06; 07; 05; 04; 10; 06; 11; 04; 07] 250.65 [14; 06; 11; 09; 05; 05; 13; 08; 13; 09; 07] 200.53 

7 [04; 08; 08; 08; 05; 04; 11; 04; 09; 06; 08] 252.97 [07; 05; 11; 11; 05; 08; 14; 09; 15; 06; 09] 200.53 

8 [07; 05; 07; 08; 06; 07; 10; 05; 10; 05; 05] 227.68 [07; 06; 08; 08; 06; 09; 12; 13; 12; 07; 12] 189.74 

9 [04; 04; 10; 09; 04; 07; 11; 04; 10; 04; 08] 250.65 [05; 09; 13; 08; 07; 07; 13; 05; 13; 15; 05] 200.53 

10 [05; 06; 06; 06; 06; 05; 10; 06; 13; 06; 06] 250.45 [08; 05; 11; 10; 10; 06; 15; 07; 13; 09; 06] 200.53 

11 [03; 05; 02; 07; 13; 14; 05; 18; 06; 01; 01] 1002.53 [05; 05; 11; 09; 11; 06; 19; 09; 15; 05; 05] 200.53 

12 [04; 05; 08; 09; 05; 06; 10; 04; 10; 08; 06] 250.65 [12; 05; 09; 11; 09; 10; 13; 06; 14; 06; 05] 200.53 

13 [05; 05; 09; 07; 05; 06; 11; 04; 14; 04; 05] 250.65 [05; 07; 15; 09; 05; 10; 14; 05; 15; 05; 10] 200.53 



28 M.S. Brigo et al.  

Table 3 Thread distributions found and the makespan for PSO experiments (continued) 

 25 THREADS  50 THREADS  

Repetition Threads in each pool Makespan* Threads in each pool Makespan*

14 [05; 04; 14; 10; 07; 04; 09; 04; 10; 04; 04] 252.97 [19; 12; 13; 08; 08; 14; 03; 17; 04; 01; 01] 1002.53 

15 [08; 05; 08; 07; 05; 05; 10; 06; 09; 06; 06] 252.97 [10; 05; 09; 09; 09; 07; 14; 05; 13; 12; 07] 200.53 

16 [04; 09; 06; 07; 05; 04; 10; 05; 11; 09; 05] 250.65 [07; 13; 08; 14; 06; 06; 14; 06; 12; 07; 07] 189.74 

17 [09; 05; 07; 06; 04; 04; 12; 06; 12; 06; 04] 250.65 [05; 06; 11; 10; 07; 05; 16; 06; 14; 07; 13] 200.53 

18 [05; 05; 06; 11; 04; 04; 11; 05; 11; 08; 05] 250.65 [05; 13; 09; 09; 06; 08; 15; 09; 14; 06; 06] 200.53 

19 [04; 06; 08; 06; 08; 04; 10; 05; 11; 04; 09] 250.65 [10; 14; 06; 12; 17; 05; 09; 19; 06; 01; 01] 1002.53 

20 [04; 04; 11; 09; 06; 05; 14; 04; 10; 05; 05] 250.65 [05; 05; 10; 08; 05; 09; 15; 05; 13; 06; 19] 200.53 

21 [26; 07; 04; 05; 03; 11; 08; 05; 04; 01; 01] 1002.53 [07; 06; 11; 11; 09; 08; 12; 06; 11; 12; 07] 206.98 

22 [07; 04; 10; 08; 04; 07; 11; 04; 10; 05; 05] 250.65 [14; 27; 14; 19; 08; 03; 05; 02; 06; 01; 01] 1002.53 

23 [06; 04; 07; 10; 04; 05; 12; 06; 11; 06; 04] 250.65 [05; 13; 10; 11; 06; 06; 13; 08; 14; 06; 08] 200.53 

24 [03; 22; 07; 08; 19; 02; 04; 04; 04; 01; 01] 1002.53 [06; 12; 10; 12; 08; 08; 12; 10; 12; 05; 05] 200.53 

25 [05; 08; 08; 07; 05; 04; 12; 05; 11; 04; 06] 250.65 [10; 07; 15; 09; 07; 09; 14; 05; 13; 05; 06] 200.53 

Note: * time in seconds. 

The results found by CSO were also collected from the four 
scenarios, as explained in Table 4. The table contemplates 
results for the four different numbers of threads used. On the 
first part of the table, 25 threads; on the second one, 50; on 
the third part, 75 threads; and on the fourth one, 100 threads. 
The information reported below follows this organisation of 
the tables. For 25 threads, the algorithm found the lowest 
makespan to be 1002.53 s in twenty-two distributions. Since 
the probability for such a value is very large, the results led to 
this number. Some of the settings for this makespan were 
repetitions 1, 3 and 4. For this same number of threads, the 

largest makespan found was 2276.53 s with the repetition 
settings 2, 5 and 10. For 50 threads, the lowest makespan found 
was 334.20 s with the 12th repetition setting, while the largest 
makespan was 1002.53 s for ten different distributions, some of 
them being repetitions 1, 2 and 10. For 75 threads, the 
algorithm found the lowest makespan 250.65 s in eight 
distributions, the same as in repetitions 1, 4 and 7 and the 
largest makespan 1002.53 s was from repetitions 2, 12 and 15. 
Finally, with 100 threads we found the lowest makespan 
189.74 s with the distributions of repetitions 21 and 25, and the 
largest makespan 1002.53 s was found in repetition 24. 

Table 4 Thread distributions found and makespan for CSO experiments 

 25 THREADS  50 THREADS  

Repetition Threads in each pool Makespan* Threads in each pool Makespan* 

1 [02; 02; 02; 02; 02; 03; 05; 02; 03; 01; 01] 1002.53 [08; 07; 06; 05; 08; 02; 03; 02; 05; 01; 01] 1002.53 

2 [02; 11; 02; 02; 01; 01; 02; 01; 01; 01; 01] 227.65 [07; 09; 06; 03; 04; 04; 06; 05; 04; 01; 01] 1002.53 

3 [03; 03; 02; 03; 02; 02; 03; 02; 03; 01; 01] 1002.53 [05; 04; 05; 04; 04; 05; 05; 04; 05; 04; 04] 455.33 

4 [02; 02; 02; 03; 03; 02; 04; 01; 04; 01; 01] 1002.53 [04; 04; 05; 05; 06; 03; 05; 03; 05; 06; 04] 455.33 

5 [05; 09; 02; 01; 01; 01; 02; 01; 01; 01; 01] 227.65 [03; 05; 04; 04; 03; 05; 06; 06; 06; 04; 04] 379.45 

6 [02; 02; 02; 02; 02; 04; 03; 02; 04; 01; 01] 1002.53 [03; 04; 03; 07; 03; 05; 06; 03; 07; 05; 04] 500.86 

7 [03; 02; 02; 02; 02; 02; 03; 03; 04; 01; 01] 1002.53 [06; 03; 04; 04; 03; 04; 06; 04; 05; 04; 03] 455.33 

8 [03; 02; 04; 02; 02; 02; 03; 02; 03; 01; 01] 1002.53 [06; 03; 04; 04; 03; 04; 06; 04; 05; 04; 03] 455.33 

9 [02; 02; 02; 02; 03; 02; 04; 02; 04; 01; 01] 1002.53 [03; 04; 04; 04; 05; 04; 06; 04; 07; 04; 05] 379.45 

10 [03; 01; 03; 08; 03; 01; 02; 01; 01; 01; 01] 227.65 [06; 04; 04; 07; 04; 05; 09; 05; 03; 01; 02] 1002.53 

11 [04; 01; 03; 04; 01; 01; 04; 01; 04; 01; 01] 1002.53 [03; 09; 06; 06; 07; 03; 06; 02; 03; 01; 04] 1002.53 

12 [02; 03; 02; 04; 02; 02; 03; 02; 03; 01; 01] 1002.53 [03; 03; 05; 08; 03; 03; 07; 04; 07; 04; 03] 334.20 

13 [02; 02; 02; 04; 02; 02; 03; 02; 03; 01; 01] 1002.53 [03; 05; 06; 03; 04; 05; 07; 05; 06; 03; 03] 500.86 

14 [03; 02; 02; 03; 04; 02; 03; 01; 03; 01; 01] 1002.53 [05; 02; 05; 10; 11; 04; 03; 05; 03; 01; 01] 1002.53 

15 [02; 03; 02; 02; 03; 02; 03; 03; 03; 01; 01] 1002.53 [05; 02; 04; 10; 04; 02; 04; 14; 03; 01; 01] 1002.53 

16 [03; 02; 03; 02; 02; 03; 03; 02; 03; 01; 01] 1002.53 [03; 04; 08; 04; 04; 05; 05; 03; 06; 05; 03] 455.33 

17 [02; 03; 04; 02; 02; 02; 04; 01; 03; 01; 01] 1002.53 [09; 05; 06; 08; 02; 04; 03; 06; 05; 01; 01] 1002.53 

18 [03; 02; 03; 03; 02; 02; 03; 02; 03; 01; 01] 1002.53 [06; 03; 05; 04; 03; 06; 06; 04; 06; 03; 03] 379.45 



 Experimental study for makespan reduction 29 

Table 4 Thread distributions found and makespan for CSO experiments (continued) 

 25 THREADS  50 THREADS  

Repetition Threads in each pool Makespan* Threads in each pool Makespan* 

19 [02; 02; 03; 03; 02; 02; 03; 02; 03; 01; 01] 1002.53 [10; 03; 07; 14; 02; 02; 05; 02; 03; 01; 01] 1002.53 

20 [03; 03; 02; 03; 02; 02; 03; 02; 03; 01; 01] 1002.53 [03; 05; 07; 04; 03; 03; 06; 05; 07; 04; 04] 379.45 

21 [02; 02; 03; 03; 02; 02; 03; 01; 03; 01; 01] 1002.53 [02; 04; 06; 04; 05; 07; 08; 04; 08; 01; 01] 1002.53 

22 [02; 02; 02; 02; 02; 04; 03; 02; 04; 01; 01] 1002.53 [12; 05; 08; 05; 05; 05; 03; 02; 03; 01; 01] 1002.53 

23 [02; 04; 03; 03; 02; 02; 03; 01; 03; 01; 01] 1002.53 [03; 03; 04; 04; 03; 03; 07; 05; 10; 03; 04] 375.65 

24 [02; 02; 04; 02; 03; 02; 03; 02; 03; 01; 01] 1002.53 [03; 03; 05; 04; 03; 07; 09; 04; 06; 03; 03] 379.45 

25 [02; 02; 02; 03; 02; 02; 03; 03; 04; 01; 01] 1002.53 [06; 03; 04; 03; 06; 04; 05; 05; 05; 04; 05] 500.86 

 75 THREADS  100 THREADS  

1 [08; 06; 07; 08; 07; 04; 11; 04; 11; 04; 05] 250.65 [05; 05; 13; 13; 05; 08; 13; 06; 15; 06; 11] 200.53 

2 [25; 03; 09; 04; 06; 04; 04; 02; 03; 03; 01] 1002.53 [08; 10; 10; 17; 05; 06; 12; 05; 11; 10; 06] 206.98 

3 [04; 06; 08; 08; 04; 08; 13; 04; 09; 04; 05] 252.97 [07; 05; 14; 09; 08; 05; 14; 05; 15; 12; 06] 200.53 

4 [04; 04; 06; 11; 04; 06; 10; 07; 13; 04; 06] 250.65 [07; 05; 09; 08; 05; 06; 17; 09; 13; 09; 10] 200.53 

5 [04; 09; 07; 07; 07; 05; 10; 07; 13; 04; 06] 252.97 [05; 06; 12; 10; 12; 05; 14; 06; 15; 10; 05] 200.53 

6 [05; 05; 08; 09; 09; 09; 08; 04; 08; 05; 04] 284.59 [05; 07; 11; 09; 09; 05; 15; 06; 14; 05; 14] 200.53 

7 [04; 04; 08; 06; 05; 09; 10; 04; 10; 04; 10] 250.65 [10; 09; 09; 08; 07; 12; 12; 05; 14; 07; 06] 200.53 

8 [04; 08; 07; 07; 06; 05; 11; 07; 09; 05; 06] 252.97 [06; 08; 09; 10; 07; 05; 15; 08; 15; 09; 07] 200.53 

9 [05; 05; 07; 08; 05; 06; 10; 04; 11; 05; 09] 250.65 [09; 09; 09; 10; 07; 06; 11; 09; 11; 07; 12] 206.98 

10 [05; 05; 09; 10; 05; 07; 09; 06; 08; 04; 07] 284.59 [06; 06; 10; 08; 05; 11; 15; 08; 16; 10; 05] 200.53 

11 [05; 09; 06; 07; 03; 05; 12; 11; 11; 03; 03] 334.19 [05; 08; 14; 09; 06; 05; 11; 09; 11; 14; 08] 206.98 

12 [09; 14; 12; 06; 02; 08; 05; 13; 04; 01; 01] 1002.53 [12; 07; 09; 10; 05; 09; 13; 10; 15; 05; 05] 200.53 

13 [04; 05; 07; 07; 05; 07; 09; 06; 09; 09; 07] 252.97 [07; 11; 14; 11; 05; 07; 13; 07; 13; 07; 05] 200.53 

14 [04; 06; 07; 08; 05; 04; 10; 04; 18; 05; 04] 250.65 [11; 05; 09; 10; 07; 05; 13; 08; 16; 11; 05] 200.53 

15 [20; 11; 06; 03; 14; 02; 04; 10; 03; 01; 01] 1002.53 [05; 08; 09; 10; 07; 11; 13; 05; 14; 12; 06] 200.53 

16 [06; 04; 07; 06; 06; 07; 10; 10; 09; 04; 06] 252.97 [12; 05; 12; 08; 07; 05; 16; 07; 12; 07; 09] 200.53 

17 [05; 05; 09; 06; 05; 09; 09; 05; 10; 06; 06] 252.97 [05; 07; 08; 09; 06; 14; 16; 09; 14; 06; 06] 200.53 

18 [04; 04; 07; 08; 07; 04; 09; 09; 09; 08; 04] 252.97 [08; 07; 12; 09; 08; 09; 13; 05; 13; 07; 09] 200.53 

19 [04; 04; 07; 06; 06; 05; 11; 05; 11; 10; 06] 250.65 [05; 06; 12; 15; 07; 06; 12; 08; 14; 09; 06] 200.53 

20 [05; 05; 06; 10; 05; 06; 10; 05; 10; 07; 06] 250.45 [05; 05; 13; 11; 07; 05; 14; 10; 15; 06; 09] 2002.53 

21 [06; 04; 06; 07; 04; 06; 10; 04; 10; 04; 08] 250.65 [06; 09; 11; 10; 08; 06; 12; 09; 12; 09; 08] 189.74 

22 [04; 04; 09; 07; 10; 06; 11; 05; 09; 05; 05] 252.97 [07; 06; 10; 11; 06; 05; 13; 12; 13; 09; 08] 200.53 

23 [05; 06; 07; 07; 05; 06; 09; 06; 08; 08; 08] 284.59 [05; 15; 13; 10; 06; 05; 16; 05; 15; 05; 05] 200.53 

24 [04; 06; 06; 10; 05; 07; 09; 08; 04; 09; 07] 252.97 [19; 17; 16; 22; 03; 10; 04; 03; 03; 02; 01] 1002.53 

25 [05; 08; 10; 09; 06; 04; 10; 04; 11; 04; 04] 250.65 [08; 11; 08; 11; 08; 11; 12; 07; 12; 06; 06] 189.74 

Note: * time in seconds. 

In both algorithms, the lowest makespan was noticed in 
distributions where threads were better split. That is, in those 
distributions where threads were very concentrated in some 
pools, but were few in others, there was a degradation in 
performance. It is noticed that in all scenario results, PSO 
obtained lower global makespan compared to CSO. So, for 
PSO to reach a global result better than the CSO, it will need 
25 repetitions. In order to compare the performance of each 
of the algorithms, an average of 25 repetitions for each 
scenario was calculated. Aware of this, it is clear that CSO 
presented better average results than PSO, which seems to be 

a contradiction. What we emphasise, though, is that PSO can 
present a better overall result, while CSO presents a better 
average result. In face of that, every time it is necessary to 
change the case study, the number of threads, one of the 
algorithms is used to find the best distribution, and the 
execution is performed only once, it will obtain a better 
average result when using the CSO. Furthermore, if we 
compare the average results of each technique, with the 
increment of threads a greater difference between the 
techniques becomes evident. The graph in Figure 5 shows the 
results obtained. 

 



30 M.S. Brigo et al.  

Figure 5 Evolution of the makespan mean as a function of the increment in the number of threads 

 
 

We need to consider the relationship that exists between the 
times of the tasks and the number of threads with their 
makespan obtained by the distribution. For instance, on tasks 
7 and 9 the processing time was the largest; looking back the 
results of the lowest and largest makespan in each scenario, in 
distributions where makespan was lower, there was a greater 
concentration of threads in those elements, but also, there was 
no lack of threads in the final elements. It means threads were 
well distributed, so that all tasks that needed more threads 
could receive them, but not in excess. An example of this 
finding is repetition 9 of the Table 4, which shows the CSO 
experiment with 50 threads. In the settings where there was 
the largest makespan, pools that needed more threads due to 
time did not receive them. Furthermore, there are few threads 
left for the final tasks, since they are too concentrated on 
pools that do not need them, and in very large numbers. This 
last point can be analysed, for instance, in repetition 5 from 
the PSO experiment on Table 3, with 75 threads. 

There was a drop from the average result with 25 threads 
to the average result with 50 threads, and this drop is lower 
with 75 threads, and even lower than 75 with 100 threads. 
This means that the result tends to be stable up to a number of 
threads and possibly deteriorate the performance due to the 
concurrency between the threads. Another point to be 
highlighted is that with 100 threads we were able to obtain a 
result equal to that when using 25 threads; by this we 
observed that a bad distribution of 100 threads can harm 
performance and not necessarily improve it, resulting in the 
same makespan when only 25 threads are used. Therefore, a 
bad distribution considerably affects makespan, so that the 
best optimisation of resources is necessary. This happens 
because threads are concentrated in pools that are not used for 
the best performance, for being idle. 

5.7 Threat to validity 

The first threat to validity was in the construction. In order to 
reduce problems of this threat with instrumentation and  
noise source, before carrying out the experiment, the 
experimentation protocol was defined: the formulation of the 

research question, the hypothesis, the definition of variables, 
information about the execution environment, support tools, 
execution and data collection. Regarding internal validity 
threats, and in order to minimise interference in the algorithm 
execution time, the entire experiment was performed by the 
same person on the same machine, using minimal resources 
and disconnected from the Internet during executions. 
Regarding external validity threats, it can be said that it was 
mitigated from the studies and analysis carried out on  
works related to our research. Finally, the threat of reliability 
was minimised through the use of a well-explained 
experimentation protocol and applied in the execution of all 
experiments performed, which even made it possible to 
compare data. 

6 Conclusions 

The Enterprise Applications Integration area has become 
essential for supporting companies’ business processes. This 
area facilitates the implementation of integration processes, 
which aim to share data and functionality among applications. 
Ideally, an integration process should occur without 
degrading performance of the run-time system of integration 
platforms. The Task-Based execution model uses threads at 
task level, and execution decisions are made locally by each 
task. The local pool strategy consists of a pool of threads for 
each task that is part of the integration process. The PSO and 
CSO meta-heuristics were analysed and studied to solve the 
problem of computational resources distribution. 

From the proposed experimental study: i) we confirmed 
the hypothesis that CSO would have a better performance, 
since according to comparative results, it has a better average 
result than PSO. In other words, if we run the algorithms 
once, the probability that CSO will have a better result is 
greater; ii) it is also necessary to list that PSO always 
obtained the lowest individual results, in all different 
modification options of the number of threads. This means 
that PSO is able to find the lowest global makespan aspect 
with the same 25 repetitions used by CSO, although it does 



 Experimental study for makespan reduction 31 

not always last – despite finding the lowest result among 50 
results (adding 25 executions of each algorithm), PSO also 
found many unsatisfactory results, which even led it to have a 
lower average; iii) we emphasise that for an urgent need to 
use an integration process, CSO would be more efficient, but 
if there is more preparation time, it would be valid to use an 
analysis between the two algorithms in order to mitigate the 
best use of threads. 

The distribution of threads in the different pools is the 
main point for a lower or larger makespan in the experiment 
results. At this point, the task times – which were not all the 
same – should also be taken into account. In tasks where time 
was longer, whenever more threads were available for those 
threads, but without excess as to have enough threads left 
over for the final tasks, the lowest makespans were registered. 
Everything indicates that the reason for the worst 
distributions, that is, the ones that makespan was the highest 
on experiments, was due to the bad distribution and 
concentration of many threads on tasks that did not need 
them, leaving thus few threads for other tasks. 

The work with heuristics is interesting for this type of 
problem, as it was possible to find the best distributions with 
the optimal number of threads for local pools in an integration 
process based on experiments with both PSO and CSO meta-
heuristics. On the other hand, it is clear that the use of this 
practice on a daily basis is little, as it becomes unfeasible due 
to the effort of time necessary to apply it. At this point, 
heuristics need to move forward, as execution demands high 
costs. As future work, we suggest: i) using other case studies 
to capture possible changes linked specifically to the case 
study; ii) add new meta-heuristics to the comparison scope 
and iii) analyse and enable a reduction in the time that a meta-
heuristic needs to find a satisfactory result for the EAI area. 

Acknowledgements 

This work was supported by the Research Support 
Foundation of the State of Rio Grande do Sul in Brazil 
(FAPERGS), under Grant 17/2551-0001206-2; the 
Coordination for the Brazilian Improvement of Higher 
Education Personnel (CAPES) and the Brazilian National 
Council for Scientific and Technological (CNPq) under Grant 
309315/2020-4. 

References 

AbdelAziz, A.M., Ghany, K.K.A., Soliman, T.H.A. and El-Magd 
Sewisy, A.A. (2020) ‘A parallel multi-objective swarm 
intelligence framework for big data analysis’, International 
Journal of Computer Applications in Technology, Vol. 63,  
No. 3, pp.200–212.  

Abdullahi, M., Ngadi, M.A. and Dishing, S.I. (2017) ‘Chaotic 
symbiotic organisms search for task scheduling optimization on 
cloud computing environment’, Proceedings of the 6th ICT 
International Student Project Conference (ICT-ISPC), IEEE, 
pp.1–4.  

 

Alexander, C. (1977) A Pattern Language: Towns, Buildings, 
Construction, Oxford University Press.  

Alkhanak, E.N., Lee, S.P., Rezaei, R. and Parizi, R.M. (2016)  
‘Cost optimization approaches for scientific workflow 
scheduling in cloud and grid computing: a review, 
classifications, and open issues’, Journal of Systems and 
Software, Vol. 113, pp.1–26.  

Bilgaiyan, S., Sagnika, S. and Das, M. (2014) ‘Workflow scheduling 
in cloud computing environment using cat swarm 
optimization’, Proceedings of the IEEE International Advance 
Computing Conference (IACC), IEEE, pp.680–685.  

Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A. and 
Kennedy, K. (2005) ‘Task scheduling strategies for 
workflowbased applications in grids’, IEEE International 
Symposium on Cluster Computing and the Grid, Vol. 2, 
pp.759–767.  

Boehm, M., Habich, D., Preissler, S., Lehner, W. and Wloka, U. 
(2011) ‘Costbased vectorization of instance-based integration 
processes’, Information Systems, Vol. 36, No. 1, pp.3–29.  

Bousselmi, K., Ben Hamida, S. and Rukoz, M. (2020) ‘Bi-objective 
CSO for big data scientific workflows scheduling in the cloud: 
case of ligo workflow’, Proceedings of the 15th International 
Conference on Software Technologies, Vol. 1.  

Bratton, D. and Kennedy, J. (2007) ‘Defining a standard for particle 
swarm optimization’, IEEE Swarm Intelligence Symposium, 
IEEE, pp.120–127.  

Chirkin, A.M., Belloum, A.S.Z., Kovalchuk, S.V., Makkes, M.X., 
Melnik, M.A., Visheratin, A.A. and Nasonov, D.A. (2017) 
‘Execution time estimation for workflow scheduling’, Future 
Generation Computer Systems, Vol. 75, pp.376–387.  

Chu, S-C., Tsai, P-W. and Pan, J-S. (2006) ‘Cat swarm 
optimization’, Pacific Rim International Conference on 
Artificial Intelligence, pp.854–858.  

Clerc, M. (2010) Particle Swarm Optimization, Vol. 93, John Wiley 
& Sons.  

Du, Y., Wang, J.L. and Lei, L. (2019) ‘Multi-objective scheduling of 
cloud manufacturing resources through the integration of cat 
swarm optimization and firefly algorithm’, Advances in 
Production Engineering and Management, Vol. 14, No. 3, 
pp.333–342.  

Eberhart, R. and Kennedy, J. (1995) ‘Particle swarm optimization’, 
Proceedings of the IEEE International Conference on Neural 
Networks, Vol. 4, pp.1942–1948.  

Frantz, R.Z., Corchuelo, R. and Molina-Jiménez, C. (2012) ‘A 
proposal to detect errors in enterprise application integration 
solutions’, Journal of Systems and Software, Vol. 85, No. 3, 
pp.480–497.  

Frantz, R.Z., Corchuelo, R., Basto-Fernandes, V., Rosa-Sequeira, F., 
Roos-Frantz, F. and Arjona, J.L. (2021) ‘A cloud-based 
integration platform for enterprise application integration: a 
model-driven engineering approach’, Software: Practice and 
Experience, Vol. 51, No. 4, pp.824–847.  

Freire, D.L., Frantz, R.Z. and Roos-Frantz, F. (2019a) ‘Ranking 
enterprise application integration platforms from a performance 
perspective: an experience report’, Software: Practice and 
Experience, Vol. 49, No. 5, pp.921–941.  

Freire, D.L., Frantz, R.Z., Roos-Frantz, F. and Sawicki, S. (2019b) 
‘A methodology to rank enterprise application integration 
platforms from a performance perspective: an analytic 
hierarchy process-based approach’, Enterprise Information 
Systems, Vol. 13, No. 9, pp.1292–1322.  

 

 



32 M.S. Brigo et al.  

Freire, D.P., Frantz, R.Z. and Roos-Frantz, F. (2020) ‘Towards 
optimal thread pool configuration for run-time systems of 
integration platforms’, International Journal of Computer 
Applications in Technology, Vol. 62, No. 2, pp.129–147.  

Gabi, D., Ismail, A.S. and Dankolo, N.M. (2019) ‘Minimized 
makespan based improved cat swarm optimization for efficient 
task scheduling in cloud datacenter’, Proceedings of the 3rd 
High Performance Computing and Cluster Technologies 
Conference, pp.16–20.  

Gabi, D., Ismail, A.S., Zainal, A. and Zakaria, Z. (2017) ‘Solving 
task scheduling problem in cloud computing environment using 
orthogonal taguchi-cat algorithm’, International Journal of 
Electrical and Computer Engineering (2088-8708), Vol. 7,  
No. 3, pp.1489–1497.  

Game, P.S., Vaze, V. and Emmanuel, M. (2020) ‘Bio-inspired 
optimization: metaheuristic algorithms for optimization’,  
arXiv preprint arXiv:2003.11637.  

Gupta, S., Agarwal, I. and Singh, R.S. (2019) ‘Workflow scheduling 
using jaya algorithm in cloud’, Concurrency and Computation: 
Practice and Experience, Vol. 31, No. 17.  

Gupta, S., Singh, R.S. and Anand, A. (2018) ‘Cloudlet scheduling 
using merged CSO algorithm’, Proceedings of the  
5th International Conference on Parallel, Distributed and Grid 
Computing (PDGC), IEEE, pp.278–283.  

Haugg, I.G., Frantz, R.Z., Roos-Frantz, F., Sawicki, S. and 
Zucolotto, B. (2019) ‘Towards optimisation of the number of 
threads in the integration platform engines using simulation 
models based on queueing theory’, Revista Brasileira de 
Computação Aplicada, Vol. 11, No. 1, pp.48–58.   

Hohpe, G. and Woolf, B. (2003) Enterprise Integration Patterns: 
Designing, Building, and Deploying Messaging Solutions, 
Addison-Wesley.  

Irman, A., Febianti, E. and Khasanah, U. (2019) ‘Minimizing 
makespan on flow shop scheduling using campbel dudek and 
smith, particle swarm optimization, and proposed heuristic 
algorithm’, Proceedings of the IOP Conference Series: Materials 
Science and Engineering, IOP Publishing, Vol. 673, pp.12–99.  

Jedlitschka, A. and Pfahl, D. (2005) ‘Reporting guidelines for 
controlled experiments in software engineering’, Proceedings 
of the International Symposium on Empirical Software 
Engineering, pp.95–104.  

Jing, Z., Shou-Bin, D. and De-Yu, T. (2018) ‘Task scheduling 
algorithm in cloud computing based on invasive tumor growth 
optimization’, Chinese Journal of Computer, Vol. 41, No. 6, 
pp.1140–1155.  

Junaid, M., Sohail, A., Ahmed, A., Baz, A., Khan, I.A. and 
Alhakami, H. (2020) ‘A hybrid model for load balancing in 
cloud using file type formatting’, IEEE Access, Vol. 8, 
pp.118135–118155.  

Kaleche, R., Bendaoud, Z. and Bouamrane, K. (2020) ‘Bio-inspired 
metaheuristics: a comprehensive survey’, International Journal 
of Organizational and Collective Intelligence (IJOCI), Vol. 10, 
No. 4, pp.1–18.  

Leonard, N.E. and Levine, W.S. (1995) Using MATLAB to analyze 
and design Control Systems, Benjamin-Cummings Publishing 
Company, 1995.  

Lima, F.R., Frantz, R.Z., Sawicki, S. and Roos-Frantz, F. (2019) 
‘Cat swarm optimization applied to makespan reduction in 
application integrations’, Advances in Engineering Research, 
Nova Science Publishers, Inc., Vol. 31, pp.1–21.  

 

 

Manikas, K. (2016) ‘Revisiting software ecosystems research: a 
longitudinal literature study’, Journal of Systems and Software, 
Vol. 117, pp.84–103.  

Maurya, A.K. and Tripathi, A.K. (2018) ‘Deadline-constrained 
algorithms for scheduling of bag-of-tasks and workflows in 
cloud computing environments’, Proceedings of the 2nd 
International Conference on High Performance Compilation, 
Computing and Communications, pp.6–10.  

Natesha, B.V., Sharma, N.K., Domanal, S. and Guddeti, R.M.R. 
(2018) ‘Gwots: Grey wolf optimization based task scheduling 
at the green cloud data center’, Proceedings of the 14th 
International Conference on Semantics, Knowledge and Grids 
(SKG), IEEE, pp.181–187.  

Parahyba, F., Frantz, R.Z. and Roos-Frantz, F. (2021) ‘On the 
estimation of makespan in runtime systems of enterprise 
application integration platforms: a mathematical modelling 
approach’, International Journal of Computer Applications in 
Technology, Vol. 67, No. 1, pp.17–28.  

Perry, D.E., Porter, A.A. and Votta, L.G. (2000) ‘Empirical  
studies of software engineering: a roadmap’, Proceedings  
of the Conference on the Future of Software Engineering, 
pp.345–355.  

Semlali, S.C.B., Riffi, M.E. and Chebihi, F. (2018) ‘Optimization of 
makespan in job shop scheduling problem by hybrid chicken 
swarm algorithm’, Proceedings of the International Conference 
on Advanced Intelligent Systems for Sustainable Development, 
Springer, pp.358–369.  

Shi, Y. and Eberhart, R.C. (1999) ‘Empirical study of particle swarm 
optimization’, Proceedings of the Congress on Evolutionary 
Computation (CEC), IEEE, Vol. 3, pp.1945–1950.  

Shojaee, R., Faragardi, H.R., Alaee, S. and Yazdani, N. (2012) ‘A 
new cat swarm optimization based algorithm for reliability-
oriented task allocation in distributed systems’, Proceedings of 
the 6th International Symposium on Telecommunications (IST), 
IEEE, pp.861–866.  

Singh, P., Dutta, M. and Aggarwal, N. (2017) ‘A review of task 
scheduling based on meta-heuristics approach in cloud 
computing’, Knowledge and Information Systems, Vol. 52,  
No. 1, pp.1–51.  

Slowik, A. (2020) Swarm Intelligence Algorithms: Modifications 
and Applications, CRC Press.  

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B. and 
Wessln, A. (2012) Experimentation in Software Engineering, 
Springer.  

Xu, S.P., Wu, D., Kong, F. and Ji, Z. (2017) ‘Solving flexible job-
shop scheduling problem by improved chicken swarm 
optimization algorithm’, Journal of System Simulation, Vol. 29, 
No. 7, pp.1497–1505.  

Zarrouk, R. and Jemai, A. (2018) ‘Performance evaluation  
of particles coding in particle swarm optimization  
with self-adaptive parameters for flexible job shop  
scheduling problem’, Proceedings of the International 
Conference on Industrial, Engineering and Other 
Applications of Applied Intelligent Systems, Springer,  
pp.396–407.  

Note 

1 https://github.com/gca-research-group/algorithms-pso-cso 


