
 
International Journal of Computer Applications in
Technology
 
ISSN online: 1741-5047 - ISSN print: 0952-8091
https://www.inderscience.com/ijcat

 
Implementation of an IoT system for environment monitoring
and remote web control using ARM Mbed cloud and GUI
 
Shensheng Tang, Yi Zheng
 
DOI: 10.1504/IJCAT.2023.10056442
 
Article History:
Received: 07 January 2022
Last revised: 12 February 2022
Accepted: 01 March 2022
Published online: 23 May 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijcat
https://dx.doi.org/10.1504/IJCAT.2023.10056442
http://www.tcpdf.org


Int. J. Computer Applications in Technology, Vol. 71, No. 1, 2023 1 

Copyright © 2023 Inderscience Enterprises Ltd. 

Implementation of an IoT system for environment 
monitoring and remote web control using ARM  
Mbed cloud and GUI 

Shensheng Tang* and Yi Zheng 
Department of Electrical and Computer Engineering,  
St. Cloud State University,  
St. Cloud, Minnesota, USA 
Email: stang@stcloudstate.edu 

Email: zheng@stcloudstate.edu 
*Corresponding author 

Abstract: This paper implements an IoT system for environment monitoring and remote web 
control using ARM Mbed cloud. The embedded system used for environment monitoring is 
implemented using an ARM Cortex-M4 core-based STM32L4 series development board 
integrated with multiple sensors. The sensed data (i.e., temperature, relative humidity and 
atmospheric pressure) can be wirelessly sent to the Mbed cloud managed by the Pelion device 
management platform. The data values can also be sent to a Graphical User Interface (GUI) with 
user authentication. We develop three application appliances that can be controlled remotely over 
Internet through the Pelion platform. The proposed IoT system has been successfully 
implemented on the STM32L4 series development board with the main application program 
developed using C++ and the GUI developed by C# programming. The work of hardware and 
software co-design can be a practical paradigm of engineering education for IoT hobbyists and 
college students.   

Keywords: IoT; ARM Mbed cloud; Pelion device management platform; GUI; C++; C#; Wi-Fi; 
environment monitoring; web control.    

Reference to this paper should be made as follows: Tang, S. and Zheng, Y. (2023) ‘Implementation 
of an IoT system for environment monitoring and remote web control using ARM Mbed cloud 
and GUI’, Int. J. Computer Applications in Technology, Vol. 71, No. 1, pp.1–17. 

Biographical notes: Shensheng Tang is a Professor in the Department of Electrical and 
Computer Engineering in St. Cloud State University, USA. He received his PhD degree from 
University of Toledo, USA. He has eight years of Product Design and Development experience, 
as Hardware Engineer, System Engineer and Manager, respectively, in the Electronics and 
Wireless Industry. His current research interests include embedded systems, networking 
(wireless, wired), Internet of things (IoT) and modelling and performance evaluation. He has 
served or is serving as editor-in-chief, editor, or guest editor for international journals and 
program committee chair or member of international conferences. He has produced over 100 
peer-reviewed publications in the above areas. He is a Senior Member of IEEE. 

Yi Zheng graduated from Iowa State University, joined Faculty of Electrical and Computer 
Engineering of St. Cloud State University in 1987, served as Department Chair from 1997 to 2004, 
Full Professor since 1993. His research interest is wave propagation including optical wave in 
motion, ultrasound and EM waves in tissue and embedded systems. He worked at Very Large Array 
and Ames Laboratory in 80s. From 1991 to 1992, He was with IBM to apply artificial neural 
networks for large data processing. From 1993 to 2009, he was with Ultrasound Research Lab of 
Mayo Clinic to develop neural networks for medical image analysis, and ultrasound vibrometry for 
measuring tissue elasticity and viscosity. He was with IMI Vision for Embedded System Design and 
Sensor Design. From 2006 to 2009, he was with Force 10 Network for High-Speed Circuit 
Research. He worked with Lift-Touch Studio, Motorola, LionPrecision, Medtronic, Born-Fuke and 
Emerson, etc.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



2 S. Tang and Y. Zheng  
 

1 Introduction 

Technology advances farther and farther with every day. We 
are entering the era of the Internet of Things (IoT), which 
enables communication between electronic devices and 
sensors through the Internet and provides innovative solutions 
to a variety of challenges in business, government, military 
and civilian use. The IoT is the interconnection of endpoints 
(devices and things) that can be uniquely addressed and 
identified over the Internet. 

The IoT is rapidly transforming how we live our daily 
lives with more and more connected devices and machines 
over the Internet or cloud-based platforms. These connected 
devices and machines range from connected equipment in the 
enterprise and industrial assets such as smart office, smart 
transportation, and robots to consumer-oriented devices  
such as smart wearables and smart home solutions. Sensor 
technologies, embedded systems, and real-time data 
collection and analysis can track nearly every aspect of the 
work we do. When used appropriately, the IoT data can allow 
us to streamline business processes, increase efficiency, 
improve our health and safety, automate tasks and enable us 
to gain greater insight into our societies and environments. 

Extensive research and experiments have been done and 
available in terms of scientific articles, technical reports and 
news communications both on the internet and in the form of 
printed materials to illustrate the potential effectiveness and 
applicability of IoT transformations (Zanella et al., 2014; 
Khajenasiri et al., 2017; Liu et al., 2012; Li et al., 2019; 
Wang et al., 2014; Qiu et al., 2013; Strielkina et al., 2017; 
Tang and Xie, 2021; Birje and Hanji, 2020; Chauhan et al., 
2021; Heer et al., 2011; Sfar et al., 2018; Hassija et al., 2019). 
Zanella et al. (2014) provided a comprehensive survey of the 
enabling technologies, protocols, and architecture for an 
urban IoT, a technical solution to support the Smart City 
vision. The technical solutions and best-practice guidelines 
adopted in the Padova Smart City project were discussed with 
a proof-of-concept deployment of an IoT island in the city of 
Padova, Italy. Khajenasiri et al. (2017) introduced a flexible 
IoT hierarchical architecture model with an overview of each 
key component for intelligent energy control in buildings for 
smart cities. Another category of IoT applications is the smart 
vehicles, where the vehicles equipped with intelligent devices 
and sensors enable autonomous driving, smart navigation 
with networked cars and vehicular automation using artificial 
intelligence. Liu et al. (2012) presented the analysis on the 
related questions of automobile manufacturing through IoT 
and described related contents to promote the realisation of 
automotive informationisation. 

Li et al. (2019) unified approach called IoT-CANE 
(context aware recommendation system) was presented to 
capture resource configurations in IoT environments, support 
the recommendation of resource configuration and facilitate 
the knowledge acquisition with the Cloud/Edge technologies 
and IoT devices. An end-user case study was provided to 
evaluate the success of IoT-CANE. Wang et al. (2014) 
summarised the IoT applications in domestic waste treatment 
and disposal and presented the current situation and existing 

problems in a certain condition. Furthermore, the promotion 
of Information management efficiency were expounded  
and prospected with the combination of the IoT technology. 
Qiu et al. (2013) presented an intelligent monitoring platform 
framework and system structure for a facility agriculture 
ecosystem based on IoT. The solution consists of four 
function layers based on the difference in information 
exchange process and task logical handling, i.e., sensor layer, 
transmission layer, monitoring layer, application layer. The 
framework of the facility agriculture ecosystem was 
experimented to be able to achieve better ecosystem with 
reduced human intervention. 

In Strielkina et al. (2017), a healthcare IoT infrastructure 
with brief description was presented and a case study of the 
considered system was modelled using the queueing theory. 
In Tang and Xie (2021), an availability model of a healthcare 
IoT system was proposed with two groups of structures 
described by separate Markov state-space models. The two 
separate models are analysed and combined to implement the 
whole IoT system modelling. An Availability Performance 
Improving (API) method was also proposed for increasing the 
probability of system full service and decreasing the system 
unavailability. More introduction of healthcare IoT systems 
and technologies can be found in a recent review work (Birje 
and Hanji, 2020), where the authors reviewed state-of-the-art 
works in IoT-based Distributed Healthcare Systems (DHSs). 
A comparative study of these systems was made to know the 
suitability of various healthcare systems. The challenges and 
open issues associated with existing IoT-DHSs were also 
discussed. In Chauhan et al. (2021), an IoT based automatic 
intravenous fluid monitoring system was proposed to monitor 
the intravenous fluid level in case the caretaker forgets to 
change the bottle. 

In Heer et al. (2011), the applicability and limitations of 
existing Internet protocols and security architectures were 
discussed in the context of the Internet of Things. A further 
IoT security roadmap was presented in Sfar et al. (2018) 
based on a novel cognitive and systemic approach, where the 
role of each component of the approach was explained and its 
interactions with the other components were studied. A case 
study was presented to highlight the components and 
interactions of the approach and the security questions about 
privacy, trust, identification and access control were then 
discussed. A detailed review of the security-related 
challenges and sources of threat in the IoT applications was 
presented in Hassija et al. (2019). Various emerging and 
existing technologies focused on achieving a high degree of 
trust in the IoT applications were discussed. Particularly, four 
different technologies, blockchain, fog computing, edge 
computing and machine learning were discussed to increase 
the level of security in IoT. 

In this paper, we implement an ARM Cortex-M4 core-
based IoT system for environment monitoring and remote 
web control using the Pelion Device Management Platform. 
The hardware of the embedded system is implemented using 
an ARM processor based STM32L4 series development 
board integrated with multiple on-board sensors and external 
circuit. The environment monitoring parameters includes 



 Implementation of an IoT system for environment monitoring 3 

temperature, relative humidity and atmospheric pressure, 
which can be wirelessly sent to the Mbed cloud managed by 
the Pelion platform. The sensed data values can also be sent 
to a GUI panel for local display. The GUI has a security 
access that needs user authentication. Three application 
appliances were designed for the purpose of remote web 
control though the Mbed cloud with an Mbed account. The 
proposed IoT system is implemented with the main 
application program developed using C/C++ and the GUI 
developed by C# programming. The experiment results are 
presented for further understanding of the implementation. In 
summary, the major contribution of the work includes: 

 Implementation of an IoT system involving hardware 
and C++/C# programming for environment monitoring 
with detection parameters (i.e., temperature, relative 
humidity and atmospheric pressure) transmitted 
wirelessly to the Mbed cloud as well as a GUI running 
on a local computer. 

 Implementation of an IoT system involving hardware 
and C++ programming for remote web control using the 
Pelion Device Management Platform.  

The remainder of the paper is organised as follows: Section 2 
describes the proposed IoT system and its modules; Section 3 
discusses the system design and implementation issues 
including the local GUI part and the Mbed cloud part;  
Section 4 presents the experimental results and Section 5 
concludes the paper. 

2 System description 

The proposed IoT system provides environment monitoring 
and remote web control which consists of five parts: ARM 
microcontroller module, sensors, application appliances, 
Cloud Platform and a Graphical User Interface (GUI) running 
on a laptop, as shown in Figure 1. The sensors sense the 
environment parameters such as temperature, relative 
humidity and atmospheric pressure and send the data to the 
microcontroller. The microcontroller module collects the 
environmental data and sends them through Wi-Fi to the 
Mbed cloud (MBED, n.d.) (i.e., Pelion Device Management 
Platform (Izuma Networks, n.d.)) as well as the GUI. There 
are a few application appliances (e.g., smart oven, smart 
cooker and air conditioner) connected to the microcontroller 
module. The user can remotely control (e.g., turn-on and turn-
off) these appliances through cloud over internet. The GUI 
running on a laptop can display the environmental data in real 
time in both graphical and digital manners. The following 
summarises the different parts of the system. 

 Microcontroller module: The ARM 32-bit Cortex-M4 
processor (CPU Cortex-M4, n.d.) provides the combination 
of high-efficiency signal processing functionality with 
the low-power, low-cost and ease-of-use benefits of the 
Cortex-M family of processors, as shown in Figure 2. It 
has adaptive real-time accelerator allowing 0-wait state 
execution from flash memory. It provides 1 MB flash, 
128 KB SRAM, 1 Quad SPI memory interface, 7 general 

purpose timers, 2 basic timers, 2 advanced control 
timers, 2 low-power timers. It also provides multiple 
types of communication interfaces (UART, I2C, CAN, 
SPI and USB). In addition, the module has integrated 
multiple board features such as Bluetooth, Wi-Fi and 
expansion connectors (Arduino Uno V3, PMOD). 

 Sensors: Three types of sensors (see Figure 2), 
temperature sensor, relative humidity sensor and 
atmospheric pressure sensor are chosen for continuous 
environment monitoring in the proposed IoT system, 
though more sensors are integrated in the development 
board.     

Figure 1 A block diagram of the proposed IoT system 

 

Figure 2 The microcontroller module and its peripheral circuits 
for the IoT system 

 

 Application appliances: The application appliances are 
some domestic appliances that can be electronically 
controlled through Internet-connected systems, which 
may include setting complex heating and lighting 
systems in advance and setting alarms and home security 
controls. They are all connected by a central hub and 
remote-controlled over the Internet or by a mobile app. 
In our proposed system, we define three application 
appliances (see Figure 2): an on-board LED, an external 



4 S. Tang and Y. Zheng  

LED and an external motor, all representing some 
domestic ‘switch-on-off’ devices.     

 GUI module: The GUI module is developed using Visual 
Studio (Microsoft Corp., n.d.) to communicate with the 
microcontroller module over serial port. To access the 
IoT system, the user has to pass the user authentication 
through a user name and password entering as shown in 
Figure 3. If the user name or password does not match 
the information stored in the database, an error message 
will be popped out. When the user passes the 
authentication, it will go to the main GUI panel in Figure 
4 which has four windows, respectively displaying the 
system booting information, real-time temperature 
monitoring, real-time humidity monitoring and real-time 
atmospheric pressure monitoring, as well as three small 
text boxes for digital display of the three environment 
parameters. Some other functions are also considered in 
the GUI such as screen clearing, serial port and bode rate 
information. The reset button in the development board 
can restart the GUI display. 

Figure 3 The user authentication for entering the GUI of the IoT 
system 

 

 Pelion device management platform: Pelion is a flexible 
IoT platform that simplifies the wireless connectivity and 
secure management of IoT devices. To securely connect 
an IoT development board to the Internet, one needs to 
first create an Mbed account, then select her hardware 
board which is Pelion ready, next use the Mbed online 
compiler to build her application (The online compiler 
needs to access her Mbed account and to know which 
device she is using). Her device needs unique identity 
and connection parameters to connect to her Pelion 
Device Management account securely. For remote 
firmware update, her device also needs an update 
certificate. This certificate is applied to her project and a 
corresponding private key is generated. She needs to 
download and store the private key for the update 
certificate so that she can sign update manifests for 
devices with this update certificate in future. She is now  
 

ready to build the application and flash it to the device 
over the USB cable. She also needs to make sure the 
device to connect to the internet (by editing the 
mbed_app.json file to provide the application with Wi-Fi 
credentials). Finally compile the program to create the 
application binary, which includes the developer-connect-
and-update certificates and the device bootloader required 
to apply firmware updates remotely. The binary is 
downloaded to the application and the device is now 
connected to the Pelion Device Management account.  

One can use the Device Management Portal to monitor and 
control the Lightweight Machine to Machine (LwM2M) 
resource exposed by the application. Here LwM2M is an 
application layer protocol, which was developed by the Open 
Mobile Alliance (OMA) to offer a faster time to market by 
standardising commonly required device management 
functionality (OMA SpecWorks, n.d.). The IoT devices use 
the LwM2M protocol to communicate with the server to 
receive and execute commands. The ‘resource’ is the name 
that the LwM2M gives to the readable and controllable 
aspects of IoT devices such as sensors. 

3 System implementation 

This section describes the implementation of the IoT system. 
We implement the system using the L475E-IOT01A 
Discovery Kit (B-L475E-IOT01A, n.d.) plus a peripheral 
appliance circuit to communicate with both the Pelion cloud 
platform and a GUI running on a laptop computer. The 
L475E-IOT01A Discovery Kit allows users to develop 
applications with direct connection to cloud servers and 
enables a wide diversity of applications by exploiting low-
power communication, multiway sensing and Arm Cortex-
M4 core-based features. It also supports for Arduino Uno V3 
and PMOD connectivity to provide unlimited expansion 
capabilities with a large choice of specialised add-on boards. 
The communication between the Pelion cloud platform and 
the hardware circuit is developed by C++ programming. The 
GUI module is implemented by C# programming, which runs 
on a laptop and communicates with the hardware circuit  
using Wi-Fi. 

3.1 GUI module implementation 

The GUI module is developed to display the monitoring 
parameters (temperature, relative humidity and atmospheric 
pressure) in both digital mode and graphical mode, as shown 
in Figure 4. The information box window is used to display 
the system booting process and cloud connection through  
Wi-Fi. The serial communication port and baud rate 
information are also displayed on the panel. The button of 
clear screen is used to clear all the four windows. 

 

 



 Implementation of an IoT system for environment monitoring 5 

Figure 4 The GUI panel for the IoT system 

 
 

The GUI module consists of the user authentication part and 
the main panel part. They are implemented through the 
Windows Form App (.Net framework) in C# programming. 
The user authentication part needs a user to login the GUI 
panel by entering a user name and password (refer to  
Figure 3), which are stored in the Structured Query Language 
(SQL) database. An example of the user credentials stored  
in the SQL data base is shown in Figure 5. The SQL database 
is connected by using the SqlConnection object. The 
following is an example of declaring and instantiating the 
SqlConnection object at the same time: 

SqlConnection cn = new SqlConnection(@‘Data 
Source = (LocalDB)\MSSQLLocalDB; 
AttachDbFilename = C:\Work\Research\ 
...\IoTLogin\dbtest.mdf; Integrated Security=True’); 

where Data Source identifies the server located in a local 
computer; the database name is an MDF database file; the 
third property means the user that runs this application must 
have access to the target database. With correct credentials, 
the IoT system brings the user to the main GUI panel that 
displays the real-time environmental data values. If the 
credentials do not match what are stored in the database, an 
error message will be popped out. For the first time user, one 
can register unique user name and password for user 
authentication, which are also stored in the SQL database. 
Figure 6 shows an example of user registration that  
includes the user’s name, password and the full name 
information (more credential information can be designed for 
registration). 
 
 

Figure 5 A list of user credentials stored in the SQL database 

 

Figure 6 Registration of user credentials for new users 

 

 



6 S. Tang and Y. Zheng  

The communication between the GUI and the micro-
controller is via a serial port with baud rate of 115200, as  
shown in Figure 7. Once the serial communication is 
connected successfully, the sensed data (temperature, 
humidity, atmospheric pressure) can be transferred into the 
three textboxes on the GUI, respectively. Every incoming 
serial data value is defined as string in C#. If the data length  
is 3, then it is determined that the serial values are of sensor 
readings and call the functions such as AppendTextBox() to 
display the sensed data, as shown in Figure 8. If not, it is 
simple information of MCU operation as Bootloader status, 
Wi-Fi connection status, displaying IP address, network error 
status or Wi-Fi connection error status. The function 
AppendTextBox() is used for the temperature value to be 
displayed on the textbox, as shown in Figure 9. The other two 
functions have a similar purpose for displaying humidity and 
atmospheric. 

Next, we describe the implementation issues on plotting 
the sensed data values graphically using ZedGraph. 
ZedGraph is a class library, user control, and web control 
for .net, written in C#, for drawing 2D Line, Bar and Pie 
graphs of arbitrary data sets (ZedGraph, n.d.). The 
GraphPane is the primary class for the graph, which 
includes all other classes as properties and also controls the 
pane title, the pane frame and axis frame, backgrounds, etc. 

To plot the three sensed data values, we need to define 
three different objects one for each graph. The three objects 
are defined as zedGraphControl1, zedGraphControl2 and 
zedGraphControl3. Each graph display is implemented by  
a function. For example, the temperature display is 
implemented by the function CreatChart(), as shown in 
Figure 10. The graph parameters and all essentials like pane, 
X-Axis, Y-Axis and LineItem have been defined when the 
form is loaded. The flowchart of the GUI module design for 
the IoT system is given in Figure 11. 

Figure 7 The serial communication between GUI and microcontroller 

 

Figure 8 Display the sensed data values in the textboxes on GUI 

 

Figure 9 The function AppendTextBox() for temperature display in the textbox 

 



 Implementation of an IoT system for environment monitoring 7 

Figure 10 The function CreatChart() for temperature display graphically 

 

Figure 11 The flowchart of the GUI design for the IoT system 

 



8 S. Tang and Y. Zheng  
 

3.2 Main program implementation involving 
microcontroller and pelion platform 

The main program of the IoT system is implemented using 
C++ with Mbed online compiler. The Mbed online compiler 
enables you to either write your code from scratch or import  
 

an existing project and modify it to suit your needs. The 
flowchart for the main program is shown in Figure 12, which 
involves the two major functions of the proposed IoT system: 
environment monitoring (temperature, humidity and 
atmospheric pressure) on cloud and remote web control 
through Pelion platform. 

Figure 12 The flowchart of the main program for the IoT system 

 

 

 

 

 

 

 



 Implementation of an IoT system for environment monitoring 9 

 Implementation of environment monitoring: The 
environment monitoring can be implemented remotely 
on web through the Pelion Device Management 
Platform, besides the local monitoring through GUI 
program. The data transfer between the hardware board 
and the Pelion cloud is through Wi-Fi. The Wi-Fi SSID 
(Service Set Identifier) and password is defined in a 
JavaScript Object Notation (.JSON) file, which is located 
in the root of the IoT application and can define new 
configuration parameters and override configuration 
parameters defined in libraries and the target. You also 
need to create an account on the Mbed website for using 
the Mbed online compiler and the Pelion Device 
Management Platform. 

After the Wi-Fi is connected to the Internet successfully, the 
main program will initialise the three sensors through the 
function sensors_init() and send the sensed data values 
(temperature, humidity and atmospheric pressure) 
periodically through the function sensors_update(). The 
period is set in the main program. The function sensors_init()  
 
 

is given in Figure 13, where sen_hum_temp() and sen_press() 
are the functions that belong to the class HTS221Sensor and 
class LPS22HBSensor respectively. The two classes  
located in the header files ‘HTS221Sensor.h’ and 
‘LPS22HBSensor.h’ in the main program have defined the 
methods init(), enable() and read_id(). 

The function sensors_update() in Figure 14 is called 
periodically according to the predefined time in the main 
program. The methods get_humidity(), get_temperature(), 
and get_pressure() are defined in the classes HTS221Sensor 
and LPS22HBSensor, respectively. The variable endpointInfo 
is a pointer used to receive the name information about the 
registered device. The res_temperature, res_humidity and 
res_pressure are the pointers of class type with class 
MbedCloudClientResource, which can be used to access  
the class's data members and member functions. The  
function set_value(float) is defined inside the class 
MbedCloudClientResource to get the name information of a 
resource. The class MbedCloudClientResource is defined in 
the header file ‘mbed-cloud-client-resource.h’, which is 
included in the main program. 

Figure 13 The code for the initialisation of sensors 

 

Figure 14 The code for the update of sensed data 

 

 

  



10 S. Tang and Y. Zheng  

To see the sensed data values from the Mbed cloud, one 
needs to create sensor resources in the main program. Before 
that, one needs to create an object of the class 
MbedCloudClient, which has a parameterised constructor 
with the same name as the class. When the object is created, 
the three parameters (net, bd, & fs) will be passed to the 
constructor. The parameter ‘net’ represents a connected 
network interface, ‘bd’ represents an uninitialised block 
device and ‘fs’ represents an uninitialised file system. 

The class MbedCloudClient handles data transferring to 
the Mbed cloud through the application layer protocol 
LwM2M. The Pelion Device Management Platform enables 
efficient collection of sensor data and provides remote 
management capabilities and security features. The Mbed 
operating system integrates the LwM2M protocol for IoT 
devices so that the devices can communicate with Mbed 
cloud. Figure 15 shows a snippet code for creating sensor 
resources (specifically, the temperature sensor resource, the 
other sensor resources are omitted). The init() is the 
initialisation function defined in the class MbedCloudClient. 
The method function create_resource (const char *path, 
const char *name) is the pointer of class type with class 
MbedCloudClientResource. The pointer path is an LwM2M 
path in the form of 3303/0/5700, where 3303 is the 
numerical identifier (ID) of the object (temperature sensor), 
0 represents the ID of the object instance (single instance) 
and 5700 represents the ID of the resource (sensor value). 

The function set_value() is declared in the class 
MbedCloudClientResource to set the value of the resource to 
an integer. The function methods (unsigned int methodMask) 
is declared in the class MbedCloudClientResource to set the 
methods that can be applied on this resource. The parameter 
methodMask is the mask of objects of type M2MMethod, 
which is a namespace defined in the same header file  
where the class MbedCloudClientResource is defined. The 
namespace M2MMethod declares an enumerated type 
M2MMethod that explicitly defines four elements of enum 

(GET, PUT, POST, DELETE), which can be accessed from 
outside the namespace using the scope operator ‘::’, e.g., 
M2MMethod::GET. The function observable() is declared in 
the class MbedCloudClientResource to set whether the 
resource can be observed. Up to now, once the hardware 
board is registered and connected to the Mbed cloud, one can 
click the corresponding resources to observe the data values 
(temperature, humidity, atmospheric pressure). 

 Implementation of remote web control: The remote web 
control is to use Mbed cloud to remotely control 
application appliance to turn on or off. It is also 
implemented in the main program. Therefore, the 
prerequisite work (e.g., internet connection through Wi-
Fi, related initialisation tasks) is the same as that for the 
environment monitoring task. In our proposed system, 
we implement the web control of three application 
appliances: an on-board LED, an external LED and an 
external motor, all representing some application 
appliances such as home oven, microwave, washer and 
air conditioner. More application appliances can be 
controlled through the Mbed cloud.   

In the following, we focus on the implementation of web 
control for the on-board LED as an example. The 
implementation for the others are similar. First of all, we need 
to map the software code to the specified pins on the 
hardware board and declare pointers for access to Mbed cloud 
Client resources, as shown in Figure 16. The DigitalOut is a 
class defined in the header file ‘DigitalOut.h’, which uses the 
DigitalOut interface to configure and control a digital output 
pin by setting the pin to logic level 0 or 1. The first parameter 
(LED1, D7 or D13) is the pin name on the hardware board, 
and the second parameter (1 or 0) is the initial value. The 
res_led, res_led2, and res_motor are the pointers of class type 
with class MbedCloudClientResource, which can be used to 
access the Mbed cloud client resources. 

Figure 15 A snippet code for creating sensor resources 

 

Figure 16 The configuration of pins and declaration of pointers of class 

 



 Implementation of an IoT system for environment monitoring 11 

Figure 17 The implementation of a PUT handler 

 

Figure 18 The implementation of a PUT handler for the on-board LED control 

 

Then we implement the PUT handler for command 
transmission from the Mbed cloud to the remote hardware 
board. Figure 17 shows an implementation of the PUT 
handler for processing the on-board LED. The PUT 
handlers for the other two are similar and omitted here. The 
PUT handler is implemented by the function put_callback(). 
The first parameter is the pointer of class type that is used to 
access the Mbed cloud client resources. The second 
parameter defines an object ‘newValue’ from the class 
String, which and the namespace m2m are both defined in 
the header file ‘m2mstring.h’. Then function c_str() returns 
a pointer to a C-style, null-terminated string representing the 
current value of the string object (i.e., newValue). The 
function atoi() converts the character string to an integer 
value which is assigned to the on-board LED to perform an 
action. 

Finally, we create resources for the application 
appliances in the main program so that we can read 
information and write command at the Mbed cloud, as 
shown in Figure 18. The method function create_resource 
(‘3201/0/5853’, ‘LED State’) gives the resource name (i.e., 
LED State) and the three level tree of the LwM2M path 
(i.e., 3201/0/5853), where the first parameter is the object 
ID (3201 represents Digital Output), the second parameter 
represents the Instance ID of the object (0 means a single 
instance) and the third parameter represents the resource ID 
(5853 means multiple level output). The function methods() 
is the same as that in Figure 15 except that the parameter 
methodMask includes both GET and PUT elements of enum 
defined in the namespace M2MMethod. In this way we can 
use the two methods not only to retrieve the representation 
of the target resource but also to update the current 
representation of the target resource with the request value. 
The function attach_put_callback() is declared in the class 
MbedCloudClientResource to set a callback when a PUT 
action on this resource happens, which is triggered 
whenever a command is written to the resource from the 
Pelion Device Management Platform. 

4 Experimental results 

In this section, we present experimental results for the 
proposed IoT system. The normal experiment state should be 
as follows: the hardware board is connected to a laptop using 
a micro USB cable and connected to the Mbed cloud through 
Wi-Fi; the GUI program is run through Visual Studio in the 
laptop. The GUI program is developed for local environment 
monitoring. The Mbed cloud can work independently for 
environment monitoring and remote web control without any 
help from the GUI program. 

To start the experiment, you first need to use your Mbed 
account to login to the online Mbed compiler (or Mbed 
Studio if you have one installed on your laptop), and open 
your main program under your IoT project. Then you connect 
your hardware board to the laptop using the micro-USB 
cable. The online Mbed compiler should recognise the board 
and allow user to select it for main program (you should be 
able to see the board name on the top right of your online 
Mbed workspace. If not, you can manually choose it by the 
‘Add Board’ function). 

Next, you need to login to the Pelion Device Management 
Portal using unique device identity and connection 
parameters and to create an API key and new developer 
certificate and add them to your project. To enable remote 
firmware update with Pelion Device Management, you also 
need to apply a developer update certificate to your project 
and generate the corresponding private key for your project 
and then connect your board to the Pelion Device 
Management (Note that your Wi-Fi credentials have been set 
in the file mbed_app.json under your project). 

Finally, you can apply the compile function on the online 
Mbed compiler system to create the application binary. The 
binary file is downloaded to a local folder and copied to the 
device folder (which appears as removable storage when the 
hardware board is connected to the laptop) to install the 
application. You may press the on-board reset button if 
needed. At this time, you are ready to see the device resources 
in both the GUI panel and the Mbed cloud. 

 
 



12 S. Tang and Y. Zheng  

In the following, we present selected experimental results 
for local GUI part and remote Mbed cloud part to 
demonstrate the functionality of the system. The GUI 
program has set the correct serial port name and the baud rate 
(here, it is 115200 bits per second) so that the serial port will 
automatically be connected when the GUI program is run. 
You may use any terminal emulator (e.g., Tera Term) to test 
the serial port communication from the hardware board. 
Figure 19 shows an example of environment monitoring 
using Tera Term to receive the sensed data values when the 
temperature and humidity sensor is touched by a finger 
occasionally, where the three data values in each row are the 
temperature, humidity and atmospheric pressure, respectively.   

Figure 19 Environment monitoring using Tera Term 

 

When the GUI program is run in Visual Studio, it will first 
bring you to a user authentication page, where you need to 
enter user name and password to login. Once the 
authentication is successful, it will bring you to the main GUI 
panel and automatically display the hardware board booting 
process in the Information Box and the environment  
 

monitoring parameters in the three graph boxes as well as in 
the three text boxes on the top, as shown in Figure 20. If it 
does not display the data values, press the reset button on the 
hardware board to reset the process. 

Figure 20 shows the process of parameter changes when 
the temperature and humidity sensor is touched two times in 
the middle. Figure 20 shows the process of parameter 
changes when the temperature and humidity sensor is 
touched two times in the middle. We observe from the 
temperature plot that the temperature display starts at about 
28.2°C, and changes to the first peak of 30.3°C when a 
finger is touched on the sensor and gradually decreases to 
28.4°C when the finger is moved away, and then changes to 
the second peak of 31.4°C when a finger is touched again, 
and finally gradually decreases to 28.4°C again when the 
finger is moved away. Since the humidity sensing and the 
temperature sensing are integrated in the same sensor, we 
also observe the corresponding humidity changes in the 
humidity plot during the above temperature change process. 
The atmospheric pressure sensor is a separate sensor; thus 
we do not observe much change of the atmospheric pressure 
in the last plot, which is about 972 mbar. 

Besides watching the sensed data values locally, you can 
also watch them on the Mbed cloud. Figure 21 shows the 
temperature change history from the Mbed cloud over the 
same period. We observe that the temperature increases to 
two peak points (due to the finger’s holding) and finally stops 
at the same value (28.4°C) as that displayed on the local GUI 
panel. Similarly, we can observe other resources such as 
humidity and atmospheric pressure from the Mbed cloud. 
You can watch the change of environment parameters 
graphically on the Mbed cloud. Figure 22 shows a record of 
temperature change during a certain amount of time duration. 

Figure 20 Environment monitoring using the GUI panel 

 



 Implementation of an IoT system for environment monitoring 13 

Figure 21 Environment monitoring of text form using the Mbed cloud 

 

Figure 22 Environment monitoring of graph form using the Mbed cloud 

 

 

 



14 S. Tang and Y. Zheng  
 

Next, we show some experimental results for the remote web 
control through Mbed cloud. Figure 23 shows the state that 
the on-board LED is turned off. After we send a high-voltage 
command (‘logic 1’) to the on-board LED from the Mbed 
cloud, as shown in Figure 24, we observe that the on-board 
LED is turned on, as shown in Figure 25. Note that the path 
(3201/0/5853) in Figure 24 means the target resource is the 
on-board LED, which has been defined in Figure 18. 

The remote web control of external LED and motor is 
shown in Figures 26, 27 and 28. Figure 26 shows the state 
that both the external LED and the motor are turned off. 
When we send a high voltage command from the Mbed 
cloud to each of them, the corresponding action will be 
performed remotely. Figure 27 shows the state that the 
external LED is turned on and Figure 28 shows that the 
external motor is turned on. 

Figure 23 Remote web control with the on-board LED OFF 

 

Figure 24 Remote web control with “ON” command sent to the on-board LED 

 

 

 

 



 Implementation of an IoT system for environment monitoring 15 

Figure 25 Remote web control with the on-board LED ON 

 

Figure 26 Remote web control with both the external LED and the motor OFF 

 

 

 

 



16 S. Tang and Y. Zheng  

Figure 27 Remote web control with the external LED ON 

 

Figure 28 Remote web control with the external motor ON 

 

 

 

 

 

 

 

 



 Implementation of an IoT system for environment monitoring 17 

5 Conclusion 

We implemented an ARM Cortex-M4 core-based IoT system 
for environment monitoring and remote web control using the 
Pelion Device Management Platform. The hardware part of the 
embedded system is implemented using an ARM processor 
based STM32L4 Series development board integrated with 
multiple sensors and external circuit. The environment 
monitoring parameters (i.e., temperature, relative humidity and 
atmospheric pressure) can be wirelessly sent to the Mbed cloud 
managed by the Pelion platform. The sensed data values can 
also be sent to a GUI panel for local display. The GUI has a 
security access that needs user authentication. Three 
application appliances were designed for the purpose of remote 
web control though the Mbed cloud with a user account. The 
proposed IoT system has been successfully implemented with 
the main application program developed using C/C++ and the 
GUI developed by C# programming. The related experiment 
results were presented for further understanding of the 
implementation. For the future work, we consider to apply 
more application appliances to the proposed IoT system and try 
to implement the system on different cloud computing platforms 
such as Amazon Web Services (AWS). The work of hardware 
and software co-design can be a practical paradigm of 
engineering education for IoT hobbyists and college students. 

Acknowledgement 

The authors would like to acknowledge the partial support 
from St. Cloud State University, MN, USA through Faculty 
Improvement Grant No. 211208 and Emerson Automation 
Solutions Grant No. 629528. 

References 

Birje, M.N. and Hanji, S.S. (2020) ‘Internet of things based 
distributed healthcare systems: a review’, Journal of Data, 
Information and Management, Vol. 2, pp.149–165. Doi: 
10.1007/s42488-020-00027-x. 

B-L475E-IOT01A (n.d.) STMicroelectronics L475E-IOT01A 
discovery kit data sheet. Available online at: 
https://www.st.com/resource/en/data_brief/b-l475e-iot01a.pdf  

Chauhan, H., Verma, V., Gupta, D. and Gupta, S. (2021) ‘IoT-based 
automatic intravenous fluid monitoring system for smart 
medical environment’, International Journal of Computer 
Applications in Technology, Vol. 66, No.2, pp.154–164. 

CPU Cortex-M4 (n.d.) ARM Cortex-M processor series. Available 
online at: https://www.arm.com/products/silicon-ip-cpu/cortex-
m/cortex-m4  

Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P. and Sikdar, 
B. (2019) ‘A survey on IoT security: application areas, security 
threats, and solution architectures’, IEEE Access, Vol. 7, 
pp.82721–82743. Doi: 10.1109/ACCESS.2019.2924045. 

 

 

 

 

 

Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar, 
S.S. and Wehrle, K. (2011) ‘Security challenges in the IP-based 
internet of things’, Wireless Personal Communications,  
Vol. 61, pp.527–542. Doi: 10.1007/s11277-011-0385-5. 

Izuma Networks (n.d.) Pelion device management portal. Available 
online at: https://portal.mbedcloud.com/  

Khajenasiri, I., Estebsari, A., Verhelst, M. and Gielen, G. (2017)  
‘A review on internet of things for intelligent energy control in 
buildings for smart city applications’, Energy Procedia,  
Vol. 111, pp.770–779. 

Li, Y., Alqahtani, A., Solaiman, E., Perera, C., Jayaraman, P.P., 
Buyya, R., Morgan, G. and Ranjan, R. (2019) ‘IoT-CANE: a 
unified knowledge management system for data-centric internet 
of things application systems’, Journal of Parallel and 
Distributed Computing, Vol. 131, pp.161–172. Doi: 
10.1016/j.jpdc.2019.04.016. 

Liu, T., Yuan, R. and Chang, H. (2012) ‘Research on the internet of 
things in the automotive industry’, Proceedings of the 
International Conference on Management of e-Commerce  
and e-Government, Beijing, China, pp.230–233. Doi: 
10.1109/ICMeCG.2012.80.   

MBED (n.d.) ARM Mbed cloud. Available online at: 
https://os.mbed.com/  

Microsoft Corp. (2019) Visual studio. Available online at: 
https://visualstudio.microsoft.com/    

OMA SpecWorks (n.d.) OMA lightweight M2M (LwM2M) protocol. 
Available online at: https://omaspecworks.org/   

Qiu, T., Xiao, H. and Zhou, P. (2013) ‘Framework and case studies 
of intelligence monitoring platform in facility agriculture 
ecosystem’, Proceedings of the 2nd International Conference 
on Agro-Geoinformatics (Agro-Geoinformatics), pp.522–525. 
Doi: 10.1109/Argo-Geoinformatics.2013.6621976. 

Sfar, A.R., Natalizio, E., Challal, Y. and Chtourou, Z. (2018) ‘A 
roadmap for security challenges in the internet of things’, 
Digital Communications and Networks, Vol. 4, No. 2,  
pp.118–137. Doi: 10.1016/j.dcan.2017.04.003. 

Strielkina, A., Uzun, D. and Kharchenko, V. (2017)  
‘Modelling of healthcare IoT using the queueing theory’, 
Proceedings of the 9th IEEE International Conference on 
Intelligent Data Acquisition and Advanced Computing 
Systems: Technology and Applications (IDAACS), Bucharest, 
Romania. 

Tang, S. and Xie, Y. (2021) ‘Availability modeling and  
performance improving of a healthcare internet of things (IoT) 
system’, IoT 2021, Vol. 2, No. 2, pp.310–325. Doi: 
10.3390/iot2020016. 

Wang, J.Y., Cao, Y., Yu, G.P. and Yuan, M.Z. (2014)  
‘Research on application of IOT in domestic waste treatment 
and disposal’, Proceeding of the 11th World Congress on 
Intelligent Control and Automation, pp.4742–4745. Doi: 
10.1109/WCICA.2014.7053515. 

Zanella, A., Bui, N., Castellani, A., Vangelista, L. and Zorzi, M. 
(2014) ‘Internet of things for smart cities’, IEEE Internet of 
Things Journal, Vol. 1, No. 1, pp.22–32. 

ZedGraph (n.d.) Open source software. Available online at: 
https://sourceforge.net/projects/zedgraph/ 


