
 
International Journal of Bio-Inspired Computation
 
ISSN online: 1758-0374 - ISSN print: 1758-0366
https://www.inderscience.com/ijbic

 
A novel binary multi-swarms fruit fly optimisation algorithm for
the 0-1 multidimensional knapsack problem
 
Xin Du, Jiawei Zhou, Youcong Ni, Wentao Liu, Ruliang Xiao, Xiuli Wu
 
DOI: 10.1504/IJBIC.2021.10047361
 
Article History:
Received: 31 August 2021
Last revised: 14 December 2021
Accepted: 16 December 2021
Published online: 04 April 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijbic
https://dx.doi.org/10.1504/IJBIC.2021.10047361
http://www.tcpdf.org


Int. J. Bio-Inspired Computation, Vol. 21, No. 1, 2023 1

A novel binary multi-swarms fruit fly optimisation
algorithm for the 0–1 multidimensional knapsack
problem

Xin Du, Jiawei Zhou, Youcong Ni*, Wentao Liu and
Ruliang Xiao
College of Computer and Cyber Security,
Fujian Normal University,
Fuzhou, China
Email: xindu79@126.com
Email: chenhuankeai@163.com
Email: youcongni@foxmail.com
Email: 1920993165@qq.com
Email: xiaoruliang@163.com
*Corresponding author

Xiuli Wu
School of Mechanical Engineering,
University of Science and Technology Beijing,
Beijing, China
Email: wuxiuli@ustb.edu.cn

Abstract: To improve solution quality and accelerate convergence speed of traditional fruit 
fly optimisation algorithm in solving MKP, a novel binary multi-swarm fruit fly optimisation 
algorithm (bMFOA) is proposed. It comprises four novelties. Firstly, an item frequency tree 
(IFT) is constructed based on the idea of frequency pattern mining, and a new search strategy is 
proposed to obtain heuristic information. Secondly, two new heuristic operators of ‘ADD’ and 
‘DROP’ are designed according to the obtained heuristic knowledge. Thirdly, a multi-swarm 
cooperation strategy is presented to strengthen the exploitation capability. To prevent algorithm 
falling into the local optimum prematurely, a swarm location escape strategy is put forward. To 
verify the efficiency of bMFOA, it is compared with some existing meta-heuristic methods by 
solving 58 MKPs from ORLIB. The experimental results show that the bMFOA performs better 
than existing meta-heuristic methods.
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1 Introduction

The multidimensional knapsack problem (MKP) is a
combinatorial optimisation problem that belongs to the class
of NP-hard problems. MKP is found in various applications,
such as capital budgeting (Wilbaut et al., 2007), loading
problems (Nawrocki et al., 2009), resource allocation
(Wu, 2014). Mathematically, MKP can be formulated as
equations (1)∼(3).

Maximise Z =

n∑
j=1

projxj (1)

s.t.
n∑

j=1

Ci,jxj ≤ Ri, i = 1, 2, 3, ...,m (2)

xj ∈ {0, 1} , j = 1, 2, 3, ..., n (3)

where xj(j = 1, 2, · · · , n) are binary decision variables
such that xj = 1 if item j is packed in the knapsack,
xj = 0 otherwise. n is the number of items and m is the
number of knapsack constraints with the capacity Ri(i =
1, 2,…,m). Each item j consumes Ci,j units of resource
in the ith constraint and yields proj units of profit when it
is selected. The objective in equation (1) aims to maximise
the total profits of the selected items, while the constraints
in equation (2) ensure that the selected items satisfy the m
capacity constraints of the knapsack.

Existing algorithms for the MKP can be classified into
exact and heuristic algorithms. The best performing exact
algorithm (Mansini and Speranza, 2011) is quite successful
to yield optimal solutions in an acceptable computation time
for benchmark instances of limited sizes (e.g., n = 250 or
500 and m ∈ {5, 10}). However, for larger instances with
n ≥ 250 and n ≥ 30, heuristic algorithms are more suitable
to find sub-optimal solutions. Chu and Beasley (1998)
firstly applied genetic algorithm to solve the MKP and
proved that high-quality solutions can be obtained whilst
requiring only a modest amount of computational effort.
With the development of intelligent algorithms, numerous
heuristic methods to solve MKPs have been recently
proposed. Chih (2018) proposed a novel particle swarm
optimisation to solve the MKP, where a self-adaptive check
and repair operator was designed to substitute pseudo-utility
ratios. Lai et al. (2019) proposed a two-stage tabu search
algorithm, the first stage aimed to locate a promising
search space and the second stage tried to find improved
solutions. Lai et al. (2020) integrated a distanced-based
diversity-preserving strategy and local optimisation method
to solve the MKP. Liu et al. (2016) proposed a binary
differential search to solve 0–1 MKPs, where the stochastic
search is guided by a Brownian motion-like random walk.
Feng et al. (2016) proposed an improved cuckoo search
algorithm, which combined cuckoo search and global
harmony search to improve the accuracy and convergence
speed. Wang et al. (2013) proposed an improved binary
fruit fly optimisation algorithm to solve the MKPs, which
used probability vectors to generate fruit fly individual and

applies differential evolution formulas to update probability
vectors.

FOA is a novel swarm intelligence optimisation
algorithm that simulates the foraging behaviour of fruit
fly. It has the advantages of simpler model, less
parameters and easier implementation. It has been used
to solve many problems, such as antenna array synthesis
(Darvish and Ebrahimzadeh, 2018), power load forecasting
(Hu et al., 2017), economic theoretical model (Lin,
2016), function optimisation (Wang et al., 2019). For
multi-dimensional optimisation problems, limited searching
ability and premature convergence of basic FOA make
them trap into local extreme or premature. Hence, many
scholars had proposed some improved variants of FOA.
Although those improved versions enhanced search abilities
and convergence speeds, they were still difficult to find
the global optimal in limited iterations. In this work,
bMFOA is proposed. It has four main contributions.
Firstly, IFT is constructed based on the idea of frequency
pattern mining, and a new search strategy is proposed
to obtain heuristic information. Secondly, a multi-swarms
collaboration strategy is proposed to enhance swarm
diversity. Thirdly, two heuristic search operators are
designed based on heuristic information to improve the
convergence speed of algorithm. Fourthly, a swarm location
escape strategy is presented to avoid premature.

2 bMFOA

bMFOA is mainly combined with heuristic mutation,
multi-swarm cooperation and swarm location escape based
on basic FOA.

2.1 Procedure of bMFOA

bMFOA mainly consists of two parts, which are osphresis
search phase and visual search phase. As shown in
Figure 1, N and S refer to the number of swarms, the
size of each swarm respectively. In the heuristic osphresis
search phase, S individuals are generated according to
swarm location and formed a new sub-swarm. Then, the
drop operator or add operator will work with probability
0.5 respectively. In the visual search phase, the swarm
location of each sub-swarm will be updated. The special
notice that each sub-swarm is parallel search so far. And
the multi-swarm cooperation strategy and swarm location
escape strategy will be applied. Finally, the best solution
will be obtained when algorithm’s termination condition
is met. Let an individual Xi(t) = (x1(t), x2(t), ..., xl(t)),
where xi ∈ {0, 1}, xi = 1 means the ith item is selected.
Otherwise, it means the ith item is not selected. l and
t are the number of items and evolutionary generation
respectively. The fruit fly swarm is denoted as P (t) =
{P1(t), P2(t), ..., PN (t)}, where N is the number of
sub-swarms. The jth sub-swarm is recorded as Pj(t) =
{X1(t), X2(t), ..., Xn(t)}, where n is the size of each
sub-swarm.
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Figure 1 The flowchart of bMFOA algorithm

2.2 Heuristic operator

bMFOA constructs an IFT by incorporating the idea of
frequent pattern mining and provides a down-to-top (DTT)
search method. Based on the heuristic information obtained
by searching the IFT, two heuristic operators named drop
and add operators, are designed. The construction of the
IFT and the DTT search process are given below. Then the
drop and add operators are introduced.

2.2.1 Construction of IFT tree

The data structure of IFT is similar to the traditional
frequent pattern (FP) tree (Han et al., 2000). It is also
composed of a prefix tree (PT) and a header table (HT)
shown in Figure 2.

Figure 2 An instance of IFT tree (see online version
for colours)

Algorithm 1 Constructing IFT tree

Kprwv< C inqdcn vtcpucevkqp fcvcdcug FD
Qwvrwv< KHV vtgg

3 Uqtv cnn kpfkxkfwcnu qh ewttgpv uycto P (t) kp fguegpf
qtfgt d{ hkvpguu xcnwg cpf ugngev vjg vqr ϕ'
kpfkxkfwcnu vq hqto vjg gnkvg itqwr=

4 Cpcn{ug cnn kpfkxkfwcnu kp gnkvg itqwr cpf igv JV d{
uvcvkuvke vkogu qh vjg ugngevgf kvgou cpf uqtvkpi vjg cnn
kvgou kp fguegpf qtfgt=

5 hqt gcej X kp gnkvg itqwr fq
6 Rctug X . cpf igv vjg id ugv qh eqttgurqpfkpi

ugngevgf kvgou. fgpqvgf cu
Ss = {i|xi = 1 ∧ xi ∈ X}=

7 Uqtv eqttgurqpfkpi kvgo qh Ss ceeqtfkpi vq vjg
qtfgt qh kvgoÓu id kp JV=

8 Kpugtv Ss kpvq FD cu c vtcpucevkqp=
9 gpf
: root ← null hqt Hqt gcej Tq kp FD fq
; temp ← root hqt gcej ij kp Tq fq
32 Ecnewncvg virV alue qh kvgo ij d{ gswcvkqp *6+=
33 kh pqfg temp jcu childNode ykvj rtqrgtv{ qh

id gswcnu vq ij vjgp
34 childNode.count ←

childNode.count+ 1=
35 childNode.virV alue ←

childNode.virV alue+
virtualPro(ijTq)=

36 temp ← childNode=
37 gnug
38 Etgcvg pgy pqfg newNode=
39 newNode.id ← ij =
3: newNode.count ← 1=
3; newNode.virV alue ←

virtualPro(ij , Tq)=
42 Vcmg newNode cu ejknf/pqfg qh temp=
43 temp ← newNode=
44 Hkpf qwv eqttgurqpfkpi jgcfgt rqkpvgt nkpm

qh kvgo ij kp JV.vjgp nkpm newNode vq
eqttgurqpfkpi pqfg ejckp=

45 gpf
46 gpf
47 temp ← root=
48 gpf

Table 1 An instance of transaction database DB

TID Transaction

T1 {3, 1, 4}
T2 {2, 1}
T3 {2, 3, 5}
T4 {2, 3, 1}
T5 {2, 3}
T6 {2, 4}

The IFT is constructed based on the global transaction
database DB = {T1, T2, ..., Ts}, where s is the size of DB.
A transaction T consists of the set of item number(id)
corresponding to selected items in an individual. It is
denoted as T = {i1, i2, ..., in}, where ik is the id of the
kth item. Each node in IFT consists of four fields: id,
count, virV alue and nextNode. Considering the mutual
influences among different items in a transaction, the virtual
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value of item is named as virV alue shown in equation (4),
which is the sum of profits of all the items in a transaction
T . In equation (4), n is the number of items and proik is
the profit of item ik. Therefore, the virtual value of item j
in DB is defined as equation (5).

virtualPro(j, T ) =
n∑

k=1

proik , ik ∈ T (4)

virtualPro(j,DB) =
∑n

k=1
virtualPro(j, Tk) (5)

Suppose that item number set is ids = {1, 2, 3, 4, 5}, its
corresponding profit set is pros = {2, 6, 13, 8, 5}. Table 1
gives an instance of transaction database DB. Table 2
shows an instance of calculating the virtual value of items.
The occurrence number of these items of DB in Table 1
is count = {3, 5, 4, 2, 1}. Each item in HT contains two
fields: id and head pointer link of a node chain constructed
by the dashed arc. The nodes with same id can be linked
together through node chain. For example, the nodes with
same id(3) are linked together through the head pointer link
in the second row of HT in Figure 2. A simple example on
the construction procedure of IFT tree is given in Tables 1
and 2. The transactions of DB in Table 1 are read in order.
Next, their corresponding nodes are formed and inserted
into the IFT tree. The process of insertion is shown as
follows. Firstly, three nodes (3, 1, 23), (1, 1, 23), (4, 1, 23)
are formed according to the first transaction T1 from DB
and inserted into IFT tree in order. Accordingly, the left
sub-tree of root node in Figure 2 is obtained. Secondly,
two nodes (2, 1, 8), (1, 1, 8) are constructed according to
the second transaction T2 from DB and inserted into the
IFT tree in order. Thirdly, three nodes (2, 1, 24), (3, 1, 24),
(5, 1, 24) are constructed according to the third transaction
T3 from DB. The count and virV alue of item 2 need to be
updated by accumulating the two parts because item 2 has
already appeared in the IFT tree. Another nodes are inserted
according to above methods. Construct the rest of nodes by
reading the transactions from DB. Insert these nodes into
the IFT tree. Finally, an instance of IFT tree is formed in
Figure 2. The construction process is given in Algorithm 1.

Table 2 An instance of calculating the virtual value of item

id virtualPro(j, T ) virtualPro(j,DB)

1 virtualPro(1, T1) = 23 52
virtualPro(1, T2) = 8

virtualPro(1, T4) = 21

2 virtualPro(2, T2) = 8 86
virtualPro(2, T3) = 24

virtualPro(2, T4) = 21

virtualPro(2, T5) = 19

virtualPro(2, T6) = 14

3 virtualPro(3, T1) = 23 87
virtualPro(3, T3) = 24

virtualPro(3, T4) = 21

virtualPro(3, T5) = 19

4 virtualPro(4, T1) = 23 37
virtualPro(4, T6) = 14

5 virtualPro(5, T3) = 24 24

Algorithm 2 DTT search algorithm

Kprwv< KHV vtgg
Qwvrwv< Scandi

3 Fgeqfg vjg uycto nqecvkqp Xj(t− 1) qh uwd/uycto
Pj(t− 1) vq igv eqttgurqpfkpi id ugv qh ugngevgf
kvgou. fgpqvgf cu Ss = {i|xi = 1 ∧ xi ∈ Xj (t− 1)}=

4 Igpgtcvg c uwd/ugv S∗

s d{ ugngevkpi tcpfqon{ k

gngogpvu htqo Ss=
5 Hkpf vjg kvgo ykvj vjg ngcuv qeewttgpeg pwodgt kp S∗

s

dcugf qp vjg kvgo jgcfgt vcdng HT . cpf igv kvu kf
pwodgt i=

6 Vtcxgtug vjg pqfg ejckp eqttgurqpfkpi vq i kp HT . cpf
qdvckp c pqfg ugv nodeSet=

7 Ngv Scandi = φ=
8 hqt gcej node kp nodeSet fq
9 yjkng node ku pqv tqqv fq
: kh node.id /∈ S∗

s vjgp
; kh vjgtg jcu pq gngogpv kp Scandi yjqug

xcnwg qh hktuv gngogpv ku gswcn vq node.id

vjgp
32 Etgcvg c pgy gngogpv y=
33 y.id ← node.id=
34 y.count ← node.count=
35 y.virV alue ← node.virV alue=
36 Cff y kpvq Scandi=
37 gnug
38 y.count ← y.count+ node.count=
39 y.virV alue ←

y.virV alue+ node.virV alue=
3: gpf
3; gpf
42 node ← node.parNode=
43 gpf
44 gpf

Algorithm 3 The pseudo code of add operator

Kprwv< Vjg htgswgpv kvgo ugv Sadd. vjg nqecvkqp qh
uwd/uycto Xj(t− 1). vjg htgswgpv kvgo ugv
Scandi ykvj xktXcnwg cppqvcvkqp

Qwvrwv< C pgy kpfkxkfwcn Xnew(t)
3 kh |Sadd| = 0 vjgp
4 Owvcvg qpg dkv qh Xj(t− 1) tcpfqon{ cpf c pgy

kpfkxkfwcn Xnew(t) ku iqv=
5 gnug
6 Kpkvkcnkug vjg ugv W = {wj |wj = 〈i, weight〉}=
7 hqt gcej i kp Sadd fq
8 Igv vjg eqttgurqpfkpi gngogpv y qh vjg kvgo i

kp vjg ugv Scandi=
9 Ecnewncvg weight = y.count/totalCount+

y.virV alue/totalPro=
: Cff 〈i, weight〉 kpvq vjg ugv W =
; gpf

32 Ugctej vjg eqttgurqpfkpi gngogpv wj qh vjg ugv W
yjqug hktuv kvgo ku gswcn vq i kp vjg ugv Sadd= =

33 Ugngev vjg kvgo i ykvj rtqdcdknkv{
pi = wi.weight/

∑|Sadd|
j=1

wj .weight=
34 Qdvckp c pgy kpfkxkfwcn Xnew(t) d{ ujkhvkpi vjg

xcnwg qh vjg rqukvkqp kp Xj(t− 1) eqttgurqpfkpi
vq vjg id qh kvgo i vq 3 =

35 gpf
36 Tgrckt vjg pgy kpfkxkfwcn Xnew(t) d{ wukpi cfcrvkxg

tgrckt qrgtcvqt TQ3 kp Nk cpf Jg *423;+=
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Algorithm 4 The pseudo code of drop operator

Kprwv< Vjg htgswgpv kvgo ugv Sdrop. Xj(t− 1). vjg htgswgpv kvgo ugv Scandi

Qwvrwv< C pgy kpfkxkfwcn Xnew(t)
3 kh |Sdrop| ≤ 1 vjgp
4 Owvcvg qpg dkv qh Xj(t− 1) tcpfqon{ cpf c pgy kpfkxkfwcn Xnew(t) ku iqv=
5 gnug
6 Kpkvkcnkug vjg ugv W = {wj |wj = 〈i, weight〉}=
7 hqt gcej i kp Sdrop fq
8 Igv vjg eqttgurqpfkpi gngogpv y qh vjg kvgo i kp vjg ugv Scandi=
9 Ecnewncvg weight = y.count/totalCount+ y.virV alue/totalPro. totalCount ku vjg uwo qh vjg eqwpvu qh cnn vjg

kvgou kp FD. totalPro ku vjg uwo qh vjg virV alue qh cnn vjg kvgou kp FD yjkej ku ecnewncvgf d{ gswcvkqp *7+=
: Cff 〈i, weight〉 kpvq vjg ugv W =
; gpf

32 Ugctej vjg eqttgurqpfkpi gngogpv wj qh vjg ugv W yjqug hktuv kvgo ku gswcn vq i kp vjg ugv Sdrop=

33 Ugngev vjg kvgo i ykvj rtqdcdknkv{ pi =

(

∑|Sdrop|
j=1

wj .weight− wi.weight

)/(

(|Sdrop − 1|)×
∑|Sdrop|

j=1
wj .weight

)

=

34 Qdvckp c pgy kpfkxkfwcn Xnew(t) d{ ujkhvkpi vjg xcnwg qh vjg rqukvkqp kp Xj(t− 1) eqttgurqpfkpi vq vjg id qh kvgo i vq
2 =

35 gpf
36 Tgrckt vjg kpfkxkfwcn Xnew(t) d{ wukpi cfcrvkxg tgrckt qrgtcvqt TQ3 kp Nk cpf Jg *423;+=
37 Qwvrwv vjg kpfkxkfwcn Xnew(t)=

2.2.2 DTT search algorithm

Based on the construction process of IFT tree, it can be
seen that the deeper the node in the IFT tree, the fewer
the occurrence number of the item corresponding to the
node. To search these items with more occurrence number
and larger virtual value, a DTT search strategy is proposed
to obtain frequent item set with virValue annotation as
heuristic information. The frequent item set is denoted
as Scandi = {y|y = ⟨id, count, virV alue⟩}. Algorithm 2
shows the DTT search algorithm.

2.2.3 Drop operator

For each sub-swarm Pj(t− 1), a set Ss =
{i|xi = 1 ∧ xi ∈ Xj(t− 1)} of ids of selected items can
be acquired by decoding its location Xj(t− 1). Then, a
frequent item set Sdrop = {i|i ∈ Ss ∧ i ∈ Scandi} can be
obtained by projecting the set Scandi based on the acquired
set Ss.Execute drop operator by roulette selection strategy
based on the set Sdrop. The pseudo code of drop operator
is given in Algorithm 4.

2.2.4 Add operator

For each sub-swarm Pj(t− 1), a set Su =
{i|xi = 0 ∧ xi ∈ Xj(t− 1)} of ids of unselected items can
be acquired by decoding its location Xj(t− 1). Then, a
frequent item set Sadd = {i|i ∈ Su ∧ i ∈ Scandi} can be
obtained by projecting the set Scandi based on the acquired
set Su. Execute Add operator by roulette selection strategy
based on the set Sadd. The pseudo code of add operator is
given in Algorithm 3.

2.3 Multi-swarm cooperation strategy

To improve the global search capability of bMFOA, a
strategy of multi-swarm cooperation is proposed. The
location Xi(t) of sub-swarm Pi(t) successively executes
uniform crossover with all the individuals in sub-swarm
Pj(t)(j ̸= i) selected randomly. Then, a new sub-swarm
Q(t) is generated. Finally, the best individual among
sub-swarms Pi(t) and Q(t) is selected as the location of
Q(t).

Figure 3 Factor level trend of the bMFOA (see online version
for colours)

2.4 Swarm location escape

To avoid the algorithm falling into the local optimum
prematurely, inspired by Han et al. (2018), a novel swarm
location escape strategy is designed to help the swarm
tackle the issue. The basic idea is that migrating the
location of swarm in a probabilistic way according to
equation (6). In equation (6), c is a constant, Xbest(t) and
Xworst(t) represent the best and the worst individuals of
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each sub-swarm, and f is the fitness evaluation function.
According to the experimental result of parameters setting,
bMFOA can obtain better solutions while the parameter c =
20. So, c is set to 20 in bMFOA.

λ =
1

e
f(Xbest(t))−f(Xworst(t))

c

, λ ∈ (0, 1] (6)

3 Simulation experiments

To verify the performance of the bMFOA, three sets of
classic Benchmark instances (avaiable from ORLIB) are
considered. The first set involves 18 cases with n = 20 to
105 and m = 2 to 30. The second set has 30 cases with
n = 30 to 90 and m = 5. The third set consists of 11 cases
with n = 100 to 1,500 and m = 15 to 50. Algorithm is
coded in Java and run on a 3.3GHz Intel i5-4590 CPU.
For all the experiments, all the algorithms are run 30 times
independently with maximum evaluation number (Emax =
100, 000) as the termination condition.

Table 3 Combinations of parameter values

Parameter Factor level

1 2 3 4

N 5 25 50 100
S 5 25 50 100
φ 10 20 30 40

Table 4 Orthogonal array and ARV value

Experiment
number

Factors ARV
N S φ

1 1 1 1 7,517.60
2 1 2 2 7,506.56
3 1 3 3 7,508.18
4 1 4 4 7,508.16
5 2 1 2 7,531.54
6 2 2 1 7,540.08
7 2 3 4 7,542.68
8 2 4 3 7,542.90
9 3 1 3 7,534.60
10 3 2 4 7,544.04
11 3 3 1 7,543.80
12 3 4 2 7,540.62
13 4 1 4 7,357.00
14 4 2 3 7,542.12
15 4 3 2 7,538.32
16 4 4 1 7,522.12

3.1 Parameter setting

The proposed bMFOA contains three key parameters: the
number of sub-swarms (N ), the size of each sub-swarm
(S), the percentage of elite individuals selected from all
sub-swarms (φ). To investigate the influence of these
parameters on the performance of bMFOA, we adopt the

Taguchi method of design of experiment (DOE) by using
the instance MK gk05. The combinations of different values
of these parameters are listed in Table 3. The average
response variable value (ARV ) is the average of profit.
According to the number of parameters and the number
of factor levels, we choose the orthogonal array L16(4

4).
The orthogonal array and the obtained ARV values are
listed in Table 4. The trend of each factor level is shown
in Figure 3 according to the orthogonal table. Based on the
comprehensive analysis, the values of parameters are set as
N = 25, S = 25, φ = 10 and used for the third test set.
Due to the first test set and the second test set involve in
smaller scale instances, the values of parameters are set as
N = 100, S = 100 and φ = 10.

3.2 Comparisons of other algorithms

In this section, several classic algorithms of TR-BDS and
TE-BDS in Liu et al. (2016), HPSOGO in Mingo et al.
(2018) and HBDE in He et al. (2021) are selected as
compared algorithms. TR-BDS, TE-BDS and HBDE are
improved difference algorithms, HPSOGO is a hybrid and
genetic inspired particle swarm optimisation, HPSOGO
applied genetic operator to generate a new particle and
added penalty functions to handle constraints. Liu et al.
(2016) indicated that TR-BDS and TE-BDS were superior
to MBPSO in Bansal and Deep (2012) and CBPSOCTVA
in Chih et al. (2014) that are efficient methods for solving
MKP problems. Thus, we compare bMFOA with TR-BDS,
TE-BDS, HPSOGO and HBDE based on three test sets. For
sake of fairness, these indicators of Min.Dev, Ave.Dev,
V ar.Dev, Mean, Std and ACT used in their original
paper are adopted together.

From Table 5, bMFOA can obtain the known optimal
solutions for 12 out of 18 instances. Instead, TR-BDS and
TE-BDS can only obtain the known optimal solutions 5
and 3 out of 18 instances respectively. HPSOGO cannot
obtain the known optimal solutions in all instances, HBDE
can obtain the known optimal solutions for 16 out of 18.
In terms of ACT, bMFOA can get the shortest ACT for
8 out of 18 instances, HPSOGO can get the shortest ACT
for 6 out of 18 instances, HBDE can get the shortest ACT
for 4 out of 18 instances. From Table 6, bMFOA can
obtain the known optimal solutions in all 30 cases. TR-BDS
and TE-BDS can only get 10 and 3 out of 18 instances
respectively. HPSOGO cannot obtain the known optimal
solutions in all instances, HBDE can obtain the known
optimal solutions for 28 out of 30. As for ACT, bMFOA
can get the shortest ACT for 13 out of 30 instances,
HPSOGO can get the shortest ACT for 14 out of 30
instances, HBDE can get the shortest ACT for 3 out of
30 instances. In Table 7, we can know that the results
acquired by bMFOA are all superior to those of TR-BDS,
TE-BDS and HPSOGO, HBDE in all instances in terms of
Mean and 8 out of 10 instances in terms of Std. However,
HPSOGO outperforms the others algorithms in terms of
ACT .
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Table 5 Comparisons among TR-BDS, TE-BDS, HPSOGO, HBDE and bMFOA based on test set 1

Problem n × m Best know TR-BDS TE-BDS
Mean Std ACT (s) Mean Std ACT (s)

Sento1 60×30 7,772 7,756.13 60.24 21.71 7,758.43 18.74 24.22
Sento2 60×30 8,722 8,719.93 4.03 21.69 8,717.43 6.07 24.80
hp1 28×4 3,418 3,409.80 6.82 16.33 3,412.60 6.73 19.04
hp2 35×4 3,186 3,185.57 2.37 16.57 3,186.00 0.00 19.25
pb1 27×4 3,090 3,083.17 6.96 16.16 3,083.60 6.97 18.67
pb2 34×4 3,186 3,185.57 2.37 16.52 3,185.40 3.29 19.08
pb4 29×2 95,168 95,168.00 0.00 15.84 95,168.00 0.00 18.38
pb5 20×10 2,139 2,135.60 6.92 16.49 2,135.03 7.31 18.86
pb6 40×30 776 769.80 8.12 20.16 768.87 12.28 22.82
pb7 37×30 1,035 1,034.53 1.36 20.14 1,033.97 2.83 22.71
Weing1 28×2 141,278 141,278.00 0.00 15.65 141,261.33 91.29 17.77
Weing2 28×2 130,883 130,883.00 0.00 15.74 130,872.33 40.59 17.65
Weing3 28×2 95,677 95,003.87 248.59 15.61 94,837.67 611.37 17.60
Weing4 28×2 119,337 119,337.00 0.00 15.65 119,337.00 0.00 17.69
Weing5 28×2 98,796 97,662.60 1,760.89 16.97 97,001.27 1,955.54 17.61
Weing6 28×2 130,623 130,623.00 0.00 16.75 130,610.00 71.20 17.59
Weing7 105×2 1,095,445 1,087,354.87 1,453.51 21.70 1,088,624.43 1,445.27 22.60
Weing8 105×2 624,319 620,258.83 8,671.78 20.05 619,356.73 9,046.16 21.21

Problem HPSOGO HBDE bMFOA
Mean Std ACT (s) Mean Std ACT (s) Mean Std ACT (s)

Sento1 6,815.90 409.08 0.86 7,772.00 0.00 1.96 7,772.00 0.00 1.17
Sento2 6,883.40 382.61 0.87 8,721.91 0.29 0.81 8,722.00 0.00 6.15
hp1 3,395.53 19.14 0.59 3,418.00 0.00 0.76 3,413.13 8.19 7.64
hp2 3,176.60 9.01 0.63 3,186.00 0.00 0.95 3,155.67 12.31 21.76
pb1 3,071.37 350.80 0.55 3,090.00 0.00 0.76 3,088.13 4.76 4.22
pb2 3,160.23 26.48 0.61 3,186.00 0.00 0.92 3,165.07 13.94 18.36
pb4 94,796.40 350.80 0.55 95,168.00 0.00 0.79 95,168.00 0.00 0.36
pb5 2,128.93 9.95 0.52 2,139.00 0.00 0.59 2,139.00 0.00 0.19
pb6 774.00 2.43 0.76 776.00 0.00 1.41 776.00 0.00 0.38
pb7 1,012.57 17.83 0.71 1,034.96 0.20 1.25 1,035.00 0.00 0.63
Weing1 133,100.00 5,306.77 0.52 141,278.00 0.00 0.76 141,278.00 0.00 0.73
Weing2 126,681.30 3,156.12 3.23 130,883.00 0.00 0.78 130,883.00 0.00 0.67
Weing3 95,289.10 376.04 3.17 95,677.00 0.00 0.78 95,677.00 0.00 0.23
Weing4 116,661.20 2,781.42 3.19 119,337.00 0.00 0.76 119,337.00 0.00 0.20
Weing5 98,216.70 645.69 3.24 98,796.00 0.00 0.78 98,796.00 0.00 0.17
Weing6 126,764.13 3,282.10 3.22 130,623.00 0.00 0.77 130,558.00 145.34 3.19
Weing7 688,657.03 33,845.18 4.32 1,095,445.00 0.00 2.73 1,095,384.10 11.31 21.36
Weing8 617,959.17 4,752.18 4.28 624,319.00 0.00 2.88 624,319.00 0.00 3.50

The results of Tables 5, 6 and 7 display that bMFOA can
get better results than TR-BDS, TE-BDS and HPSOGO
in solving small, medium-scale and large-scale MKP
problems, bMFOA can get competitive results in solving
small, medium-scale MKP problems than HBDE and get
better results in large-scale MKP problems. In brief,
bMFOA performs better than TR-BDS, TE-BDS and
HPSOGO in most instances in terms of Mean, Std and
ACT based on three test sets, better than HBDE in terms of
Mean, Std based on the third test set. Based on the above
experimental results, it is fair to conclude that bMFOA has
a good exploitation and exploration ability in solving MKP
problems with various scale.

4 Conclusions

In this study, we proposed an improved FOA algorithm
for solving the MKP. To handle the problem of lacking

of swarm diversity in FOA, a parallel search method
is applied. By introducing cooperation strategy among
the sub-swarms, the exploitation ability of algorithm is
greatly improved. To strength the exploration ability of
the algorithm, bMFOA constructs an item frequency tree,
which contains global information, and provides a novel
search strategy based on the constructed frequency tree.
Then according to the obtained heuristic information, two
kinds of operators are designed to accelerate the process
of searching in the solution space. The performance of our
proposed method was evaluated using 58 different widely
used benchmarks from the OR-Library, the results show that
bMFOA has a good exploitation and exploration ability in
solving MKP problems with different scales.
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Table 6 Comparisons among TR-BDS, TE-BDS, HPSOGO, HBDE and bMFOA based on test set 2

Problem n × m Best know TR-BDS TE-BDS

Mean Std ACT (s) Mean Std ACT (s)

weish01 30×5 4,554 4,554.00 0.00 15.27 4,554.00 0.00 16.74
weish02 30×5 4,536 4,536.00 0.00 15.27 4,536.00 0.00 16.76
weish03 30×5 4,115 4,115.00 0.00 15.22 4,111.78 13.28 16.74
weish04 30×5 4,561 4,561.00 0.00 15.13 4,561.00 0.00 16.72
weish05 30×5 4,514 4,514.00 0.00 15.12 4,511.66 11.62 16.66
weish06 40×5 5,557 5,557.00 0.00 15.82 5,556.48 2.57 17.44
weish07 40×5 5,567 5,566.66 2.40 15.81 5,565.28 5.21 17.37
weish08 40×5 5,605 5,604.96 0.28 15.86 5,604.76 0.66 17.45
weish09 40×5 5,246 5,246.00 0.00 15.77 5,232.54 84.01 17.26
weish10 50×5 6,339 6,339.00 0.00 16.30 6,336.58 10.79 17.78
weish11 50×5 5,643 5,636.40 25.67 16.18 5,628.28 29.50 17.78
weish12 50×5 6,339 6,335.12 19.20 16.24 6,335.98 15.56 17.79
weish13 50×5 6,159 6,158.26 5.23 16.20 6,151.14 22.02 17.74
weish14 60×5 6,954 6,951.10 10.03 16.84 6,951.94 12.13 18.33
weish15 60×5 7,486 7,484.24 8.71 16.83 7,471.56 62.36 18.39
weish16 60×5 7,289 7,289.00 0.00 16.88 7,287.44 10.46 18.38
weish17 60×5 8,633 8,633.00 0.00 17.17 8,632.52 3.39 18.97
weish18 70×5 9,580 9,579.38 4.38 17.71 9,578.02 6.26 19.45
weish19 70×5 7,698 7,696.64 7.75 17.42 7,689.00 22.56 19.18
weish20 70×5 9,450 9,449.64 1.78 17.64 9,447.02 8.36 19.34
weish21 70×5 9,074 9,069.04 28.85 17.59 9,069.76 13.17 19.23
weish22 80×5 8,947 8,946.24 5.37 17.88 8,942.06 19.28 19.54

Problem HPSOGO HBDE bMFOA

Mean Std ACT (s) Mean Std ACT (s) Mean Std ACT (s)

weish01 4,275.33 153.43 0.57 4,554.00 0.00 0.80 4,554.00 0.00 0.25
weish02 4,300.90 169.12 0.57 4,536.00 0.00 0.82 4,536.00 0.00 0.25
weish03 3,988.03 104.67 3.25 4,115.00 0.00 0.82 4,115.00 0.00 0.21
weish04 4,290.10 179.04 3.33 4,561.00 0.00 0.84 4,561.00 0.00 0.20
weish05 4,286.90 155.79 0.55 4,514.00 0.00 0.84 4,514.00 0.00 0.18
weish06 4,933.17 252.21 0.64 5,556.57 2.33 1.09 5,557.00 0.00 0.97
weish07 4,948.13 253.10 0.63 5,567.00 0.00 1.08 5,567.00 0.00 0.35
weish08 4,934.80 280.29 0.65 5,605.00 0.00 1.08 5,605.00 0.00 0.76
weish09 4,949.90 188.01 0.64 5,246.00 0.00 1.10 5,246.00 0.00 0.31
weish10 5,738.77 308.04 0.76 6,339.00 0.00 1.39 6,339.00 0.00 0.48
weish11 5,494.17 118.32 3.60 5,643.00 0.00 1.37 5,643.00 0.00 0.37
weish12 5,748.07 223.25 3.58 6,339.00 0.00 1.39 6,339.00 0.00 0.49
weish13 5,772.23 233.33 3.59 6,159.00 0.00 1.39 6,159.00 0.00 0.48
weish14 6,255.83 290.93 3.73 6,954.00 0.00 1.67 6,954.00 0.00 1.13
weish15 6,268.90 309.40 3.66 7,486.00 0.00 1.62 7,486.00 0.00 0.63
weish16 6,278.43 309.03 3.72 7,289.00 0.00 1.65 7,289.00 0.00 2.22
weish17 6,347.63 263.56 3.78 8,633.00 0.00 1.59 8,633.00 0.00 5.99
weish18 7,272.17 419.16 3.89 9,580.00 0.00 1.88 9,580.00 0.00 10.61
weish19 7,121.40 234.27 0.95 7,698.00 0.00 1.92 7,698.00 0.00 1.70
weish20 7,163.07 386.77 0.93 9,450.00 0.00 1.88 9,450.00 0.00 4.59
weish21 7,137.50 382.52 0.95 9,074.00 0.00 1.88 9,074.00 0.00 2.37
weish22 7,628.97 383.57 1.05 8,947.00 0.00 2.18 8,947.00 0.00 4.89
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Table 6 Comparisons among TR-BDS, TE-BDS, HPSOGO, HBDE and bMFOA based on test set 2 (continued)

Problem n × m Best know TR-BDS TE-BDS

Mean Std ACT (s) Mean Std ACT (s)

weish23 80×5 8,344 8,342.74 7.64 17.81 8,332.24 24.95 19.49
weish24 80×5 10,220 10,215.88 8.77 18.16 10,218.86 3.84 19.89
weish25 80×5 9,939 9,937.74 3.87 18.02 9,932.98 14.11 19.70
weish26 90×5 9,584 9,578.74 30.85 18.39 9,575.70 19.60 20.01
weish27 90×5 9,819 9,816.94 14.57 18.27 9,802.18 47.03 19.96
weish28 90×5 9,492 9,488.74 16.59 18.28 9,484.30 20.63 19.97
weish29 90×5 9,410 9,403.62 23.36 18.30 9,402.84 22.79 20.00
weish30 90×5 11,191 11,181.52 13.82 18.67 11,184.16 11.63 20.00

Problem HPSOGO HBDE bMFOA

Mean Std ACT (s) Mean Std ACT (s) Mean Std ACT (s)

weish23 7,568.30 338.01 1.03 8,343.90 0.54 2.19 8,344.00 0.00 4.01
weish24 7,642.60 335.64 1.03 10,220.00 0.00 2.12 10,220.00 0.00 12.38
weish25 7,561.90 387.75 1.04 9,939.00 0.00 2.16 9,939.00 0.00 7.52
weish26 8,142.77 299.61 1.11 9,584.00 0.00 2.47 9,584.00 0.00 5.96
weish27 7,919.53 341.12 1.12 9,819.00 0.00 2.46 9,819.00 0.00 6.55
weish28 8,034.87 350.69 1.11 9,492.00 0.00 2.46 9,492.00 0.00 4.55
weish29 8,073.33 402.12 1.12 9,410.00 0.00 2.46 9,410.00 0.00 5.13
weish30 3,395.53 19.14 0.56 11,191.00 0.00 2.39 11,191.00 0.00 16.22

Table 7 Comparisons among TR-BDS, TE-BDS, HPSOGO, HBDE and bMFOA based on test set 3

Problem n × m Best know TR-BDS TE-BDS

Mean Std ACT (s) Mean Std ACT (s)

mk gk01 100×15 3,766 3,688.26 6.02 21.20 3,720.86 7.01 22.59
mk gk02 100×25 3,958 3,878.88 8.09 22.61 3,905.62 8.20 24.02
mk gk03 150×25 5,650 5,512.06 7.55 25.61 5,542.22 9.87 27.00
mk gk04 150×50 5,764 5,623.70 9.16 29.66 5,648.32 8.50 31.12
mk gk05 200×25 7,557 7,349.14 11.41 28.42 7,376.84 9.56 29.96
mk gk06 200×50 7,672 7,488.88 9.95 32.92 7,504.88 9.34 34.37
mk gk07 500×25 19,215 1,8588.20 22.74 42.48 18,600.36 21.70 44.16
mk gk08 500×50 18,801 18,299.68 14.88 48.54 18,308.58 13.09 50.09
mk gk09 1,500×25 58,085 56,035.20 38.46 101.90 56,058.74 36.00 103.50
mk gk10 1,500×50 57,292 55,719.48 25.50 111.60 55,746.32 30.97 113.00

Problem HPSOGO HBDE bMFOA

Mean Std ACT (s) Mean Std ACT (s) Mean Std ACT (s)

mk gk01 3,688.37 64.70 1.22 3,748.47 2.59 2.80 3,758.10 2.61 3.27
mk gk02 3,868.30 59.32 1.25 3,943.30 3.46 2.88 3,944.70 3.53 4.09
mk gk03 5,515.80 96.13 3.14 5,610.57 6.40 4.31 5,636.37 2.81 10.05
mk gk04 5,535.90 105.11 3.38 5,711.23 6.28 4.76 5,748.20 3.30 11.39
mk gk05 7,035.97 169.66 3.88 7,492.97 8.07 5.79 7,541.70 3.60 14.66
mk gk06 7,284.10 209.28 4.48 7,599.77 6.00 6.39 7,647.93 3.39 33.32
mk gk07 16,460.07 297.48 8.82 19,004.20 10.97 14.25 19,190.13 4.62 192.73
mk gk08 16,330.17 284.62 10.64 18,581.10 6.61 16.06 18,754.70 6.48 201.12
mk gk09 46,851.60 705.82 26.52 57,221.30 25.42 43.65 57,986.67 14.11 4,038.73
mk gk10 46,612.67 484.35 26.36 56,490.63 26.64 46.85 57,139.63 16.45 4,552.37
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