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1 Introduction 

Cloud computing has well established in the last few years. 
Even if historically the initial interest for this computing 
paradigm was aroused by the search for low-cost and never-
obsolescent computing resources, currently elasticity is playing 
an essential role. Elasticity is indeed an intrinsic feature of 
cloud environments (Mell and Grance, 2011), enabling a cloud 
application deployment to adapt to workload changes, ensuring 
Quality of Service (QoS) requirements with minimum 
infrastructure leasing costs. 

Maybe the most elusive among the traditional design goals 
of distributed systems is scalability. A scalable system can be 
adapted to different load levels by adding or, not less 
interestingly, removing resources. As is well known, scalability 
can be exploited horizontally, increasing/decreasing the 
number of compute nodes/servers, or vertically, upgrading/ 
downgrading the nodes. As will be discussed later, depending 
on the virtualisation level, the compute nodes can be Virtual 
Machines (VMs) or containers. However, in traditional 
computing environments the scaling requires non-trivial and 
costly system reconfiguration. In clouds, scaling a given 
deployment can be performed rapidly and possibly in a 
completely automated manner. Cloud ‘elasticity’ means to look 
at the leased deployment configuration as to a rubber band, to 
be stretched when the load is high, and released when it 
decreases. Stated another way, elasticity paves the way to the 
design of software systems that are able to guarantee high QoS 
levels under highly variable, possibly unexpected, workload 
bursts, at the same time minimising hardware leasing costs. 

However, even if cloud elasticity is a powerful enabling 
factor, obtaining optimal scaling remains challenging. Simply 
stated, the problem is to devise automatic or semi-automatic 
tools to find out when and how to scale. These tools, which 
allow to trigger scaling actions and to change the amount of 
leased computing resources according to some kind of  
user-generated or self-managed, autonomic input, are called 
auto-scalers. Auto-scalers can be extraordinarily powerful 
instruments, but their adoption poses challenging issues that 
need to be addressed. In particular: 

 Workload forecasting is surely an important matter. To 
avoid QoS losses, it is desirable to acquire additional 
resources before an actual workload increase. This can be 
achieved only by workload prediction;  

 Accurate estimation of the resources actually needed is 
currently an open issue. Resource under-provisioning  
will inevitably worsen performance; resource over-
provisioning reduces computing efficiency. In both cases, 
the undesired effect is to incur in unnecessary costs. 

Therefore, there are a number of complex objectives that an 
auto-scaler should achieve by balancing QoS and costs. 
Currently the issues linked to auto-scaling are not widely 
understood, and a reference standard or implementation is still 
lacking. Each commercial cloud provider has its own 
interpretation of the problem and its own way of addressing it. 
Most of the times, the available solutions are far less than 
optimal, and suspiciously neglect leasing costs. 

In the light of the above, in order to design an efficient 
auto-scaler, it is necessary to take targeted decisions. However, 
there are no general ‘best practices’ that allow to design a 
perfect auto-scaler. Overall, there are some key points that 
every designer should consider when building an auto-scaler. 
These are: 

 When to scale and how to estimate resources? In other 
words, when the scaling operation is triggered and how the 
resources needed are estimated to provide the desired QoS 
level;  

 How to scale? An auto-scaler can scale a deployment both 
horizontally and vertically;  

 Which metrics should be monitored? This is strictly related 
to the context, since in each different scenario some 
metrics may be more meaningful than others. A careful 
selection of the metric to be monitored is indeed necessary 
to avoid unnecessary overheads;  

 How to dynamically adapt to changes? In general, bursty 
workloads are unpredictable; therefore, a good auto-scaler 
should be capable of adapting to load in a timely manner. 
However, due to its complexity, adaptability is not a 
common feature in existing scalers;  

 What is the virtualisation level? The layer of virtualisation 
of hardware resources might be different. Current 
advancements in OS-level virtualisation have made viable 
the use of containers along with traditional VM-based 
solutions.  

In light of the above, finding an optimal solution is a complex 
matter. In general, as stated above, there is no universal 
parameter set to consider for a complete auto-scaler design. 
The goal of this paper is to give an overview of the current state 
of the art on auto-scaling, pointing out the key design points 
and discussing the on-going research on this topic, so as to 
stimulate and support the production of better auto-scaler tools. 

Over time, a few auto-scaling surveys and design 
taxonomies have been proposed, such as Lorido-Botran et al. 
(2014); Qu et al. (2018) and Singh et al. (2019). Our approach 
here is slightly different. More than a mere systematic 
description of all the scaling factors to be considered, our goal 
is to identify the crucial auto-scaling key points and then 
understand how these are mapped on recent literature and 
implementations. 

In this paper, after a formalisation of the auto-scaling 
problem in Section 2, we focus on scaling timing in Section 3, 
which allows to understand ‘when to scale’ and on techniques 
for resource estimation in Section 4. We describe the metrics 
that can be used to trigger the scaling actions in Section 5 and 
the scaling methods that allow to understand ‘how to scale’ in 
Section 6. We also consider the adaptivity in Section 7 and the 
virtualisation level that can be adopted by an auto-scaler in 
Section 8. In the second part of the paper, we present literature 
solutions organised into four macro-categories in Section 9. 
Each of these identifies the researchers vision to improve one 
or more factors such as cost, resource optimisation, Service 
Level Agreement (SLA) violation, etc. Later, we deal with 
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existing auto-scaling implementations, including those used by 
several commercial providers in Section 10. Finally, the main 
open research issues and directions are traced and discussed in 
Section 11 and our conclusions are drawn in Section 12. 

2 The auto-scaling problem and the MAPE loop 

In the literature, the auto-scaling problem is typically addressed 
as an autonomous control problem by using the Monitor-
Analyse-Plan-Execute (MAPE) loop as a reference model 
(Maurer et al., 2011) (see Figure 1). During the monitoring 
phase, an information gathering activity is planned to assess  
the status of resource utilisation. This task requires the 
measurement of purposely-selected metrics about system and 
application current state. During the analysis phase, the 
information collected is analysed to be used later on. Scaling 
decisions are taken by avoiding oscillations that occur when 
scaling actions are carried out too quickly. The analysis process 
could be even more complex, if machine learning techniques 
for knowledge discovery from the information gathered by 
monitoring are adopted (Amiri and Mohammad-Khanli, 2017). 
The results obtained during the analysis phase are subsequently 
matched to rules defined by the application provider. 

Figure 1 The MAPE loop 

 

During the planning phase, the scaling decisions are taken. 
As will be discussed in Section 6, it is possible to choose 
between horizontal and vertical scaling. In cloud systems, 
horizontal scaling is the most widely used approach; it 
adjusts the number of node instances, e.g., VMs and/or 
containers, by acquiring further nodes (scaling out) or by 
releasing idle nodes (scaling in). Vertical scaling, instead, 
involves adding (scaling up) or subtracting (scaling down) 
to/from existing node resources as compute cores or RAM. 

The last phase of the MAPE loop is the execution one, 
which involves the execution of the scaling decision 
previously taken. Conceptually, execution is an easy phase, 
but there are hidden complexities due to choices to be made 
in the presence of multiple providers with data centres in 
different geographical regions. 

As a matter of fact, many auto-scaling techniques are 
MAPE-loop-based (Qu et al., 2018). Considering all the 
aspects mentioned above, it is clear that the choice of an 
optimal auto-scaling strategy is challenging. This complexity is 

also reinforced by the presence of multiple cloud providers 
with an extraordinary variety of cost plans. 

3 Scaling timing 

The first factor to consider regarding the ‘when to scale’ key 
point is the timing of the scaling, i.e., when the scaling 
operation is triggered and how long does it take. This is a 
crucial issue especially when scaling up/out. A delay in the 
availability of additional resources required to cover load peaks 
can lead to unacceptable low performance and QoS violation. 
On the other hand, delays encountered when scaling down/in 
lead to unnecessary costs, but this is often only a secondary 
concern. For this reason, in this section we will consider mainly 
the timing of up/out scaling. 

The ‘enrolment’ of an additional VM may require few 
minutes to setup an image, boot the OS, and launching the 
software. Understanding when to trigger scaling is a critical 
decision, due to the delay between the instant in time when the 
scaling decision is taken and the instant when it becomes 
effective. This delay could have an impact on both Quality of 
Service (QoS) and costs. The approaches used to decide when 
to scale take two forms: reactive and proactive. Sometimes 
hybrid approaches are adopted, which combine both these 
scaling policies. 

Reactive scalers observe workload changes and act 
accordingly. The changes are detected using the past values of 
a set of monitored performance indicators. Consequently, the 
provisioning of resources is adjusted. This approach is cost-
saving, as the exact amount of resources required are 
provisioned. On the other hand, resource provisioning takes 
time. Therefore, there is a risk of outages if provisioning is not 
fast enough. In order to ‘cover’ rapid spikes of load, an obvious 
solution is over-provisioning. Unfortunately, this rises the 
costs. A trade-off solution might involve the use of a threshold 
(more on this later). Examples of reactive scalers are proposed 
in Kumar and Gondhi (2017) and Han et al. (2014). 

In proactive scalers the system provisions additional 
resources before the actual increase in load in order to take 
early scaling decisions. There are two common approaches to 
proactive scaling: scaling based on scheduling and predictive 
scaling. In the first case, the user provides a scheduling of the 
required resources. For example, it is possible to double the 
capacity of an on-line shop one hour before a big promotion; in 
this case, the goal is to plan scaling decisions. The second 
approach, instead, involves the prediction of the future loads by 
using historical data and forecasting techniques. In this context, 
the accuracy of the prediction algorithm is an issue. In the 
literature there are many solutions based on workload 
prediction, as Alipour and Liu (2017). In particular, this work 
shows two solutions to predict CPU demand by a machine-
learning approach. Overall, the drawbacks of proactive scalers 
are high costs, because they tend to add more capacity than 
actually needed. 

In hybrid scalers the system exploits a combination of 
reactive and proactive approaches. In many situations it is 
possible to obtain forecasts as workload patterns can be 
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found, but it is not possible to deal with unplanned bursts. In 
these cases, mixed scaling approaches would be beneficial. 
Two solutions that propose hybrid scalers are shown in 
Moore et al. (2013b, 2013a). 

4 Techniques for resource estimation 

In light of the discussion in the Section 3 above, it can be 
said that auto-scalers (whether reactive, proactive or hybrid) 
react to stimuli linked to the system current and/or expected 
load, trying to match at best an estimation of the resources 
needed to provide the desired QoS level. The techniques 
used for resource estimation can be classified as follows: 

 Threshold-based rules;  

 Time series analysis;  

 Control theory;  

 Queuing theory;  

 Reinforcement learning.  

These approaches will be orderly dealt with below. 
With Threshold-based rules, the scaling decisions are 

triggered by means of predefined thresholds. Threshold-based 
rules follow a simple reactive approach. For example, 
assuming the application is CPU bound, provisioning can be 
started at 50% CPU utilisation. In this case, assuming as a 
threshold value 50% CPU utilisation, it is possible to have 
always more capacity than needed. This can be considered a 
healthy safety factor. Threshold-based approaches have 
become quite popular due to their (apparent) simplicity. 
Nevertheless, there is no systematic method that allows the 
thresholds to be defined rigorously. Hence, the effectiveness of 
these settings under highly variable workloads is questionable. 
Some conventional reactive threshold-based approaches are 
presented in Biswas et al. (2015); Casalicchio and Silvestri 
(2013) and Beltrán (2015). Moreover, the use of thresholds is 
the only approach widely used in the commercial auto-scaling 
systems such as AWS (https://aws.amazon.com/autoscaling), 
Google (https://cloud.google.com/appengine/docs), Azure 
(https://azure.microsoft.com/en-in/features/autoscale), and 
Kubernetes (https://github.com/kubernetes/autoscaler/tree/ 
master/cluster-autoscaler). Many open-source cloud-computing 
platforms, such as Eucalyptus (https://docs.eucalyptus. 
cloud/eucalyptus/4.4.5/user-guide-4.4.5.pdf), OpenNebula 
(https://docs.opennebula.io/5.8/advanced_components/ 
application_flow_and_auto-scaling/appflow_elasticity.html) 
and Nimbus (http://www.nimbusproject.org/doc/phantom/ 
latest/protocol.html) also adopt a threshold-based reactive 
approach. 

The overall process is based on the selection of the right 
working rules to set a threshold. These rules are tuned on the 
basis of one or more performance metrics. The most popular 
metrics are average CPU load of the VMs, response time and 
input request rate. It is clear that the performance of rule-
based approaches strongly depends on these parameters, and, 
as a matter of fact, their use is not trivial. To avoid unwanted 

oscillations in the number of nodes and/or of the resources 
assigned to each of them, duration parameters are used to 
decrease the number of scaling actions. Duration defines how 
long the threshold conditions must be exceeded to trigger a 
scaling action. This issue is highlighted in Dutreilh et al. 
(2010). In Hasan et al. (2012), six parameters (four thresholds 
and two durations) are used in order to perform the right 
scaling action. It is also worth pointing out that the 
approaches based on thresholds require frequent tuning in 
order to perform the right scaling action. Therefore, they are 
suitable for fairly regular load patterns, but turn out to be less 
effective for bursty workloads. 

Time series are very useful to represent the change of a 
measured parameter over time. A time series is a sequence of 
samples, produced at uniform time intervals. An example 
might be the number of requests for a server, sampled at one 
minute intervals. In general, Time series analysis is the 
dominant approach in the cloud workload prediction area. In 
this context, the effectiveness of prediction largely depends 
on parameters such as the monitoring-interval length and the 
size of the history window. Clearly, the accuracy of the model 
depends on the window input size. Sometimes a subset of 
these parameters, such as the size of the history window, is 
the input for a neural network (Islam et al., 2012), which, 
thanks to an off-line training, predicts the values of 
performance indicators adopted for scaling decisions.  
Hu et al. (2016) proposed a predictive scaling approach for 
VMs provisioning. 

Time series analysis techniques are indeed appealing for 
implementing auto-scalers, as they allow to provision 
resources proactively. However, despite their potential, they 
often fail to provide satisfactory prediction accuracy, which 
strongly depends on system parameters (i.e., the target 
application, the input workload patterns, the history window, 
etc.). 

The Control theory approach involves the creation of a 
model of the application. A controller (reactive or proactive) 
is defined to adjust automatically the required resources to the 
application demands. For example, Ghanbari et al., 2011) 
described a feedback controller used to guarantee the 
satisfaction of application constraints. In the literature many 
well-known controllers, including Proportional-Integral-
Derivative (PID), Proportional-Integral (PI) and Integral (I), 
have been extensively used. For example, Lim et al. (2010) 
exploited an I controller in order to adjust the number of 
VMs based on average CPU usage. The Kubernetes auto-
scaling mechanism (https://github.com/kubernetes/autoscaler/ 
tree/master/cluster-autoscaler) is also based on the control 
theory approach. Reactive controllers could be used in order 
to react to the observed workload change, but also proactive 
controllers as Model Predictive Control (MPC) are suitable in 
order to design effective scalers. For example, in Roy et al. 
(2011) an Autoregressive-Moving-Average (ARMA) model 
for workload forecasting is combined with the look-ahead 
controller to optimise the resource provisioning. The 
suitability of controllers for auto-scaling highly depends  
on the type of controller and the dynamics of the target 
system. The idea of having a controller that automates the 
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provisioning process is sound, but devising a reliable one-fits-
all model is a complex task. 

Queuing theory is a traditional approach to computer 
system modelling. Network of queues have been widely 
applied in order to find the relationship between the jobs 
arriving and leaving a system. In particular, Han et al. (2014) 
followed this approach in order to estimate resource need. 
They exploit a greedy approach to modulate the number of 
nodes on the basis of the current load. In Ali-Eldin et al. 
(2012), instead, a cloud-hosted application is modelled as a 
G/G/N queue, where the number of nodes (servers, according 
to queuing theory terminology) N  is variable. The model can 
be exploited in order to compute, for example, the necessary 
resources required to process a given input workload  , or 
the mean response time for requests, given a particular 
configuration of nodes. Queues can also be exploited to 
model elastic applications, representing each server as a 
separate queue. An example that follows this approach is 
reported in Urgaonkar et al. (2008). In particular, it uses a 
network of G/G/1 queues (one per each node). 

The information required for a queuing model, such as the 
input workload or service time, can be obtained by on-line 
monitoring or estimated using different methods. Zhang et al. 
(2007) used a regression-based approximation to estimate the 
CPU demand, based on the number and type (browsing, 
ordering or shopping) of client requests. 

Queuing models have been extensively used to model 
applications and systems. Unfortunately, due to their fixed 
architecture, they are not very flexible to changes. As a matter 
of fact, any changes in structure or parameters is likely to be 
costly. This might be a problem for elastic applications that 
have to deal with a changing input workload and a varying 
pool of resources. 

Reinforcement learning is an alternative to control theory 
adoption. Its main advantage is the requirement of no a priori 
knowledge or model of the application. When the deployment 
is scaled, a reward or a punishment is computed to identify 
how good the resource estimation had been (Sutton and 
Barto, 2018). 

In general, proactive timing is assumed for all 
reinforcement learning approaches. Auto-scaling in the cloud 
based on reinforcement learning is surveyed in Garí et al. 
(2020). Horovitz and Arian (2018) propose simulation and 
real-application tests results by comparing Q-Learning, a 
model-free reinforcement learning algorithm, to the static 
threshold based method in a real (Kubernetes-based) 
environment. The Authors show that their improved Q-
Learning algorithm successfully prevents SLA violations. 
John et al. (2019), instead, present a reinforcement learning-
based algorithm that addresses two crucial problems in 
classical approaches such as Q-learning: slow convergence 
and lack of scalability. They exploit the technique of adaptive 
tile coding and workload forecasting in order to guarantee 
efficient utilisation of resources. The validity of the proposed 
method as compared to static, threshold-based and other 
reinforcement learning-based allocation schemes is shown by 
experiments on the Cloudsim platform (Calheiros et al., 
2011). 

Reinforcement learning techniques are a promising 
solution to the auto-scaling problem, since they do not 
require any application modelling. However, some 
reinforcement learning algorithms, such as Q-Learning, may 
lead to unacceptably poor performance, as they require a 
long training period before a good-enough solution is found. 
Even assuming that an optimal policy is found, any change 
of the environmental conditions (e.g., the workload pattern) 
requires re-adaption and further long training periods. 

5 Scaling metrics 

The techniques for resource estimation dealt with in Section 
4 rely on the measurement of metrics that can be collected 
at different levels. There is no general rule for selecting 
scaling metrics. We classified the metrics according to the 
level at which the measurement is performed, as follows: 

 CSP level metrics: metrics adopted to measure resources 
offered by Cloud Service Providers (CSPs), as CPU 
performance and network bandwidth;  

 Application level metrics: metrics adopted to measure the 
resources leased by a specific cloud application (e.g., CPU 
and memory utilisation of acquired nodes);  

 Business logic level metrics: metrics that are specific for 
the application under analysis, adopted to measure 
business logic performance.  

The CSP level metrics are the metrics adopted for the 
measurement made by Cloud Service Providers. Measurements 
of such metrics are useful to characterise the global behaviour 
of a CSP. In fact, they are commonly adopted to compare 
different CSPs. Examples of these metrics are the bandwidth of 
the external network and/or the CPU performance in 
MIPS/FLOPS of a single core VM. Such metrics are typically 
measured by third party services (e.g., CloudHarmony 
(https://cloudharmony.com)) or by the CSPs themselves 
(Amazon’s CloudWatch (https://aws.amazon.com/cloudwatch) 
offers many of such metrics). At the best of the authors’ 
knowledge, these metrics are never adopted by auto-scalers, as 
they provide data too coarse-grained, even if they can be useful 
for the performance tuning of applications with well-known 
behaviour. 

The application level metrics are associated to the 
resources acquired by Cloud Service Customers (CSCs) and 
are mostly indicators collected at operating system level or by 
the hypervisor. These types of metrics can be measured by 
the CSCs, using ad hoc tools and/or using services offered by 
the CSP, as CloudWatch. Many commercial scaling solutions 
exploit these types of metrics. For example, container 
orchestration systems as Kubernetes (https://github.com/ 
kubernetes/autoscaler/tree/master/cluster-autoscaler) or 
providers as Amazon (https://aws.amazon.com/autoscaling) 
consider infrastructure related metrics, such as CPU utilisation, 
as reference metrics. In particular, the CPU utilisation seems to 
be the most common indicator used in the design of auto-
scalers. This aspect is also highlighted in some literature works 
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such as Ye et al. (2017) and Liao et al. (2015). However, 
sometimes also other low-level indicators such as disk access, 
memory usage, or page faults are adopted. Lu et al. (2017) 
model an optimisation problem in order to minimise the VMs’ 
configuration cost. In particular, they evaluate the migration 
delay occurring when a VM must be shut down and its data is 
transferred to a new VM by considering the size of the image, 
the bandwidth and the booting time of a VM, etc. 

The business logic level metrics are collected on top of the 
application level and rely on the business logic. These metrics 
are more complex to analyse than the previous ones, as they 
require a deep knowledge of the application. In some cases, 
off-line application profiling may also be required. Chieu et al. 
(2009) proposed a dynamic scaling algorithm for web 
applications based on the number of active sessions, the request 
rate and mean response time. In Ilyushkin et al. (2017), instead, 
in order to infer the number of resources to be provisioned, the 
Authors consider as scaling metrics the response time, the 
request rate and the mean number of requests served per VM 
and per unit time. Finally, Assuncao et al. (2016) described a 
scheduling algorithm and auto-scaling triggering strategies 
based on user patience, a metric that estimates the perception 
end-users have of the QoS delivered by a service provider. This 
metric takes into account the ratio between expected and actual 
response times for each request. This approach reduces the 
resource costs while maintaining the perceived QoS at 
adequate levels. 

It is worth noting that each indicator has strengths and 
weaknesses. For example, the CSP perspective approach 
cannot ensure that the application SLA constraints are met, 
since the low-level indicators used are not directly linked to the 
application performance. On the other hand, the business logic 
level approach does not consider low-level information that 
might be relevant to resource allocation. This is a strong 
motivation for the adoption by auto-scalers of hybrid 
approaches, that can consider metrics at different levels. 
Fernandez et al. (2014), in order to trigger the best scaling 
action, consider both high-level (such as response time of a 
specific service) and low-level metrics (such as % CPU 
utilisation). Similarly, Taherizadeh et al. (2019) proposed an 
approach based on both CSP and application level metrics to 
scale in a container-based environment. 

6 Scaling methods 

As anticipated in Section 2, there are two different approaches 
to application scaling: horizontal scaling and vertical scaling. 
The first one allows to lease additional compute nodes (scaling 
out), or to release idle/lightly loaded nodes (scaling in). 
Vertical scaling, instead, means to add (scaling up) or subtract 
(scaling down) compute ‘power’ (compute cores, RAM, etc.) 
to/from existing nodes. Each approach has strengths and 
weaknesses. In general, the availability and the implementation 
of the VM vertical and horizontal supports are subject  
to the particular CSP. For example, the Amazon Web Services 
(https://aws.amazon.com/autoscaling) provides only  
horizontal scaling out-of-the-box. Microsoft Azure 

(https://azure.microsoft.com/en-in/features/autoscale), instead, 
offers also support for vertical scaling. The Google Compute 
Engine Auto-scaler allows both vertical and horizontal auto-
scaling of pods, the basic deployable objects in Kubernetes. 

Although horizontal and vertical scaling are widely 
exploited by many auto-scalers in the literature, such as  
Li et al. (2020) and Incerto et al. (2018), there are also 
hybrid approaches that combine vertical and horizontal 
scaling. In light of the above, the scaling methods can be 
classified as follows: 

Horizontal scaling: horizontal scaling is the most widely 
used approach because, although affected by the overhead 
for adding/removing nodes, allows a growth of the leased 
computing resources not bounded by the physical 
characteristics of the underlying hardware. Furthermore, it 
is of simple implementation. For example, the number of 
web servers can be easily modified by reconfiguring a load 
balancer. On the downside, scaling out is not suitable for all 
software systems and adds communication overhead. For 
example, scaling out a database by adding replicas in not an 
easy task. 

Scaling out/in is a not-trivial optimisation problem if the 
cloud offers heterogeneous resources, e.g., VM with several 
different configurations (number of CPU cores, amount of 
memory, etc.). Some works dealing with this problem and 
oriented towards cost efficiency are Lu et al. (2017) and 
Sedaghat et al. (2013). 

Vertical scaling: an advantage of vertical scaling concerns 
its simplicity in managing and installing/removing hardware 
resources, without the need to manage multiple instances of 
software components. On the other hand, it tends to be less 
dynamic then horizontal scaling as sometimes requires reboots. 
Moreover, scaling up may be more expensive than scaling out, 
as in most CSP offerings high-end server configurations tend to 
be very expensive. 

Hybrid scaling: combining horizontal and vertical scaling 
can help to optimise both resource costs and reconfiguration 
overhead. In fact, vertical scaling is inevitably limited by the 
physical node characteristics, but entails low reconfiguration 
overheads. Horizontal scaling, instead, can scale the application 
to a higher throughput but the reconfiguration costs are higher. 
Dutta et al. (2012) suggested dividing the scaling problem in 
two phases, firstly optimising the size of the virtual machine 
and then finding accordingly the minimum number of 
instances. A novel combined approach is also proposed in 
Incerto et al. (2018). 

7 Adaptivity 

Bursty workloads are unexpected and unpredictable, and so the 
ability of a scaler to adapt to changes is a desirable feature. 
However, this is a difficult task to implement; in fact, most 
existing scalers are non-adaptive. The two possible categories 
are described below. 

Non-adaptive: following this approach, a predefined 
schema is used to make auto-scaling actions. Examples of non-
adaptive approaches are rule-based scaling methods. In this 
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context, decisions are taken on the basis of the current input. 
For example, Amazon AWS (https://aws.amazon.com/ 
autoscaling) follows a non-adaptive rule-based approach. A 
predefined static threshold triggers a scaling action; the 
threshold is static, and does not change unless the user updates 
it. Automatic adjustments of settings during production are not 
allowed. 

Self-adaptive: the auto-scaler is capable of 
autonomously tuning its settings and to update its decisions 
according to new incoming information. For example, a 
self-adaptive scaler could adjust the thresholds for CPU 
utilisation and handle the creation of VMs according to the 
workload demand. An advantage of self-adaptivity is that it 
reduces the amount of off-line preparation required to tune 
an auto-scaler. However, the time to convergence of the 
adaptations could be long, causing poor performance during 
the early stages of training. 

8 Virtualisation level 

One of the core characteristics of the vast majority of clouds 
is the lease of virtualised computing resources, as bare-
metal offerings are relatively rare. Virtualisation consists in 
abstracting hardware resources in order to enhance resource 
management. A Virtual Machine (VM) is an image file 
managed by the hypervisor that exhibits the behaviour of a 
separate unit by running a full abstraction of the operating 
system. One of the strengths of the use of VMs is  
that it guarantees a high degree of isolation. As a recent 
alternative to VMs, container-based or operating system-
level virtualisation provides lightweight consolidation, 
isolation and quick provisioning of resources. The two 
approaches are described in the following. 

Virtual machines: in general, VMs behave like a 
dedicated machine leased to host applications. Customarily 
an application hosted on VMs can be scaled horizontally 
and vertically. Every VM requires a guest operating system 
for running on a physical host. In a typical VM-based 
deployment, an auto-scaler may need to launch new VMs 
dynamically. In general, this process might require to boot 
the operating system of choice, affecting the application 
performance. Tighe and Bauer (2017) proposed a method 
for dynamic virtual machine provision capable of satisfying 
both CSP and CSC requirements. Another example is 
presented in Chieu et al. (2009), where a dynamic scaling 
algorithm for automated provisioning of VMs based on the 
number of user logins in a web application is proposed. 

Containers: recent advancements in OS-level virtualisation 
have made the use of containers an attractive and viable 
solution. Containers represent a lightweight virtualisation that 
guarantees reasonable process isolation without the need for a 
guest operating system. The container provides similar 
resource allocation benefits as the VMs. However, containers 
are more portable as compared to the VMs, and the open-
source Docker implementation (Merkel, 2014) is currently  
 

widely diffused. Unlike VMs, containers are able to boot 
quickly. This is mainly due to the fact that they do not require a 
guest operating systems. 

Despite the rising popularity of containers, VM 
provisioning is still the solution most often adopted in literature 
solutions. In Ye et al. (2017), a scaling solution that features 
container-based virtualisation is presented. In particular, it is an 
auto-scaling framework for containerised elastic applications. 
Another auto-scaling case of study container-based is described 
in Klinaku et al. (2018). Both solutions include scaling actions 
based on increasing or reducing the number of containers. 

Hybrid: as mentioned above, most of literature studies 
address scalability of VMs, neglecting containers. However, 
containers are often used on the top of virtual machines. In fact, 
studies that analyse the estimation of resources using a 
combination of VMs and containers are lacking. An example 
of hybrid approach is described in Al-Dhuraibi et al. (2018), 
where the problem of the joint scaling of VM and containers is 
considered. 

9 Auto-scaling approaches in the literature 

Following up the discussion on the main key points to be 
considered for devising an auto-scaling implementation, 
from here onward we will deal with existing solutions, 
starting from the ones that are the object of papers in the 
state-of-the-art literature. In this section we identify four 
macro categories of approaches to auto-scaling: load 
prediction, resource-aware, SLA-aware and cost-aware. 
Each of these identifies the researchers’ vision to improve 
one or more factors, such as cost, resource optimisation, 
SLA violation avoidance, etc. This grouping is not due to a 
forced choice or is based on specific standards, since there 
is no commonly accepted reference. However, we think that 
it might be a good organisation in order to get a clear idea 
about the works that tend to improve the specific objectives. 
To summarise the findings, based on the taxonomy and 
explanation of the above sections, we list the features of the 
works surveyed in the following in Table 1. 

9.1 Load prediction approaches 

Estimating the use of resources in a context where there is a 
strong variability in the workload is quite complex. For 
many websites, e.g., it is not easy to plan load peaks, as it is 
necessary to consider the interleaving of a number of factors 
(time of day, day of week and other seasonal factors) that 
concur, along with unplanned ones, to the predictability of 
the load. It is indeed possible to take into account average 
load or maximum peaks, but each of the two solutions has 
disadvantages. In the first case, provisioning problems could 
arise in the presence of unexpected peaks; in the second, 
there could be a waste of resources if the workload remains 
under the peaks. 
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Table 1 A review of the auto-scaling properties of surveyed works 

Work Macro-category 
Scaling 
timing 

Resource 
estimation 

Scaling metrics 
Scaling 
methods 

Adaptivity 
Virtualisation 
level 

Islam et al. (2012) load prediction proactive time-series 
analysis 

application level horizontal self-adaptive VM 

Herbst et al. 
(2013) 

load prediction proactive control theory business logic level horizontal self-adaptive VM 

Li et al. (2016) load prediction proactive time-series 
analysis 

application level hybrid self-adaptive VM 

Roy et al. (2011) load prediction proactive control-theory business logic level horizontal self-adaptive VM 

Bunch et al. (2012) load prediction proactive control-theory application/ 
business logic level 

horizontal self-adaptive VM 

Shariffdeen et al. 
(2016) 

load prediction proactive time-series 
analysis 

application/business 
logic level 

horizontal self-adaptive VM 

Huang et al. 
(2012) 

resource-aware proactive time-series 
analysis 

application level N/A self-adaptive VM 

Moltó et al. (2016) resource-aware reactive threshold-based 
rules 

application level hybrid self-adaptive hybrid 

Novak et al. 
(2019) 

resource-aware reactive queuing theory application level hybrid self-adaptive VM 

Liu et al. (2017) resource-aware reactive threshold-based 
rules 

business logic level horizontal non-adaptive VM 

Hasan et al. (2012) resource-aware reactive threshold-based 
rules 

application level hybrid non-adaptive VM 

Qavami et al. 
(2014) 

resource-aware proactive queuing theory application level horizontal self-adaptive VM 

García et al. 
(2014) 

SLA-aware reactive threshold-based 
rules 

business logic level horizontal non-adaptive VM 

Alzahrani et al. 
(2016) 

SLA-aware proactive time-series 
analysis 

application/business 
logic level 

hybrid self-adaptive hybrid 

Gujarati et al. 
(2017) 

SLA-aware proactive queuing theory business logic level horizontal self-adaptive hybrid 

Tran et al. (2017) SLA-aware proactive time-series 
analysis 

application/business 
logic level 

horizontal self-adaptive VM 

Souza and Netto 
(2015) 

SLA-aware reactive threshold-based 
rules 

business logic level vertical non-adaptive N/A 

Yaqub et al. 
(2014) 

SLA-aware reactive threshold-based 
rules 

application/business 
logic level 

horizontal non-adaptive container 

Moldovan et al. 
(2016) 

COST-aware reactive threshold-based 
rules 

business logic level horizontal non-adaptive VM 

Catillo et al. 
(2021) 

COST-aware hybrid N/A business logic level horizontal non-adaptive VM 

Lesch et al. (2018) COST-aware proactive control theory business logic level vertical self-adaptive VM 

Kriushanth and 
Arockiam (2014) 

COST-aware reactive threshold-based 
rules 

business logic level horizontal non-adaptive VM 

Mao et al. (2010) COST-aware reactive queuing theory business logic level vertical non-adaptive VM 

Horn and 
Skrzypek (2018) 

COST-aware proactive N/A business logic level horizontal self-adaptive VM 

 
In the literature there are many works that deal with the 
problem of the prediction of the incoming load, in order to 
obtain careful management of resources. Islam et al. (2012) 
proposed prediction-based resource measurement and 
provisioning strategies by using Neural Networks and Linear 
Regression. The goal is to satisfy the incoming demand by 
making the best use of resources. The solution, besides 

providing accurate load forecasts, makes also it possible to 
predict the resource demand ahead of the VM instance setup 
time. Herbst et al. (2013) described a novel self-adaptive 
approach that selects load forecasting methods depending on 
the context. The approach is based on decision trees and direct 
feedback cycles. The results obtained from the experimentation 
show that the context selection of a forecast method reduces the 
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error of the load previsions, compared to the results obtained by 
a statically-selected forecasting method. Li et al. (2016) 
proposed a load prediction algorithm for automatic scaling. The 
algorithm is combined with Linear Regression and improved 
Knuth-Morris-Pratt string matching. The authors show that 
their approach can solve successfully the problem of resource 
allocation. Roy et al. (2011), instead, use predictive techniques 
to automatically scale resources by exploiting a look-ahead 
resource allocation algorithm. In particular, they propose a 
model based on control theory in order to predict future 
workloads. Empirical results show the validity of the proposal 
for both cloud users and providers. Finally, Bunch et al. (2012) 
and Shariffdeen et al. (2016) described two different workload 
prediction methods for efficient auto-scaling in PaaS systems. 

9.2 Resource-aware approaches 

The progressive diffusion of cloud computing, with data 
centers spread over different geographical areas, calls for the 
optimisation of resource provisioning policies. One of the main 
challenges in the field of resource provisioning concerns 
finding the distribution of resources to applications that reduces 
power consumption and costs. Many recent studies have 
addressed this problem. 

Huang et al. (2012) proposed a resource prediction model 
based on double exponential smoothing. Besides considering 
the current state of resources, the system also takes into account 
historical data. The experiments performed on the CloudSim 
simulator show a good model accuracy. Moltó et al. (2016) 
instead propose a system providing automatic vertical 
elasticity, that adapts the memory size of the VMs to their 
memory consumption. The system uses live migration to 
prevent overload scenarios, thus preventing downtime for 
VMs. Novak et al. (2019) described an architecture for auto-
scaling VMs quickly by using cloud functions and a reactive 
scaling algorithm. Cloud functions are available from cloud 
providers as temporary resources to manage the delay in 
starting VMs; the main feature of the reactive scaling algorithm 
is that it does not require the setting of a threshold. The Authors 
show the validity of the proposal by implementing the system 
on both AWS and Azure. In order to ensure the stability of 
service performance, Liu et al. (2017) proposed a framework 
for cloud resource management by exploiting two novel 
turnaround time-driven auto-scaling mechanism. As an 
extension of a previous work (Liu et al., 2016), the system 
provides both dynamic and schedule-based auto-scaling and 
shows good performance. Hasan et al. (2012) presented 
Integrated and Autonomic Cloud Resource Scaler (ICARS), a 
cloud resource auto-scaling system. The power of the proposal 
is that it integrates performance metrics from multiple domains 
for effective scaling of resources. This allows optimised scaling 
by avoiding outages. Finally, Qavami et al. (2014) focused on 
resource allocation by proposing a learning-based system 
called Smart Virtual Machine Provisioner (SVMP). They 
propose a dynamic resource provisioning following a heuristic 
Markovian approach. The experimental results show the 
effectiveness of the solution. 

9.3 SLA-aware approaches 

Autonomic provisioning should allow to meet the requirements 
specified by the Service Level Agreement signed by 
application providers and cloud service providers. In an  
SLA, the quality of service is specified as non-functional 
requirements of services. Inadequate values of QoS may lead to 
SLA penalties. 

Many SLA-aware resource provisioning techniques have 
been proposed. García et al. (2014) proposed Cloudcompass, 
an SLA-aware cloud platform that manages the complete 
resource life cycle. In particular, it allows cloud service 
providers adopting a generic SLA model to manage higher-
level metrics, closer to the end user perception. Cloudcompass 
also allows to correct QoS violations by exploiting the 
elasticity features of cloud systems. Alzahrani et al. (2016) 
describe Energy Based Auto-Scaling (EBAS), as a novel 
resource auto-scaling approach that takes into account Service 
Level Agreements. The proposed system, besides estimating 
the amount of resources that are needed for computation, 
enables the CPU to be aware of the SLA constraints. The 
experimental results show that the system is well designed to 
meet SLA conditions. Gujarati et al. (2017) presented Swayam, 
a fully distributed auto-scaling framework that cares about 
SLA compliance and resource efficiency. The analysis is based 
on Microsoft Azure Machine Learning, a commercial MLaaS 
platform. Extensive experimentation on 15 popular services 
shows the validity of the proposal. Tran et al. (2017) described 
a proactive cloud scaling model based on fuzzy time series and 
SLA awareness. In particular, in addition to using a fuzzy 
approach, they exploit a genetic algorithm and a neural 
network to process historical monitoring time series data; the 
scaling action is triggered by the occurrence of SLA violations. 
Souza and Netto (2015) presented a study on the effectiveness 
of auto-scaling driven by data generated by the supported 
application. In particular, they use SLA in order to estimate the 
necessary amount of resources. The proposed algorithm can 
reduce the number of SLA violations up to 95%. Finally, 
Yaqub et al. (2014) presented a capacity planning for SLA-
aware resource management in PaaS clouds. The novelty of the 
contribution is the application of metaheuristic local search. 
The Authors claim that is one of the first works on the subject 
based on multiple metaheuristic algorithms and holistic 
evaluations. 

9.4 COST-aware approaches 

The use of auto-scaling mechanisms that try to meet cost 
requirements is an active research topic. As a matter of fact, 
optimising the cost of a scalable application is not easy. The 
use of a VM is often billed by the hour, or based on each GB of 
generated I/O traffic. For these reasons, it is crucial to develop 
scaling strategies taking into account the billing cycles. 

Moldovan et al. (2016) introduced a model for capturing 
the pricing schemes of cloud services. The solution is useful for 
the developers of scalable applications for public clouds, as it 
allows to monitor costs and to develop cost-aware scalability  
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controllers. Catillo et al. (2021) proposed an analysis method 
based on off-line benchmarking that allows to define scaling 
policies to be used by auto-scalers. The approach consists in 
benchmarking the web application to discover the load 
processing capacities of each component, making it easier to 
apply scaling policies in the presence of load variations. The 
analysis enables to identify the trade-offs between costs and 
quality of service of the application even in multiple 
deployment configurations. Lesch et al. (2018) described a 
cost-aware approach for autonomic resource management 
called FOX. It operates as a mediator between the application 
and the cloud in order to reduce the charged costs. The 
experimental results show that FOX is able to reduce the 
charged costs by increasing the accounted instance time for the 
Amazon EC2 charging model. Kriushanth and Arockiam 
(2014) introduced a dynamic rule-based auto-scaling 
mechanism in order to reduce the cost of the VM instances. 
The results show that the proposed approach reduces the cost 
of the service and SLA violations related to cost. A mechanism 
to dynamically scale cloud computing instances, based on 
deadline and budget information, is presented in Mao et al. 
(2020). The scaling actions are triggered considering 
performance and budget of a cloud application. The system is 
deployed on the Windows Azure platform and evaluated by 
using both simulation and a real scientific application. Finally, 
Horn, G. and Skrzypek (2018) presented MELODIC, a 
framework that supports cost-aware auto-scaling. It finds a 
good initial deployment in the cloud and continuously 
optimises it according to the variable execution context, 
possibly taking into account the cost in its utility function. 

10 Commercial scalers 

In this section, we analyse some existing auto-scaling 
solutions, including those used by several commercial cloud 
providers. In particular, we focused on the implementations 
provided by the main CSPs: Amazon AWS, Microsoft Azure, 
Rackspace and Google. 

10.1 Amazon AWS 

Amazon Web Service (AWS) offers an auto-scaling service in 
the IaaS Elastic Compute Cloud (EC2) public cloud 
(https://aws.amazon.com/autoscaling). An EC2 instance is a 
virtual server for running applications on the AWS 
infrastructure. As far as elasticity is concerned, a key 
component is the Auto Scaling Group (ASG). This is 
characterised by the configuration of the virtual machines that 
will be part of the group. The ASG maintains EC2 instances in 
the group by performing a periodic health check. If any 
instance becomes unhealthy, it is stopped and replaced with 
another instance within the group. Another fundamental 
component is the Launch Configuration. It is a template used 
by Auto Scaling Group to launch EC2 instances. It allows to 
specify the Amazon Machine Image (AMI) (instances type, 
key pair, security groups, etc.) during the launch configuration 

step. Finally, the Scaling Plans specify when and how to scale. 
There are several ways to scale within the ASG: 

 Maintaining current instance level at all times: 
maintenance of a fixed number of running instances in the 
ASG. If an instance becomes unhealthy, it is immediately 
replaced.  

 Manual scaling: once the group capacity is specified, auto-
scaling maintains the instances with updated capacity.  

 Scale based on schedule: this approach can be used when 
traffic peaks are expected. In this case, scaling actions are 
performed at specific times.  

 Scale based on demand: following this approach, 
resources scale by a scaling policy. It is possible to scale in 
or out considering specific parameters (CPU utilisation, 
Memory, Network In and Out, etc.).  

 Use predictive scaling: this approach combines predictive 
scaling and dynamic scaling (proactive and reactive 
approaches, respectively) in order to scale faster.  

Amazon AWS supports only horizontal auto-scaling out-of-
the-box. However, vertical auto-scaling is possible by 
harnessing AWS Ops Automator. It is a solution that features 
vertical scaling for Amazon EC2 instances by exploiting the 
AWS services (e.g., CloudWatch and Lambda). 

Moreover, Amazon EC2 Container Service (ECS), a high 
performance container management service that supports 
Docker containers, allows to run easily applications on a 
managed cluster of Amazon EC2 instances. ECS provides 
auto-scaling for containers. It allows containerised services to 
handle variable load over time and react in real-time to 
dynamic workloads. 

10.2 Microsoft Azure 

Azure’s auto-scaling allows to set up rules to automatically 
scale applications (both horizontally and vertically)  
without manual intervention (https://azure.microsoft.com/en-
in/features/autoscale). Rules can be based on time (scaling is 
carried out at specified times), or on two types of metrics: 

1) Resource metrics: related to usage within Azure (memory, 
CPU and disk usage, thread count, queue length). It is 
possible to set Azure auto-scaling to scale up or down 
based on these usage parameters. 

2) Custom metrics: these are metrics produced by the 
application itself. If they are sent to Application Insights  
(a performance monitoring service by Microsoft), they can 
be used to make decisions on whether to scale or not. 

Microsoft Azure also provides auto-scaling for Azure 
Kubernetes Service (AKS), a service for running containers in 
the cloud. This lets developers elastically provision quick-
starting pods inside of Azure Container Instances (ACI), a 
service that enables a developer to deploy containers on the 
Microsoft Azure public cloud without having to provision or 
manage any underlying infrastructure. 
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10.3 Rackspace 

Rackspace Auto Scale is written in Python and relies  
on the Rackspace Cloud Servers, Rackspace Cloud Load 
Balancers and Rackspace RackConnect v3 APIs 
(https://www.rackspace.com/cloud/auto-scale). Rackspace only 
supports horizontal scaling. The scaling events can be managed 
both with scaling rules, which can be defined through the 
monitoring system, and through a schedule that can be suitably 
configured. A scaling group is a set of identical servers (and 
optionally a load balancer), characterised by the following 
components: 

 Scaling group configuration: the group name, 
cooldown (configured period of time that must pass 
between actions) time limit, minimum and maximum 
number of needed servers.  

 Launch configuration: if a scaling event is intercepted, 
the specific server configurations are managed.  

 Scaling policy: specifies the actions of the policy.  

 Webhook (capability-based URL): triggers a scaling 
policy.  

At the time of writing, Rackspace does not provide a 
container auto-scaling service. 

10.4 Google 

Auto-scaling in the Google Cloud platform is a feature of 
the instance group. In particular, a group is composed of 
homogeneous instances, created from a common instance 
template. The auto-scaling service is offered by  
Compute Engine, which supports only horizontal scaling 
(https://cloud.google.com/appengine/docs). Possible scaling 
policies include: 

 CPU utilisation: the auto-scaling event is linked to the 
average CPU utilisation of a group of virtual machines.  

 Load balancing serving capacity: auto-scaling is based 
on load balancing serving capacity by monitoring the 
serving capacity of an instance group. There is a scaling 
event if the VMs are over or under capacity.  

 Stackdriver monitoring metrics: auto-scaling is based 
on a standard metric provided by Google’s Stackdriver 
Monitoring (a monitoring service natively integrated 
with Google Cloud Platform), or on any custom 
metrics.  

Finally, it is worth mentioning that Google Kubernetes Engine, 
a managed environment for deploying, managing, and scaling 
containerised applications using Google infrastructure, allows 
for both horizontal and vertical scaling of pods. 

11 Research directions 

The availability of (automated) elasticity, commonly offered 
by cloud-based infrastructures, has boosted the interest for 

new research topics. In the past, the auto-scaling problem 
was addressed mainly from the data centre management 
point of view, and it was strictly related to the resource 
scheduling problem. In particular, researchers focused their 
interest on the optimal allocation of many-task applications 
over existing resources, in order to minimise resource usage, 
reduce energy consumption and so on. According to the 
state of art we have summarised in the previous sections, 
currently auto-scaling in infrastructures is no longer a 
technological issue: existing tools are able to scale both 
horizontally and vertically in an almost transparent way for 
the upper layers, thanks to virtualisation, containers and 
load balancers. In fact, auto-scaling is even offered as a 
commercial service (as discussed in section 10). 

Nowadays the auto-scaling is decoupled from resource 
scheduling. Auto-scaling is offered as a service to the 
application, and the requested resources are independently 
scheduled on the lower physical infrastructural layer, aiming 
at optimising resource consumption, especially for energy-
aware considerations. In practice, the auto-scaling problem 
moves from the infrastructure level up to the application 
level: scaling should be done taking into account the single 
application behaviour, adapting to the workload it is subject 
to, not considering the load of many-task applications. 

At the state of art, infrastructures offer the capability to 
scale, while it is up to the application to make a decision on 
when, how and how much to scale. As a consequence, the 
research topics change and can be summarised as follows: 

1) auto-scaling policy definition and design,  

2) comparison and benchmarking of auto-scaling tools,  

3) definition of auto-scaling metrics and performance 
figures,  

4) trade-off among scaling and costs, and finally  

5) protection against Economic Denial of Sustainability or 
Fraudulent cloud Resource Consumption attacks.  

These topics are dealt with below: 
Auto-scaling policy definition and design: The first and 

clear open research point is the need for techniques and 
languages to design and express scalability policies in a way 
that is as much as possible vendor- and technology-
independent, being at the same time able to catch the 
application behaviour and to define the criteria and logic 
needed to scale. 

Comparison and benchmarking auto-scaling tools: even 
if the technologies are nowadays commonly available, at the 
best of author’s knowledge there is not a commonly 
accepted reference architecture for auto-scaling tools, and 
no stable benchmarks that enable a comparison among the 
different techniques and solutions on the market. This is 
clearly an open issue: being the auto-scaling delegated to 
the application, together with the associated costs, it is 
relevant to know how well the auto-scaling tool will react 
and implement the requested policy. Performance indicators 
should be correctly identified in order to evaluate well and 
to implement the scaling policies. 
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Definition of auto-scaling metrics: the need for 
benchmarks opens up a research area even for new metrics 
and indicators, able to express in a clear way the overhead 
introduced, how it affects the scaling policy and, overall, the 
scaling quality. In this field, one of the most innovative 
aspects is to devise metrics that take into account the 
relationship with costs, as turns out from a pay-per-use 
resource usage. While at infrastructure level the resources 
are almost fixed and the costs are mainly considered to 
optimise their use and/or to reduce energy dissipation 
(obtained reducing the amount of resources adopted), 
moving the scaling problem at application level implies a 
direct effect of scaling on costs: adding/removing a VM or 
changing the type of machine directly affects the costs, and 
so it is possible to define policies taking into account the 
cost as a performance indicator (as illustrated in Section 9). 

Trade-off among scaling and costs: in light of the above, 
auto-scaling policies should accordingly take into account 
the trade-off between performance-related metrics and cost-
related metrics. 

Protection against Economic Denial of Sustainability or 
Fraudulent cloud Resource Consumption attacks: the cloud 
pay-per-use paradigm has an additional side-effect: a new 
type of cyber-attacks named Economic Denial of 
Sustainability (EDoS) or Fraudulent cloud Resource 
Consumption (FRC), which aim at forcing the cloud 
applications to consume more resources than usual. The 
objective of these attacks is not to make service unavailable 
as in a DoS attack, but to increase the application costs to be 
payed to the hosting cloud provider. Mitigation techniques 
for EDoS and FRC exist – interesting surveys on the topic 
are Somasundaram (2016); Thaper, R. and Verma (2015); 
Singh et al. (2014) and VivinSandar and Shenai (2012), but 
they require suitable application design and need to be taken 
into account in the auto-scaling policy design and/or tools 
implementation. At the time of writing, no auto-scaling 
implementation deals with the problem of EDoS and FRCs. 

12 Conclusions 

To be exploited at best, the great opportunity offered by the 
elasticity of cloud environments calls for clever auto-scaling 
techniques and tools. Our snapshot of the state of the art 
shows clearly that auto-scaling is not only a technological 
issue, as its adoption opens up to a lot of new problems and 
opportunities to be addressed from research point of view. 

In this paper we have provided a reasoned and 
commented view of the key factors to be considered in the 
design of an auto-scaler. We hope that this work could be 
useful not only for understanding the pros and cons of 
existing solutions, but also for the development of a new 
generation of auto-scalers. In fact, the analysis of the 
literature on auto-scaling and the discussion on commercial 
solutions shows all the limits of present-day solutions, and 
the necessity to move in the directions pointed out in our 
suggestions for further research. 
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