

International Journal of Grid and Utility Computing

ISSN online: 1741-8488 - ISSN print: 1741-847X
https://www.inderscience.com/ijguc

A survey on auto-scaling: how to exploit cloud elasticity

Marta Catillo, Umberto Villano, Massimiliano Rak

DOI: 10.1504/IJGUC.2022.10049101

Article History:
Received: 05 November 2020
Accepted: 06 May 2021
Published online: 21 March 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijguc
https://dx.doi.org/10.1504/IJGUC.2022.10049101
http://www.tcpdf.org

Int. J. Grid and Utility Computing, Vol. 14, No. 1, 2023 37

Copyright © 2023 Inderscience Enterprises Ltd.

A survey on auto-scaling: how to exploit cloud
elasticity

Marta Catillo* and Umberto Villano
DING,
Università Del Sannio,
Benevento, Italy
Email: marta.catillo@unisannio.it
Email: villano@unisannio.it
*Corresponding author

Massimiliano Rak
Università Della Campania Luigi Vanvitelli,
Caserta, Aversa, Italy
Email: massimiliano.rak@unicampania.it

Abstract: Elasticity plays an essential role as far as the wide diffusion of cloud computing is
concerned. It enables a cloud application deployment to ‘scale’ automatically, adapting to
workload changes, guaranteeing the performance requirements with minimum infrastructure
leasing costs. However, auto-scaling poses challenging problems. This paper gives a detailed
overview of the current state of the art on auto-scaling. Firstly, the key design points for auto-
scaling tools are presented and discussed. Then, literature proposals and on-going research are
dealt with. Finally, existing auto-scaling implementations, including those used by commercial
cloud providers, are reviewed.

Keywords: cloud computing; auto-scaling; resource provisioning; elasticity; QoS; service level
agreement; scalable applications.

Reference to this paper should be made as follows: Catillo, M., Villano, U. and Rak, M. (2023)
‘A survey on auto-scaling: how to exploit cloud elasticity’, Int. J. Grid and Utility Computing,
Vol. 14, No. 1, pp.37–50.

Biographical notes: Marta Catillo is a PhD student in Information Technologies for Engineering
at University of Sannio. She received the MSc degree in Computer Engineering from the
University of Sannio in 2019. Her research interests include parallel architectures and computer
security.

Umberto Villano is Full Professor and Past Dean at the University of Sannio, Benevento, Italy.
He received the Laurea degree in Electronic Engineering cum laude from the University of
Naples in 1983. His research interests include parallel architectures, tools for parallel and
distributed programming and performance evaluation, grid and cloud computing, security of
cloud architectures.

Massimiliano Rak is currently an Associate Professor at the Information Engineering Department
of the University of Campania Luigi Vanvitelli, Italy. He received the Laurea degree in Computer
Science Engineering at the University of Naples Federico II in 1999. He got the PhD degree in
Computer Engineering from the Second University of Naples (now University of Campania Luigi
Vanvitelli) in 2002. His research interests include performance evaluation of computing systems,
parallel and distributed software engineering and security of information systems.

This paper is a revised and expanded version of a paper entitled ‘Auto-scaling in the Cloud:
Current Status and Perspectives’ presented at the ‘14th International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing (3PGCIC-2019)’, 7–9 November 2019, University
of Antwerp, Antwerp, Belgium.

38 M. Catillo, U. Villano and M. Rak

1 Introduction

Cloud computing has well established in the last few years.
Even if historically the initial interest for this computing
paradigm was aroused by the search for low-cost and never-
obsolescent computing resources, currently elasticity is playing
an essential role. Elasticity is indeed an intrinsic feature of
cloud environments (Mell and Grance, 2011), enabling a cloud
application deployment to adapt to workload changes, ensuring
Quality of Service (QoS) requirements with minimum
infrastructure leasing costs.

Maybe the most elusive among the traditional design goals
of distributed systems is scalability. A scalable system can be
adapted to different load levels by adding or, not less
interestingly, removing resources. As is well known, scalability
can be exploited horizontally, increasing/decreasing the
number of compute nodes/servers, or vertically, upgrading/
downgrading the nodes. As will be discussed later, depending
on the virtualisation level, the compute nodes can be Virtual
Machines (VMs) or containers. However, in traditional
computing environments the scaling requires non-trivial and
costly system reconfiguration. In clouds, scaling a given
deployment can be performed rapidly and possibly in a
completely automated manner. Cloud ‘elasticity’ means to look
at the leased deployment configuration as to a rubber band, to
be stretched when the load is high, and released when it
decreases. Stated another way, elasticity paves the way to the
design of software systems that are able to guarantee high QoS
levels under highly variable, possibly unexpected, workload
bursts, at the same time minimising hardware leasing costs.

However, even if cloud elasticity is a powerful enabling
factor, obtaining optimal scaling remains challenging. Simply
stated, the problem is to devise automatic or semi-automatic
tools to find out when and how to scale. These tools, which
allow to trigger scaling actions and to change the amount of
leased computing resources according to some kind of
user-generated or self-managed, autonomic input, are called
auto-scalers. Auto-scalers can be extraordinarily powerful
instruments, but their adoption poses challenging issues that
need to be addressed. In particular:

 Workload forecasting is surely an important matter. To
avoid QoS losses, it is desirable to acquire additional
resources before an actual workload increase. This can be
achieved only by workload prediction;

 Accurate estimation of the resources actually needed is
currently an open issue. Resource under-provisioning
will inevitably worsen performance; resource over-
provisioning reduces computing efficiency. In both cases,
the undesired effect is to incur in unnecessary costs.

Therefore, there are a number of complex objectives that an
auto-scaler should achieve by balancing QoS and costs.
Currently the issues linked to auto-scaling are not widely
understood, and a reference standard or implementation is still
lacking. Each commercial cloud provider has its own
interpretation of the problem and its own way of addressing it.
Most of the times, the available solutions are far less than
optimal, and suspiciously neglect leasing costs.

In the light of the above, in order to design an efficient
auto-scaler, it is necessary to take targeted decisions. However,
there are no general ‘best practices’ that allow to design a
perfect auto-scaler. Overall, there are some key points that
every designer should consider when building an auto-scaler.
These are:

 When to scale and how to estimate resources? In other
words, when the scaling operation is triggered and how the
resources needed are estimated to provide the desired QoS
level;

 How to scale? An auto-scaler can scale a deployment both
horizontally and vertically;

 Which metrics should be monitored? This is strictly related
to the context, since in each different scenario some
metrics may be more meaningful than others. A careful
selection of the metric to be monitored is indeed necessary
to avoid unnecessary overheads;

 How to dynamically adapt to changes? In general, bursty
workloads are unpredictable; therefore, a good auto-scaler
should be capable of adapting to load in a timely manner.
However, due to its complexity, adaptability is not a
common feature in existing scalers;

 What is the virtualisation level? The layer of virtualisation
of hardware resources might be different. Current
advancements in OS-level virtualisation have made viable
the use of containers along with traditional VM-based
solutions.

In light of the above, finding an optimal solution is a complex
matter. In general, as stated above, there is no universal
parameter set to consider for a complete auto-scaler design.
The goal of this paper is to give an overview of the current state
of the art on auto-scaling, pointing out the key design points
and discussing the on-going research on this topic, so as to
stimulate and support the production of better auto-scaler tools.

Over time, a few auto-scaling surveys and design
taxonomies have been proposed, such as Lorido-Botran et al.
(2014); Qu et al. (2018) and Singh et al. (2019). Our approach
here is slightly different. More than a mere systematic
description of all the scaling factors to be considered, our goal
is to identify the crucial auto-scaling key points and then
understand how these are mapped on recent literature and
implementations.

In this paper, after a formalisation of the auto-scaling
problem in Section 2, we focus on scaling timing in Section 3,
which allows to understand ‘when to scale’ and on techniques
for resource estimation in Section 4. We describe the metrics
that can be used to trigger the scaling actions in Section 5 and
the scaling methods that allow to understand ‘how to scale’ in
Section 6. We also consider the adaptivity in Section 7 and the
virtualisation level that can be adopted by an auto-scaler in
Section 8. In the second part of the paper, we present literature
solutions organised into four macro-categories in Section 9.
Each of these identifies the researchers vision to improve one
or more factors such as cost, resource optimisation, Service
Level Agreement (SLA) violation, etc. Later, we deal with

 A survey on auto-scaling: how to exploit cloud elasticity 39

existing auto-scaling implementations, including those used by
several commercial providers in Section 10. Finally, the main
open research issues and directions are traced and discussed in
Section 11 and our conclusions are drawn in Section 12.

2 The auto-scaling problem and the MAPE loop

In the literature, the auto-scaling problem is typically addressed
as an autonomous control problem by using the Monitor-
Analyse-Plan-Execute (MAPE) loop as a reference model
(Maurer et al., 2011) (see Figure 1). During the monitoring
phase, an information gathering activity is planned to assess
the status of resource utilisation. This task requires the
measurement of purposely-selected metrics about system and
application current state. During the analysis phase, the
information collected is analysed to be used later on. Scaling
decisions are taken by avoiding oscillations that occur when
scaling actions are carried out too quickly. The analysis process
could be even more complex, if machine learning techniques
for knowledge discovery from the information gathered by
monitoring are adopted (Amiri and Mohammad-Khanli, 2017).
The results obtained during the analysis phase are subsequently
matched to rules defined by the application provider.

Figure 1 The MAPE loop

During the planning phase, the scaling decisions are taken.
As will be discussed in Section 6, it is possible to choose
between horizontal and vertical scaling. In cloud systems,
horizontal scaling is the most widely used approach; it
adjusts the number of node instances, e.g., VMs and/or
containers, by acquiring further nodes (scaling out) or by
releasing idle nodes (scaling in). Vertical scaling, instead,
involves adding (scaling up) or subtracting (scaling down)
to/from existing node resources as compute cores or RAM.

The last phase of the MAPE loop is the execution one,
which involves the execution of the scaling decision
previously taken. Conceptually, execution is an easy phase,
but there are hidden complexities due to choices to be made
in the presence of multiple providers with data centres in
different geographical regions.

As a matter of fact, many auto-scaling techniques are
MAPE-loop-based (Qu et al., 2018). Considering all the
aspects mentioned above, it is clear that the choice of an
optimal auto-scaling strategy is challenging. This complexity is

also reinforced by the presence of multiple cloud providers
with an extraordinary variety of cost plans.

3 Scaling timing

The first factor to consider regarding the ‘when to scale’ key
point is the timing of the scaling, i.e., when the scaling
operation is triggered and how long does it take. This is a
crucial issue especially when scaling up/out. A delay in the
availability of additional resources required to cover load peaks
can lead to unacceptable low performance and QoS violation.
On the other hand, delays encountered when scaling down/in
lead to unnecessary costs, but this is often only a secondary
concern. For this reason, in this section we will consider mainly
the timing of up/out scaling.

The ‘enrolment’ of an additional VM may require few
minutes to setup an image, boot the OS, and launching the
software. Understanding when to trigger scaling is a critical
decision, due to the delay between the instant in time when the
scaling decision is taken and the instant when it becomes
effective. This delay could have an impact on both Quality of
Service (QoS) and costs. The approaches used to decide when
to scale take two forms: reactive and proactive. Sometimes
hybrid approaches are adopted, which combine both these
scaling policies.

Reactive scalers observe workload changes and act
accordingly. The changes are detected using the past values of
a set of monitored performance indicators. Consequently, the
provisioning of resources is adjusted. This approach is cost-
saving, as the exact amount of resources required are
provisioned. On the other hand, resource provisioning takes
time. Therefore, there is a risk of outages if provisioning is not
fast enough. In order to ‘cover’ rapid spikes of load, an obvious
solution is over-provisioning. Unfortunately, this rises the
costs. A trade-off solution might involve the use of a threshold
(more on this later). Examples of reactive scalers are proposed
in Kumar and Gondhi (2017) and Han et al. (2014).

In proactive scalers the system provisions additional
resources before the actual increase in load in order to take
early scaling decisions. There are two common approaches to
proactive scaling: scaling based on scheduling and predictive
scaling. In the first case, the user provides a scheduling of the
required resources. For example, it is possible to double the
capacity of an on-line shop one hour before a big promotion; in
this case, the goal is to plan scaling decisions. The second
approach, instead, involves the prediction of the future loads by
using historical data and forecasting techniques. In this context,
the accuracy of the prediction algorithm is an issue. In the
literature there are many solutions based on workload
prediction, as Alipour and Liu (2017). In particular, this work
shows two solutions to predict CPU demand by a machine-
learning approach. Overall, the drawbacks of proactive scalers
are high costs, because they tend to add more capacity than
actually needed.

In hybrid scalers the system exploits a combination of
reactive and proactive approaches. In many situations it is
possible to obtain forecasts as workload patterns can be

40 M. Catillo, U. Villano and M. Rak

found, but it is not possible to deal with unplanned bursts. In
these cases, mixed scaling approaches would be beneficial.
Two solutions that propose hybrid scalers are shown in
Moore et al. (2013b, 2013a).

4 Techniques for resource estimation

In light of the discussion in the Section 3 above, it can be
said that auto-scalers (whether reactive, proactive or hybrid)
react to stimuli linked to the system current and/or expected
load, trying to match at best an estimation of the resources
needed to provide the desired QoS level. The techniques
used for resource estimation can be classified as follows:

 Threshold-based rules;

 Time series analysis;

 Control theory;

 Queuing theory;

 Reinforcement learning.

These approaches will be orderly dealt with below.
With Threshold-based rules, the scaling decisions are

triggered by means of predefined thresholds. Threshold-based
rules follow a simple reactive approach. For example,
assuming the application is CPU bound, provisioning can be
started at 50% CPU utilisation. In this case, assuming as a
threshold value 50% CPU utilisation, it is possible to have
always more capacity than needed. This can be considered a
healthy safety factor. Threshold-based approaches have
become quite popular due to their (apparent) simplicity.
Nevertheless, there is no systematic method that allows the
thresholds to be defined rigorously. Hence, the effectiveness of
these settings under highly variable workloads is questionable.
Some conventional reactive threshold-based approaches are
presented in Biswas et al. (2015); Casalicchio and Silvestri
(2013) and Beltrán (2015). Moreover, the use of thresholds is
the only approach widely used in the commercial auto-scaling
systems such as AWS (https://aws.amazon.com/autoscaling),
Google (https://cloud.google.com/appengine/docs), Azure
(https://azure.microsoft.com/en-in/features/autoscale), and
Kubernetes (https://github.com/kubernetes/autoscaler/tree/
master/cluster-autoscaler). Many open-source cloud-computing
platforms, such as Eucalyptus (https://docs.eucalyptus.
cloud/eucalyptus/4.4.5/user-guide-4.4.5.pdf), OpenNebula
(https://docs.opennebula.io/5.8/advanced_components/
application_flow_and_auto-scaling/appflow_elasticity.html)
and Nimbus (http://www.nimbusproject.org/doc/phantom/
latest/protocol.html) also adopt a threshold-based reactive
approach.

The overall process is based on the selection of the right
working rules to set a threshold. These rules are tuned on the
basis of one or more performance metrics. The most popular
metrics are average CPU load of the VMs, response time and
input request rate. It is clear that the performance of rule-
based approaches strongly depends on these parameters, and,
as a matter of fact, their use is not trivial. To avoid unwanted

oscillations in the number of nodes and/or of the resources
assigned to each of them, duration parameters are used to
decrease the number of scaling actions. Duration defines how
long the threshold conditions must be exceeded to trigger a
scaling action. This issue is highlighted in Dutreilh et al.
(2010). In Hasan et al. (2012), six parameters (four thresholds
and two durations) are used in order to perform the right
scaling action. It is also worth pointing out that the
approaches based on thresholds require frequent tuning in
order to perform the right scaling action. Therefore, they are
suitable for fairly regular load patterns, but turn out to be less
effective for bursty workloads.

Time series are very useful to represent the change of a
measured parameter over time. A time series is a sequence of
samples, produced at uniform time intervals. An example
might be the number of requests for a server, sampled at one
minute intervals. In general, Time series analysis is the
dominant approach in the cloud workload prediction area. In
this context, the effectiveness of prediction largely depends
on parameters such as the monitoring-interval length and the
size of the history window. Clearly, the accuracy of the model
depends on the window input size. Sometimes a subset of
these parameters, such as the size of the history window, is
the input for a neural network (Islam et al., 2012), which,
thanks to an off-line training, predicts the values of
performance indicators adopted for scaling decisions.
Hu et al. (2016) proposed a predictive scaling approach for
VMs provisioning.

Time series analysis techniques are indeed appealing for
implementing auto-scalers, as they allow to provision
resources proactively. However, despite their potential, they
often fail to provide satisfactory prediction accuracy, which
strongly depends on system parameters (i.e., the target
application, the input workload patterns, the history window,
etc.).

The Control theory approach involves the creation of a
model of the application. A controller (reactive or proactive)
is defined to adjust automatically the required resources to the
application demands. For example, Ghanbari et al., 2011)
described a feedback controller used to guarantee the
satisfaction of application constraints. In the literature many
well-known controllers, including Proportional-Integral-
Derivative (PID), Proportional-Integral (PI) and Integral (I),
have been extensively used. For example, Lim et al. (2010)
exploited an I controller in order to adjust the number of
VMs based on average CPU usage. The Kubernetes auto-
scaling mechanism (https://github.com/kubernetes/autoscaler/
tree/master/cluster-autoscaler) is also based on the control
theory approach. Reactive controllers could be used in order
to react to the observed workload change, but also proactive
controllers as Model Predictive Control (MPC) are suitable in
order to design effective scalers. For example, in Roy et al.
(2011) an Autoregressive-Moving-Average (ARMA) model
for workload forecasting is combined with the look-ahead
controller to optimise the resource provisioning. The
suitability of controllers for auto-scaling highly depends
on the type of controller and the dynamics of the target
system. The idea of having a controller that automates the

 A survey on auto-scaling: how to exploit cloud elasticity 41

provisioning process is sound, but devising a reliable one-fits-
all model is a complex task.

Queuing theory is a traditional approach to computer
system modelling. Network of queues have been widely
applied in order to find the relationship between the jobs
arriving and leaving a system. In particular, Han et al. (2014)
followed this approach in order to estimate resource need.
They exploit a greedy approach to modulate the number of
nodes on the basis of the current load. In Ali-Eldin et al.
(2012), instead, a cloud-hosted application is modelled as a
G/G/N queue, where the number of nodes (servers, according
to queuing theory terminology) N is variable. The model can
be exploited in order to compute, for example, the necessary
resources required to process a given input workload , or
the mean response time for requests, given a particular
configuration of nodes. Queues can also be exploited to
model elastic applications, representing each server as a
separate queue. An example that follows this approach is
reported in Urgaonkar et al. (2008). In particular, it uses a
network of G/G/1 queues (one per each node).

The information required for a queuing model, such as the
input workload or service time, can be obtained by on-line
monitoring or estimated using different methods. Zhang et al.
(2007) used a regression-based approximation to estimate the
CPU demand, based on the number and type (browsing,
ordering or shopping) of client requests.

Queuing models have been extensively used to model
applications and systems. Unfortunately, due to their fixed
architecture, they are not very flexible to changes. As a matter
of fact, any changes in structure or parameters is likely to be
costly. This might be a problem for elastic applications that
have to deal with a changing input workload and a varying
pool of resources.

Reinforcement learning is an alternative to control theory
adoption. Its main advantage is the requirement of no a priori
knowledge or model of the application. When the deployment
is scaled, a reward or a punishment is computed to identify
how good the resource estimation had been (Sutton and
Barto, 2018).

In general, proactive timing is assumed for all
reinforcement learning approaches. Auto-scaling in the cloud
based on reinforcement learning is surveyed in Garí et al.
(2020). Horovitz and Arian (2018) propose simulation and
real-application tests results by comparing Q-Learning, a
model-free reinforcement learning algorithm, to the static
threshold based method in a real (Kubernetes-based)
environment. The Authors show that their improved Q-
Learning algorithm successfully prevents SLA violations.
John et al. (2019), instead, present a reinforcement learning-
based algorithm that addresses two crucial problems in
classical approaches such as Q-learning: slow convergence
and lack of scalability. They exploit the technique of adaptive
tile coding and workload forecasting in order to guarantee
efficient utilisation of resources. The validity of the proposed
method as compared to static, threshold-based and other
reinforcement learning-based allocation schemes is shown by
experiments on the Cloudsim platform (Calheiros et al.,
2011).

Reinforcement learning techniques are a promising
solution to the auto-scaling problem, since they do not
require any application modelling. However, some
reinforcement learning algorithms, such as Q-Learning, may
lead to unacceptably poor performance, as they require a
long training period before a good-enough solution is found.
Even assuming that an optimal policy is found, any change
of the environmental conditions (e.g., the workload pattern)
requires re-adaption and further long training periods.

5 Scaling metrics

The techniques for resource estimation dealt with in Section
4 rely on the measurement of metrics that can be collected
at different levels. There is no general rule for selecting
scaling metrics. We classified the metrics according to the
level at which the measurement is performed, as follows:

 CSP level metrics: metrics adopted to measure resources
offered by Cloud Service Providers (CSPs), as CPU
performance and network bandwidth;

 Application level metrics: metrics adopted to measure the
resources leased by a specific cloud application (e.g., CPU
and memory utilisation of acquired nodes);

 Business logic level metrics: metrics that are specific for
the application under analysis, adopted to measure
business logic performance.

The CSP level metrics are the metrics adopted for the
measurement made by Cloud Service Providers. Measurements
of such metrics are useful to characterise the global behaviour
of a CSP. In fact, they are commonly adopted to compare
different CSPs. Examples of these metrics are the bandwidth of
the external network and/or the CPU performance in
MIPS/FLOPS of a single core VM. Such metrics are typically
measured by third party services (e.g., CloudHarmony
(https://cloudharmony.com)) or by the CSPs themselves
(Amazon’s CloudWatch (https://aws.amazon.com/cloudwatch)
offers many of such metrics). At the best of the authors’
knowledge, these metrics are never adopted by auto-scalers, as
they provide data too coarse-grained, even if they can be useful
for the performance tuning of applications with well-known
behaviour.

The application level metrics are associated to the
resources acquired by Cloud Service Customers (CSCs) and
are mostly indicators collected at operating system level or by
the hypervisor. These types of metrics can be measured by
the CSCs, using ad hoc tools and/or using services offered by
the CSP, as CloudWatch. Many commercial scaling solutions
exploit these types of metrics. For example, container
orchestration systems as Kubernetes (https://github.com/
kubernetes/autoscaler/tree/master/cluster-autoscaler) or
providers as Amazon (https://aws.amazon.com/autoscaling)
consider infrastructure related metrics, such as CPU utilisation,
as reference metrics. In particular, the CPU utilisation seems to
be the most common indicator used in the design of auto-
scalers. This aspect is also highlighted in some literature works

42 M. Catillo, U. Villano and M. Rak

such as Ye et al. (2017) and Liao et al. (2015). However,
sometimes also other low-level indicators such as disk access,
memory usage, or page faults are adopted. Lu et al. (2017)
model an optimisation problem in order to minimise the VMs’
configuration cost. In particular, they evaluate the migration
delay occurring when a VM must be shut down and its data is
transferred to a new VM by considering the size of the image,
the bandwidth and the booting time of a VM, etc.

The business logic level metrics are collected on top of the
application level and rely on the business logic. These metrics
are more complex to analyse than the previous ones, as they
require a deep knowledge of the application. In some cases,
off-line application profiling may also be required. Chieu et al.
(2009) proposed a dynamic scaling algorithm for web
applications based on the number of active sessions, the request
rate and mean response time. In Ilyushkin et al. (2017), instead,
in order to infer the number of resources to be provisioned, the
Authors consider as scaling metrics the response time, the
request rate and the mean number of requests served per VM
and per unit time. Finally, Assuncao et al. (2016) described a
scheduling algorithm and auto-scaling triggering strategies
based on user patience, a metric that estimates the perception
end-users have of the QoS delivered by a service provider. This
metric takes into account the ratio between expected and actual
response times for each request. This approach reduces the
resource costs while maintaining the perceived QoS at
adequate levels.

It is worth noting that each indicator has strengths and
weaknesses. For example, the CSP perspective approach
cannot ensure that the application SLA constraints are met,
since the low-level indicators used are not directly linked to the
application performance. On the other hand, the business logic
level approach does not consider low-level information that
might be relevant to resource allocation. This is a strong
motivation for the adoption by auto-scalers of hybrid
approaches, that can consider metrics at different levels.
Fernandez et al. (2014), in order to trigger the best scaling
action, consider both high-level (such as response time of a
specific service) and low-level metrics (such as % CPU
utilisation). Similarly, Taherizadeh et al. (2019) proposed an
approach based on both CSP and application level metrics to
scale in a container-based environment.

6 Scaling methods

As anticipated in Section 2, there are two different approaches
to application scaling: horizontal scaling and vertical scaling.
The first one allows to lease additional compute nodes (scaling
out), or to release idle/lightly loaded nodes (scaling in).
Vertical scaling, instead, means to add (scaling up) or subtract
(scaling down) compute ‘power’ (compute cores, RAM, etc.)
to/from existing nodes. Each approach has strengths and
weaknesses. In general, the availability and the implementation
of the VM vertical and horizontal supports are subject
to the particular CSP. For example, the Amazon Web Services
(https://aws.amazon.com/autoscaling) provides only
horizontal scaling out-of-the-box. Microsoft Azure

(https://azure.microsoft.com/en-in/features/autoscale), instead,
offers also support for vertical scaling. The Google Compute
Engine Auto-scaler allows both vertical and horizontal auto-
scaling of pods, the basic deployable objects in Kubernetes.

Although horizontal and vertical scaling are widely
exploited by many auto-scalers in the literature, such as
Li et al. (2020) and Incerto et al. (2018), there are also
hybrid approaches that combine vertical and horizontal
scaling. In light of the above, the scaling methods can be
classified as follows:

Horizontal scaling: horizontal scaling is the most widely
used approach because, although affected by the overhead
for adding/removing nodes, allows a growth of the leased
computing resources not bounded by the physical
characteristics of the underlying hardware. Furthermore, it
is of simple implementation. For example, the number of
web servers can be easily modified by reconfiguring a load
balancer. On the downside, scaling out is not suitable for all
software systems and adds communication overhead. For
example, scaling out a database by adding replicas in not an
easy task.

Scaling out/in is a not-trivial optimisation problem if the
cloud offers heterogeneous resources, e.g., VM with several
different configurations (number of CPU cores, amount of
memory, etc.). Some works dealing with this problem and
oriented towards cost efficiency are Lu et al. (2017) and
Sedaghat et al. (2013).

Vertical scaling: an advantage of vertical scaling concerns
its simplicity in managing and installing/removing hardware
resources, without the need to manage multiple instances of
software components. On the other hand, it tends to be less
dynamic then horizontal scaling as sometimes requires reboots.
Moreover, scaling up may be more expensive than scaling out,
as in most CSP offerings high-end server configurations tend to
be very expensive.

Hybrid scaling: combining horizontal and vertical scaling
can help to optimise both resource costs and reconfiguration
overhead. In fact, vertical scaling is inevitably limited by the
physical node characteristics, but entails low reconfiguration
overheads. Horizontal scaling, instead, can scale the application
to a higher throughput but the reconfiguration costs are higher.
Dutta et al. (2012) suggested dividing the scaling problem in
two phases, firstly optimising the size of the virtual machine
and then finding accordingly the minimum number of
instances. A novel combined approach is also proposed in
Incerto et al. (2018).

7 Adaptivity

Bursty workloads are unexpected and unpredictable, and so the
ability of a scaler to adapt to changes is a desirable feature.
However, this is a difficult task to implement; in fact, most
existing scalers are non-adaptive. The two possible categories
are described below.

Non-adaptive: following this approach, a predefined
schema is used to make auto-scaling actions. Examples of non-
adaptive approaches are rule-based scaling methods. In this

 A survey on auto-scaling: how to exploit cloud elasticity 43

context, decisions are taken on the basis of the current input.
For example, Amazon AWS (https://aws.amazon.com/
autoscaling) follows a non-adaptive rule-based approach. A
predefined static threshold triggers a scaling action; the
threshold is static, and does not change unless the user updates
it. Automatic adjustments of settings during production are not
allowed.

Self-adaptive: the auto-scaler is capable of
autonomously tuning its settings and to update its decisions
according to new incoming information. For example, a
self-adaptive scaler could adjust the thresholds for CPU
utilisation and handle the creation of VMs according to the
workload demand. An advantage of self-adaptivity is that it
reduces the amount of off-line preparation required to tune
an auto-scaler. However, the time to convergence of the
adaptations could be long, causing poor performance during
the early stages of training.

8 Virtualisation level

One of the core characteristics of the vast majority of clouds
is the lease of virtualised computing resources, as bare-
metal offerings are relatively rare. Virtualisation consists in
abstracting hardware resources in order to enhance resource
management. A Virtual Machine (VM) is an image file
managed by the hypervisor that exhibits the behaviour of a
separate unit by running a full abstraction of the operating
system. One of the strengths of the use of VMs is
that it guarantees a high degree of isolation. As a recent
alternative to VMs, container-based or operating system-
level virtualisation provides lightweight consolidation,
isolation and quick provisioning of resources. The two
approaches are described in the following.

Virtual machines: in general, VMs behave like a
dedicated machine leased to host applications. Customarily
an application hosted on VMs can be scaled horizontally
and vertically. Every VM requires a guest operating system
for running on a physical host. In a typical VM-based
deployment, an auto-scaler may need to launch new VMs
dynamically. In general, this process might require to boot
the operating system of choice, affecting the application
performance. Tighe and Bauer (2017) proposed a method
for dynamic virtual machine provision capable of satisfying
both CSP and CSC requirements. Another example is
presented in Chieu et al. (2009), where a dynamic scaling
algorithm for automated provisioning of VMs based on the
number of user logins in a web application is proposed.

Containers: recent advancements in OS-level virtualisation
have made the use of containers an attractive and viable
solution. Containers represent a lightweight virtualisation that
guarantees reasonable process isolation without the need for a
guest operating system. The container provides similar
resource allocation benefits as the VMs. However, containers
are more portable as compared to the VMs, and the open-
source Docker implementation (Merkel, 2014) is currently

widely diffused. Unlike VMs, containers are able to boot
quickly. This is mainly due to the fact that they do not require a
guest operating systems.

Despite the rising popularity of containers, VM
provisioning is still the solution most often adopted in literature
solutions. In Ye et al. (2017), a scaling solution that features
container-based virtualisation is presented. In particular, it is an
auto-scaling framework for containerised elastic applications.
Another auto-scaling case of study container-based is described
in Klinaku et al. (2018). Both solutions include scaling actions
based on increasing or reducing the number of containers.

Hybrid: as mentioned above, most of literature studies
address scalability of VMs, neglecting containers. However,
containers are often used on the top of virtual machines. In fact,
studies that analyse the estimation of resources using a
combination of VMs and containers are lacking. An example
of hybrid approach is described in Al-Dhuraibi et al. (2018),
where the problem of the joint scaling of VM and containers is
considered.

9 Auto-scaling approaches in the literature

Following up the discussion on the main key points to be
considered for devising an auto-scaling implementation,
from here onward we will deal with existing solutions,
starting from the ones that are the object of papers in the
state-of-the-art literature. In this section we identify four
macro categories of approaches to auto-scaling: load
prediction, resource-aware, SLA-aware and cost-aware.
Each of these identifies the researchers’ vision to improve
one or more factors, such as cost, resource optimisation,
SLA violation avoidance, etc. This grouping is not due to a
forced choice or is based on specific standards, since there
is no commonly accepted reference. However, we think that
it might be a good organisation in order to get a clear idea
about the works that tend to improve the specific objectives.
To summarise the findings, based on the taxonomy and
explanation of the above sections, we list the features of the
works surveyed in the following in Table 1.

9.1 Load prediction approaches

Estimating the use of resources in a context where there is a
strong variability in the workload is quite complex. For
many websites, e.g., it is not easy to plan load peaks, as it is
necessary to consider the interleaving of a number of factors
(time of day, day of week and other seasonal factors) that
concur, along with unplanned ones, to the predictability of
the load. It is indeed possible to take into account average
load or maximum peaks, but each of the two solutions has
disadvantages. In the first case, provisioning problems could
arise in the presence of unexpected peaks; in the second,
there could be a waste of resources if the workload remains
under the peaks.

44 M. Catillo, U. Villano and M. Rak

Table 1 A review of the auto-scaling properties of surveyed works

Work Macro-category
Scaling
timing

Resource
estimation

Scaling metrics
Scaling
methods

Adaptivity
Virtualisation
level

Islam et al. (2012) load prediction proactive time-series
analysis

application level horizontal self-adaptive VM

Herbst et al.
(2013)

load prediction proactive control theory business logic level horizontal self-adaptive VM

Li et al. (2016) load prediction proactive time-series
analysis

application level hybrid self-adaptive VM

Roy et al. (2011) load prediction proactive control-theory business logic level horizontal self-adaptive VM

Bunch et al. (2012) load prediction proactive control-theory application/
business logic level

horizontal self-adaptive VM

Shariffdeen et al.
(2016)

load prediction proactive time-series
analysis

application/business
logic level

horizontal self-adaptive VM

Huang et al.
(2012)

resource-aware proactive time-series
analysis

application level N/A self-adaptive VM

Moltó et al. (2016) resource-aware reactive threshold-based
rules

application level hybrid self-adaptive hybrid

Novak et al.
(2019)

resource-aware reactive queuing theory application level hybrid self-adaptive VM

Liu et al. (2017) resource-aware reactive threshold-based
rules

business logic level horizontal non-adaptive VM

Hasan et al. (2012) resource-aware reactive threshold-based
rules

application level hybrid non-adaptive VM

Qavami et al.
(2014)

resource-aware proactive queuing theory application level horizontal self-adaptive VM

García et al.
(2014)

SLA-aware reactive threshold-based
rules

business logic level horizontal non-adaptive VM

Alzahrani et al.
(2016)

SLA-aware proactive time-series
analysis

application/business
logic level

hybrid self-adaptive hybrid

Gujarati et al.
(2017)

SLA-aware proactive queuing theory business logic level horizontal self-adaptive hybrid

Tran et al. (2017) SLA-aware proactive time-series
analysis

application/business
logic level

horizontal self-adaptive VM

Souza and Netto
(2015)

SLA-aware reactive threshold-based
rules

business logic level vertical non-adaptive N/A

Yaqub et al.
(2014)

SLA-aware reactive threshold-based
rules

application/business
logic level

horizontal non-adaptive container

Moldovan et al.
(2016)

COST-aware reactive threshold-based
rules

business logic level horizontal non-adaptive VM

Catillo et al.
(2021)

COST-aware hybrid N/A business logic level horizontal non-adaptive VM

Lesch et al. (2018) COST-aware proactive control theory business logic level vertical self-adaptive VM

Kriushanth and
Arockiam (2014)

COST-aware reactive threshold-based
rules

business logic level horizontal non-adaptive VM

Mao et al. (2010) COST-aware reactive queuing theory business logic level vertical non-adaptive VM

Horn and
Skrzypek (2018)

COST-aware proactive N/A business logic level horizontal self-adaptive VM

In the literature there are many works that deal with the
problem of the prediction of the incoming load, in order to
obtain careful management of resources. Islam et al. (2012)
proposed prediction-based resource measurement and
provisioning strategies by using Neural Networks and Linear
Regression. The goal is to satisfy the incoming demand by
making the best use of resources. The solution, besides

providing accurate load forecasts, makes also it possible to
predict the resource demand ahead of the VM instance setup
time. Herbst et al. (2013) described a novel self-adaptive
approach that selects load forecasting methods depending on
the context. The approach is based on decision trees and direct
feedback cycles. The results obtained from the experimentation
show that the context selection of a forecast method reduces the

 A survey on auto-scaling: how to exploit cloud elasticity 45

error of the load previsions, compared to the results obtained by
a statically-selected forecasting method. Li et al. (2016)
proposed a load prediction algorithm for automatic scaling. The
algorithm is combined with Linear Regression and improved
Knuth-Morris-Pratt string matching. The authors show that
their approach can solve successfully the problem of resource
allocation. Roy et al. (2011), instead, use predictive techniques
to automatically scale resources by exploiting a look-ahead
resource allocation algorithm. In particular, they propose a
model based on control theory in order to predict future
workloads. Empirical results show the validity of the proposal
for both cloud users and providers. Finally, Bunch et al. (2012)
and Shariffdeen et al. (2016) described two different workload
prediction methods for efficient auto-scaling in PaaS systems.

9.2 Resource-aware approaches

The progressive diffusion of cloud computing, with data
centers spread over different geographical areas, calls for the
optimisation of resource provisioning policies. One of the main
challenges in the field of resource provisioning concerns
finding the distribution of resources to applications that reduces
power consumption and costs. Many recent studies have
addressed this problem.

Huang et al. (2012) proposed a resource prediction model
based on double exponential smoothing. Besides considering
the current state of resources, the system also takes into account
historical data. The experiments performed on the CloudSim
simulator show a good model accuracy. Moltó et al. (2016)
instead propose a system providing automatic vertical
elasticity, that adapts the memory size of the VMs to their
memory consumption. The system uses live migration to
prevent overload scenarios, thus preventing downtime for
VMs. Novak et al. (2019) described an architecture for auto-
scaling VMs quickly by using cloud functions and a reactive
scaling algorithm. Cloud functions are available from cloud
providers as temporary resources to manage the delay in
starting VMs; the main feature of the reactive scaling algorithm
is that it does not require the setting of a threshold. The Authors
show the validity of the proposal by implementing the system
on both AWS and Azure. In order to ensure the stability of
service performance, Liu et al. (2017) proposed a framework
for cloud resource management by exploiting two novel
turnaround time-driven auto-scaling mechanism. As an
extension of a previous work (Liu et al., 2016), the system
provides both dynamic and schedule-based auto-scaling and
shows good performance. Hasan et al. (2012) presented
Integrated and Autonomic Cloud Resource Scaler (ICARS), a
cloud resource auto-scaling system. The power of the proposal
is that it integrates performance metrics from multiple domains
for effective scaling of resources. This allows optimised scaling
by avoiding outages. Finally, Qavami et al. (2014) focused on
resource allocation by proposing a learning-based system
called Smart Virtual Machine Provisioner (SVMP). They
propose a dynamic resource provisioning following a heuristic
Markovian approach. The experimental results show the
effectiveness of the solution.

9.3 SLA-aware approaches

Autonomic provisioning should allow to meet the requirements
specified by the Service Level Agreement signed by
application providers and cloud service providers. In an
SLA, the quality of service is specified as non-functional
requirements of services. Inadequate values of QoS may lead to
SLA penalties.

Many SLA-aware resource provisioning techniques have
been proposed. García et al. (2014) proposed Cloudcompass,
an SLA-aware cloud platform that manages the complete
resource life cycle. In particular, it allows cloud service
providers adopting a generic SLA model to manage higher-
level metrics, closer to the end user perception. Cloudcompass
also allows to correct QoS violations by exploiting the
elasticity features of cloud systems. Alzahrani et al. (2016)
describe Energy Based Auto-Scaling (EBAS), as a novel
resource auto-scaling approach that takes into account Service
Level Agreements. The proposed system, besides estimating
the amount of resources that are needed for computation,
enables the CPU to be aware of the SLA constraints. The
experimental results show that the system is well designed to
meet SLA conditions. Gujarati et al. (2017) presented Swayam,
a fully distributed auto-scaling framework that cares about
SLA compliance and resource efficiency. The analysis is based
on Microsoft Azure Machine Learning, a commercial MLaaS
platform. Extensive experimentation on 15 popular services
shows the validity of the proposal. Tran et al. (2017) described
a proactive cloud scaling model based on fuzzy time series and
SLA awareness. In particular, in addition to using a fuzzy
approach, they exploit a genetic algorithm and a neural
network to process historical monitoring time series data; the
scaling action is triggered by the occurrence of SLA violations.
Souza and Netto (2015) presented a study on the effectiveness
of auto-scaling driven by data generated by the supported
application. In particular, they use SLA in order to estimate the
necessary amount of resources. The proposed algorithm can
reduce the number of SLA violations up to 95%. Finally,
Yaqub et al. (2014) presented a capacity planning for SLA-
aware resource management in PaaS clouds. The novelty of the
contribution is the application of metaheuristic local search.
The Authors claim that is one of the first works on the subject
based on multiple metaheuristic algorithms and holistic
evaluations.

9.4 COST-aware approaches

The use of auto-scaling mechanisms that try to meet cost
requirements is an active research topic. As a matter of fact,
optimising the cost of a scalable application is not easy. The
use of a VM is often billed by the hour, or based on each GB of
generated I/O traffic. For these reasons, it is crucial to develop
scaling strategies taking into account the billing cycles.

Moldovan et al. (2016) introduced a model for capturing
the pricing schemes of cloud services. The solution is useful for
the developers of scalable applications for public clouds, as it
allows to monitor costs and to develop cost-aware scalability

46 M. Catillo, U. Villano and M. Rak

controllers. Catillo et al. (2021) proposed an analysis method
based on off-line benchmarking that allows to define scaling
policies to be used by auto-scalers. The approach consists in
benchmarking the web application to discover the load
processing capacities of each component, making it easier to
apply scaling policies in the presence of load variations. The
analysis enables to identify the trade-offs between costs and
quality of service of the application even in multiple
deployment configurations. Lesch et al. (2018) described a
cost-aware approach for autonomic resource management
called FOX. It operates as a mediator between the application
and the cloud in order to reduce the charged costs. The
experimental results show that FOX is able to reduce the
charged costs by increasing the accounted instance time for the
Amazon EC2 charging model. Kriushanth and Arockiam
(2014) introduced a dynamic rule-based auto-scaling
mechanism in order to reduce the cost of the VM instances.
The results show that the proposed approach reduces the cost
of the service and SLA violations related to cost. A mechanism
to dynamically scale cloud computing instances, based on
deadline and budget information, is presented in Mao et al.
(2020). The scaling actions are triggered considering
performance and budget of a cloud application. The system is
deployed on the Windows Azure platform and evaluated by
using both simulation and a real scientific application. Finally,
Horn, G. and Skrzypek (2018) presented MELODIC, a
framework that supports cost-aware auto-scaling. It finds a
good initial deployment in the cloud and continuously
optimises it according to the variable execution context,
possibly taking into account the cost in its utility function.

10 Commercial scalers

In this section, we analyse some existing auto-scaling
solutions, including those used by several commercial cloud
providers. In particular, we focused on the implementations
provided by the main CSPs: Amazon AWS, Microsoft Azure,
Rackspace and Google.

10.1 Amazon AWS

Amazon Web Service (AWS) offers an auto-scaling service in
the IaaS Elastic Compute Cloud (EC2) public cloud
(https://aws.amazon.com/autoscaling). An EC2 instance is a
virtual server for running applications on the AWS
infrastructure. As far as elasticity is concerned, a key
component is the Auto Scaling Group (ASG). This is
characterised by the configuration of the virtual machines that
will be part of the group. The ASG maintains EC2 instances in
the group by performing a periodic health check. If any
instance becomes unhealthy, it is stopped and replaced with
another instance within the group. Another fundamental
component is the Launch Configuration. It is a template used
by Auto Scaling Group to launch EC2 instances. It allows to
specify the Amazon Machine Image (AMI) (instances type,
key pair, security groups, etc.) during the launch configuration

step. Finally, the Scaling Plans specify when and how to scale.
There are several ways to scale within the ASG:

 Maintaining current instance level at all times:
maintenance of a fixed number of running instances in the
ASG. If an instance becomes unhealthy, it is immediately
replaced.

 Manual scaling: once the group capacity is specified, auto-
scaling maintains the instances with updated capacity.

 Scale based on schedule: this approach can be used when
traffic peaks are expected. In this case, scaling actions are
performed at specific times.

 Scale based on demand: following this approach,
resources scale by a scaling policy. It is possible to scale in
or out considering specific parameters (CPU utilisation,
Memory, Network In and Out, etc.).

 Use predictive scaling: this approach combines predictive
scaling and dynamic scaling (proactive and reactive
approaches, respectively) in order to scale faster.

Amazon AWS supports only horizontal auto-scaling out-of-
the-box. However, vertical auto-scaling is possible by
harnessing AWS Ops Automator. It is a solution that features
vertical scaling for Amazon EC2 instances by exploiting the
AWS services (e.g., CloudWatch and Lambda).

Moreover, Amazon EC2 Container Service (ECS), a high
performance container management service that supports
Docker containers, allows to run easily applications on a
managed cluster of Amazon EC2 instances. ECS provides
auto-scaling for containers. It allows containerised services to
handle variable load over time and react in real-time to
dynamic workloads.

10.2 Microsoft Azure

Azure’s auto-scaling allows to set up rules to automatically
scale applications (both horizontally and vertically)
without manual intervention (https://azure.microsoft.com/en-
in/features/autoscale). Rules can be based on time (scaling is
carried out at specified times), or on two types of metrics:

1) Resource metrics: related to usage within Azure (memory,
CPU and disk usage, thread count, queue length). It is
possible to set Azure auto-scaling to scale up or down
based on these usage parameters.

2) Custom metrics: these are metrics produced by the
application itself. If they are sent to Application Insights
(a performance monitoring service by Microsoft), they can
be used to make decisions on whether to scale or not.

Microsoft Azure also provides auto-scaling for Azure
Kubernetes Service (AKS), a service for running containers in
the cloud. This lets developers elastically provision quick-
starting pods inside of Azure Container Instances (ACI), a
service that enables a developer to deploy containers on the
Microsoft Azure public cloud without having to provision or
manage any underlying infrastructure.

 A survey on auto-scaling: how to exploit cloud elasticity 47

10.3 Rackspace

Rackspace Auto Scale is written in Python and relies
on the Rackspace Cloud Servers, Rackspace Cloud Load
Balancers and Rackspace RackConnect v3 APIs
(https://www.rackspace.com/cloud/auto-scale). Rackspace only
supports horizontal scaling. The scaling events can be managed
both with scaling rules, which can be defined through the
monitoring system, and through a schedule that can be suitably
configured. A scaling group is a set of identical servers (and
optionally a load balancer), characterised by the following
components:

 Scaling group configuration: the group name,
cooldown (configured period of time that must pass
between actions) time limit, minimum and maximum
number of needed servers.

 Launch configuration: if a scaling event is intercepted,
the specific server configurations are managed.

 Scaling policy: specifies the actions of the policy.

 Webhook (capability-based URL): triggers a scaling
policy.

At the time of writing, Rackspace does not provide a
container auto-scaling service.

10.4 Google

Auto-scaling in the Google Cloud platform is a feature of
the instance group. In particular, a group is composed of
homogeneous instances, created from a common instance
template. The auto-scaling service is offered by
Compute Engine, which supports only horizontal scaling
(https://cloud.google.com/appengine/docs). Possible scaling
policies include:

 CPU utilisation: the auto-scaling event is linked to the
average CPU utilisation of a group of virtual machines.

 Load balancing serving capacity: auto-scaling is based
on load balancing serving capacity by monitoring the
serving capacity of an instance group. There is a scaling
event if the VMs are over or under capacity.

 Stackdriver monitoring metrics: auto-scaling is based
on a standard metric provided by Google’s Stackdriver
Monitoring (a monitoring service natively integrated
with Google Cloud Platform), or on any custom
metrics.

Finally, it is worth mentioning that Google Kubernetes Engine,
a managed environment for deploying, managing, and scaling
containerised applications using Google infrastructure, allows
for both horizontal and vertical scaling of pods.

11 Research directions

The availability of (automated) elasticity, commonly offered
by cloud-based infrastructures, has boosted the interest for

new research topics. In the past, the auto-scaling problem
was addressed mainly from the data centre management
point of view, and it was strictly related to the resource
scheduling problem. In particular, researchers focused their
interest on the optimal allocation of many-task applications
over existing resources, in order to minimise resource usage,
reduce energy consumption and so on. According to the
state of art we have summarised in the previous sections,
currently auto-scaling in infrastructures is no longer a
technological issue: existing tools are able to scale both
horizontally and vertically in an almost transparent way for
the upper layers, thanks to virtualisation, containers and
load balancers. In fact, auto-scaling is even offered as a
commercial service (as discussed in section 10).

Nowadays the auto-scaling is decoupled from resource
scheduling. Auto-scaling is offered as a service to the
application, and the requested resources are independently
scheduled on the lower physical infrastructural layer, aiming
at optimising resource consumption, especially for energy-
aware considerations. In practice, the auto-scaling problem
moves from the infrastructure level up to the application
level: scaling should be done taking into account the single
application behaviour, adapting to the workload it is subject
to, not considering the load of many-task applications.

At the state of art, infrastructures offer the capability to
scale, while it is up to the application to make a decision on
when, how and how much to scale. As a consequence, the
research topics change and can be summarised as follows:

1) auto-scaling policy definition and design,

2) comparison and benchmarking of auto-scaling tools,

3) definition of auto-scaling metrics and performance
figures,

4) trade-off among scaling and costs, and finally

5) protection against Economic Denial of Sustainability or
Fraudulent cloud Resource Consumption attacks.

These topics are dealt with below:
Auto-scaling policy definition and design: The first and

clear open research point is the need for techniques and
languages to design and express scalability policies in a way
that is as much as possible vendor- and technology-
independent, being at the same time able to catch the
application behaviour and to define the criteria and logic
needed to scale.

Comparison and benchmarking auto-scaling tools: even
if the technologies are nowadays commonly available, at the
best of author’s knowledge there is not a commonly
accepted reference architecture for auto-scaling tools, and
no stable benchmarks that enable a comparison among the
different techniques and solutions on the market. This is
clearly an open issue: being the auto-scaling delegated to
the application, together with the associated costs, it is
relevant to know how well the auto-scaling tool will react
and implement the requested policy. Performance indicators
should be correctly identified in order to evaluate well and
to implement the scaling policies.

48 M. Catillo, U. Villano and M. Rak

Definition of auto-scaling metrics: the need for
benchmarks opens up a research area even for new metrics
and indicators, able to express in a clear way the overhead
introduced, how it affects the scaling policy and, overall, the
scaling quality. In this field, one of the most innovative
aspects is to devise metrics that take into account the
relationship with costs, as turns out from a pay-per-use
resource usage. While at infrastructure level the resources
are almost fixed and the costs are mainly considered to
optimise their use and/or to reduce energy dissipation
(obtained reducing the amount of resources adopted),
moving the scaling problem at application level implies a
direct effect of scaling on costs: adding/removing a VM or
changing the type of machine directly affects the costs, and
so it is possible to define policies taking into account the
cost as a performance indicator (as illustrated in Section 9).

Trade-off among scaling and costs: in light of the above,
auto-scaling policies should accordingly take into account
the trade-off between performance-related metrics and cost-
related metrics.

Protection against Economic Denial of Sustainability or
Fraudulent cloud Resource Consumption attacks: the cloud
pay-per-use paradigm has an additional side-effect: a new
type of cyber-attacks named Economic Denial of
Sustainability (EDoS) or Fraudulent cloud Resource
Consumption (FRC), which aim at forcing the cloud
applications to consume more resources than usual. The
objective of these attacks is not to make service unavailable
as in a DoS attack, but to increase the application costs to be
payed to the hosting cloud provider. Mitigation techniques
for EDoS and FRC exist – interesting surveys on the topic
are Somasundaram (2016); Thaper, R. and Verma (2015);
Singh et al. (2014) and VivinSandar and Shenai (2012), but
they require suitable application design and need to be taken
into account in the auto-scaling policy design and/or tools
implementation. At the time of writing, no auto-scaling
implementation deals with the problem of EDoS and FRCs.

12 Conclusions

To be exploited at best, the great opportunity offered by the
elasticity of cloud environments calls for clever auto-scaling
techniques and tools. Our snapshot of the state of the art
shows clearly that auto-scaling is not only a technological
issue, as its adoption opens up to a lot of new problems and
opportunities to be addressed from research point of view.

In this paper we have provided a reasoned and
commented view of the key factors to be considered in the
design of an auto-scaler. We hope that this work could be
useful not only for understanding the pros and cons of
existing solutions, but also for the development of a new
generation of auto-scalers. In fact, the analysis of the
literature on auto-scaling and the discussion on commercial
solutions shows all the limits of present-day solutions, and
the necessity to move in the directions pointed out in our
suggestions for further research.

References

Al-Dhuraibi, Y., Zalila, F., Djarallah, N.B. and Merle, P. (2018)
‘Coordinating vertical elasticity of both containers and virtual
machines’, Proceedings of the 8th International Conference
on Cloud Computing and Services Science, pp.1–9.

Ali-Eldin, A., Tordsson, J. and Elmroth, E. (2012) ‘An adaptive
hybrid elasticity controller for cloud infrastructures’,
Proceedings of the IEEE Network Operations and
Management Symposium, pp.204–212.

Alipour, H. and Liu, Y. (2017) ‘Online machine learning for cloud
resource provisioning of microservice backend systems’,
Proceedings of the IEEE International Conference on Big
Data (Big Data), pp.2433–2441.

Alzahrani, E.J., Tari, Z., Zeephongsekul, P., Lee, Y.C., Alsadie, D.
and Zomaya, A.Y. (2016) ‘SLA-aware resource scaling for
energy efficiency’, Proceedings of the IEEE 18th
International Conference on High Performance Computing
and Communications; IEEE 14th International Conference on
Smart City; IEEE 2nd International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pp.852–859.

Amiri, M. and Mohammad-Khanli, L. (2017) ‘Survey on
prediction models of applications for resources provisioning
in cloud’, Journal of Network and Computer Applications,
Vol. 82, No. C, pp.93–11.

Assuncao, M., Cardonha, C., Netto, M. and Cunha, R.. (2016)
‘Impact of user patience on auto-scaling resource capacity for
cloud services’, Future Generation Computer Systems,
Vol. 55, pp.41–50.

AWS Auto Scaling (n.d.) Application scaling to optimize
performance and costs. Available online at:
https://aws.amazon.com/autoscaling.

Beltrán, M. (2015) ‘Automatic provisioning of multi-tier
applications in cloud computing environments’, Journal of
Supercomputing, Vol. 71, No. 6, pp.2221–2250.

Biswas, A., Majumdar, S., Nandy, B. and El-Haraki, A. (2015)
‘An auto-scaling framework for controlling enterprise
resources on clouds’, Proceedings of the 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, pp.971–980.

Bunch, C., Arora, V., Chohan, N., Krintz, C., Hegde, S. and
Srivastava, A. (2012) ‘A pluggable autoscaling service for
open cloud paas systems’, Proceedings of the IEEE 5th
International Conference on Utility and Cloud Computing,
pp.191–194.

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F. and
Buyya, R. (2011) ‘Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms’, Software: Practice and
Experience, Vol. 41, No. 1, pp.23–50.

Casalicchio, E. and Silvestri, L. (2013) ‘Autonomic management
of cloud-based systems: the service provider perspective’, in
Gelenbe, E. and Lent, R. (Eds): Computer and Information
Sciences III, Springer, London, pp.39–47.

Catillo, M., Ocone, L., Rak, M. and Villano, U. (2021) ‘Black-box
load testing to support auto scaling web applications in the
cloud’, International Journal of Grid and Utility Computing,
Vol. 12, No. 2, pp.139–148.

Chieu, T.C., Mohindra, A., Karve, A.A. and Segal, A. (2009)
‘Dynamic scaling of web applications in a virtualized cloud
computing environment’, Proceedings of the IEEE
International Conference on e-Business Engineering,
pp.281–286.

 A survey on auto-scaling: how to exploit cloud elasticity 49

Dutreilh, X., Moreau, A., Malenfant, J., Rivierre, N. and Truck, I.
(2010) ‘From data center resource allocation to control theory
and back’, Proceedings of the IEEE 3rd International
Conference on Cloud Computing, pp.410–417.

Dutta, S., Gera, S., Verma, A. and Viswanathan, B. (2012)
‘Smartscale: automatic application scaling in enterprise
clouds’, Proceedings of the IEEE 5th International
Conference on Cloud Computing, pp.221–228.

Fernandez, H., Pierre, G. and Kielmann, T. (2014) ‘Autoscaling
web applications in heterogeneous cloud infrastructures’,
Proceedings of the IEEE International Conference on Cloud
Engineering, pp.195–204.

Garcia, A., Blanquer, I. and Garcia, V.H. (2014) ‘SLA-driven
dynamic cloud resource management’, Future Generation
Computer Systems, Vol. 31, pp.1–11.

Garí, Y., Monge, D.A., Pacini, E., Mateos, C. and García Garino,
C. (2020) ‘Reinforcement learning-based autoscaling of
workflows in the cloud: a survey’, arXiv:2001.09957v1
[cs.DC], pp.1–41.

Ghanbari, H., Simmons, B., Litoiu, M. and Iszlai, G. (2011)
‘Exploring alternative approaches to implement an elasticity
policy’, Proceedings of the IEEE 4th International
Conference on Cloud Computing, pp.716–723.

Gujarati, A., Elnikety, S., He, Y., McKinley, K.S. and Brandenburg,
B.B. (2017) ‘Swayam: distributed autoscaling to meet SLAs of
machine learning inference services with resource efficiency’,
Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference, ACM, New York, NY, USA, pp.109–120.

Han, R., Ghanem, M.M., Guo, L., Guo, Y. and Osmond, M. (2014)
‘Enabling cost-aware and adaptive elasticity of multi-tier
cloud applications’, Future Generation Computer Systems,
Vol. 32, No. C, pp.82–98.

Hasan, M.Z., Magana, E., Clemm, A., Tucker, L. and Gudreddi,
S.L.D. (2012) ‘Integrated and autonomic cloud resource
scaling’, Proceedings of the IEEE Network Operations and
Management Symposium, pp.1327–1334.

Herbst, N.R., Huber, N., Kounev, S. and Amrehn, E. (2013) ‘Self-
adaptive workload classification and forecasting for proactive
resource provisioning’, Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering,
ACM, New York, NY, USA, pp.187–198.

Horn, G. and Skrzypek, P. (2018) ‘MELODIC: utility based cross
cloud deployment optimisation’, Proceedings of the 32nd
International Conference on Advanced Information
Networking and Applications Workshops (WAINA), IEEE,
pp.360–367.

Horovitz, S. and Arian, Y. (2018) ‘Efficient cloud auto-scaling
with sla objective using q-learning’, Proceedings of the IEEE
6th International Conference on Future Internet of Things
and Cloud (FiCloud), pp.85–92.

Hu, Y., Deng, B. and Peng, F. (2016) ‘Autoscaling prediction
models for cloud resource provisioning’, Proceedings of the
2nd IEEE International Conference on Computer and
Communications (ICCC), pp.1364–1369.

Huang, J., Li, C. and Yu, J. (2012) ‘Resource prediction based on
double exponential smoothing in cloud computing’, Proceedings
of the 2nd International Conference on Consumer Electronics,
Communications and Networks (CECNet), pp.2056–2060.

Ilyushkin, A., Ali-Eldin, A., Herbst, N., Papadopoulos, A.V., Ghit,
B., Dick, E. and Iosup, A. (2017) ‘An experimental
performance evaluation of autoscaling policies for complex
workflows’, Proceedings of the Proceedings of the 8th
ACM/SPEC on International Conference on Performance
Engineering, ACM, New York, NY, USA, pp.75–86.

Incerto, E., Tribastone, M. and Trubiani, C. (2018) ‘Combined
vertical and horizontal autoscaling through model predictive
control’, in Aldinucci, M., Padovani, L. and Torquati, M.
(Eds): Euro-Par 2018: Parallel Processing, Springer
International Publishing, Cham, pp.147–159.

Islam, S., Keung, J., Lee, K. and Liu, A. (2012) ‘Empirical
prediction models for adaptive resource provisioning in the
cloud’, Future Generation Computer Systems, Vol. 28, No. 1,
pp.155–162.

John, I., Sreekantan, A. and Bhatnagar, S. (2019) ‘Auto-scaling
resources for cloud applications using reinforcement
learning’, Grace Hopper Celebration India (GHCI), pp.1–5.

Klinaku, F., Frank, M. and Becker, S. (2018) ‘Caus: An elasticity
controller for a containerized microservice’, Proceedings of
the Companion of the ACM/SPEC International Conference
on Performance Engineering, ACM, New York, NY, USA,
pp.93–98.

Kriushanth, M. and Arockiam, L. (2014) ‘Article: cost aware
dynamic rule based auto-scaling of infrastructure as
a service in cloud environment’, Proceedings on
International Conference on Advanced Computing and
Communication Techniques for High Performance
Applications, pp.35–40.

Kumar, D. and Gondhi, N.K. (2017) ‘A QoS-based reactive auto
scaler for cloud environment’, Proceedings of the
International Conference on Next Generation Computing and
Information Systems (ICNGCIS), pp.19–23.

Lesch, V., Bauer, A., Herbst, N. and Kounev, S. (2018) ‘Fox: cost-
awareness for autonomic resource management in public
clouds’, Proceedings of the ACM/SPEC International
Conference on Performance Engineering, ACM, New York,
NY, USA, pp.4–15.

Li, C., Tang, J. and Luo, Y. (2020) ‘Elastic edge cloud resource
management based on horizontal and vertical scaling’, The
Journal of Supercomputing, Vol. 76, pp.7707–7732.

Li, T., Wang, J., Li, W., Xu, T. and Qi, Q. (2016) ‘Load
prediction-based automatic scaling cloud computing’,
Proceedings of the International Conference on Networking
and Network Applications (NaNA), pp.330–335.

Liao, W., Kuai, S. and Leau, Y. (2015) ‘Auto-scaling strategy for
amazon web services in cloud computing’, Proceedings
of the IEEE International Conference on Smart
City/SocialCom/SustainCom (SmartCity), pp.1059–1064.

Lim, H.C., Babu, S. and Chase, J.S. (2010) ‘Automated control for
elastic storage’, Proceedings of the 7th International
Conference on Autonomic Computing, ACM, New York, NY,
USA, pp.1–10.

Liu, X., Yuan, S., Luo, G. and Huang, H. (2016) ‘Auto-scaling
mechanism for cloud resource management based on client-
side turnaround time’, in Thi Zin, T., Chun-Wei Lin, J., Pan,
J-S., Tin, P. and Yokota, M. (Eds): Genetic and Evolutionary
Computing, Springer International Publishing, Cham,
pp.209–219.

Liu, X., Yuan, S., Luo, G., Huang, H. and Bellavista, P. (2017)
‘Cloud resource management with turnaround time driven
auto-scaling’, IEEE Access, Vol. 5, pp.9831–9841.

Lorido-Botran, T., Miguel-Alonso, J. and Lozano, J. (2014) ‘A
review of auto-scaling techniques for elastic applications in
cloud environments’, Journal of Grid Computing, Vol. 12,
pp.559–592.

Lu, L., Yu, J., Zhu, Y., Xue, G., Qian, S. and Li, M. (2017) ‘Cost-
efficient VM configuration algorithm in the cloud using mix
scaling strategy’, Proceedings of the IEEE International
Conference on Communications (ICC), pp.1–6.

50 M. Catillo, U. Villano and M. Rak

Lu, L., Yu, J., Zhu, Y., Xue, G., Qian, S. and Li, M. (2017) ‘Cost-
efficient VM configuration algorithm in the cloud using mix
scaling strategy’, Proceedings of the IEEE International
Conference on Communications (ICC), pp.1–6.

Mao, M., Li, J. and Humphrey, M. (2010) ‘Cloud auto-scaling with
deadline and budget constraints’, Proceedings of the 11th
IEEE/ACM International Conference on Grid Computing,
pp.41–48.

Maurer, M., Breskovic, I., Emeakaroha, V.C. and Brandic, I.
(2011) ‘Revealing the MAPE loop for the autonomic
management of cloud infrastructures’, Proceedings of the
IEEE Symposium on Computers and Communications (ISCC),
IEEE, pp.147–152.

Mell, P. and Grance, T. (2011) ‘The NIST definition of cloud
computing’, NIST Special Publication, Vol. 800, p.145.

Merkel, D. (2014) ‘Docker: lightweight linux containers for
consistent development and deployment’, Linux Journal.

Moldovan, D., Truong, H. and Dustdar, S. (2016) ‘Cost-aware
scalability of applications in public clouds’, IEEE
International Conference on Cloud Engineering (IC2E),
IEEE, Berlin, Germany.

Moltó, G., Caballer, M. and De Alfonso, C. (2016) ‘Automatic
memory-based vertical elasticity and oversubscription on
cloud platforms’, Future Generation Computer Systems,
Vol. 56, No. C, pp.1–10.

Moore, L.R. Bean, K. and Ellahi, T. (2013a) ‘Transforming
reactive auto-scaling into proactive auto-scaling’,
Proceedings of the 3rd International Workshop on Cloud
Data and Platforms, ACM, New York, NY, USA, pp.7–12.

Moore, L.R., Bean, K. and Ellahi, T. (2013b) ‘A coordinated
reactive and predictive approach to cloud elasticity’,
Proceedings of the 4th International Conference on Cloud
Computing, GRIDs, and Virtualization, pp.87–92..

Novak, J.H., Kasera, S.K. and Stutsman, R. (2019) ‘Cloud functions
for fast and robust resource auto-scaling’, Proceedings of the 11th
International Conference on Communication Systems Networks
(COMSNETS), pp.133–140.

Qavami, H.R., Jamali, S., Akbari, M.K. and Javadi, B. (2014)
‘Dynamic resource provisioning in cloud computing: a heuristic
markovian approach’, in Leung, V.C.M. and Chen, M. (Eds):
Cloud Computing, Springer International Publishing, Cham,
pp.102–111.

Qu, C., Calheiros, R.N. and Buyya, R. (2018) ‘Auto-scaling web
applications in clouds: a taxonomy and survey’, ACM
Computing Surveys, Vol. 51, No. 4, pp.1–33.

Roy, N., Dubey, A. and Gokhale, A. (2011) ‘Efficient autoscaling
in the cloud using predictive models for workload
forecasting’, Proceedings of the IEEE 4th International
Conference on Cloud Computing, pp.500–507.

Sedaghat, M., Hernandez-Rodriguez, F. and Elmroth, E. (2013) ‘A
virtual machine re-packing approach to the horizontal vs.
vertical elasticity trade-off for cloud autoscaling’,
Proceedings of the 3 ACM Cloud and Autonomic Computing
Conference, ACM, New York, NY, USA.

Shariffdeen, R.S., Munasinghe, D.T.S.P., Bhathiya, H.S., Bandara,
U.K.J.U. and Bandara, H.M.N.D. (2016) ‘Adaptive workload
prediction for proactive auto scaling in PaaS systems’,
Proceedings of the 2nd International Conference on Cloud
Computing Technologies and Applications (CloudTech),
pp.22–29.

Singh, P., Gupta, P., Jyoti, K. and Nayyar, A. (2019) ‘Research on
auto-scaling of web applications in cloud: Survey, trends and
future directions’, Scalable Computing: Practice and
Experience, Vol. 20, No. 2, pp.399–432.

Singh, P., Manickam, S. and Rehman, S.U. (2014) ‘A survey of
mitigation techniques against economic denial of
sustainability (EDos) attack on cloud computing architecture,
pp.1–4.

Somasundaram, A. (2016) ‘Economic denial of sustainability
attack on cloud – a survey’, ICTACT Journal on
Communication Technology, Vol. 7, No. 4, pp.1402–1407.

Souza, A.A.D.P. and Netto, M.A.S. (2015) ‘Using application data
for SLA-aware auto-scaling in cloud environments’,
Proceedings of the IEEE 23rd International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, pp.252–255.

Sutton, R.S. and Barto, A.G. (2018) Reinforcement Learning: An
Introduction, 2nd ed., The MIT Press.

 Taherizadeh, S., Stankovski, V. and Cho, J. (2019) ‘Dynamic
multi-level auto-scaling rules for containerized applications’,
The Computer Journal, Vol. 62, No. 2, pp.174–197.

Thaper, R. and Verma, A. (2015) ‘A survey on economic denial of
sustainability attack mitigation techniques’, International
Journal of Innovative Research in Computer and
Communication Engineering, Vol. 3, No. 3, pp.2312–2316.

Tighe, M. and Bauer, M. (2017) ‘Topology and application aware
dynamic VM management in the cloud’, Journal of Grid
Computing, Vol. 15, No. 2, pp.273–294.

Tran, D., Tran, N., Nguyen, G. and Nguyen, B.M. (2017) ‘A
proactive cloud scaling model based on fuzzy time series and
SLA awareness’, Procedia Computer Science, Vol. 108,
pp.365–374.

Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P. and Wood, T.
(2008) ‘Agile dynamic provisioning of multi-tier internet
applications’, ACM Transactions on Autonomous and
Adaptive Systems, Vol. 3, No. 1, pp.1–39.

VivinSandar, S. and Shenai, S. (2012) ‘Economic denial of
sustainability (EDoS) in cloud services using HTTP and XML
based DDoS attacks’, International Journal of Computer
Applications, Vol. 41, No. 20, pp.11–16.

Yaqub, E., Yahyapour, R., Wieder, P., Jehangiri, A.I., Lu, K. and
Kotsokalis, C. (2014) ‘Metaheuristics-based planning and
optimization for SLA-aware resource management
in PaaS clouds’, Proceedings of the IEEE/ACM 7th
International Conference on Utility and Cloud Computing,
pp.288–297.

Ye, T., Guangtao, X., Shiyou, Q. and Minglu, L. (2017) ‘An auto-
scaling framework for containerized elastic applications’,
Proceedings of the 3rd International Conference on Big Data
Computing and Communications (BIGCOM), pp.422–430.

Ye, T., Guangtao, X., Shiyou, Q. and Minglu, L. (2017) ‘An auto-
scaling framework for containerized elastic applications’,
Proceedings of the 3rd International Conference on
Big Data Computing and Communications (BIGCOM),
pp.422–430.

Zhang, Q., Cherkasova, L. and Smirni, E. (2007) ‘A regression-
based analytic model for dynamic resource provisioning of
multi-tier applications’, Proceedings of the 4th International
Conference on Autonomic Computing, pp.27–27.

