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Abstract: In this study, turning operations were performed to optimise the 
surface roughness, cutting force, and residual stress. Trials were done on 
Inconel 800H using olive oil mixed with 0.20 wt % hexagonal boron nitride. 
Response surface methodology has established a link between input and 
machining responses. Harris hawk optimisation (HHO) was used to search for 
potential candidates for the solution. A technique for order preference by 
similarity to the ideal solution (TOPSIS) was used to detect the most viable 
compromise. The optimal results of TOPSIS-HHO are benchmarked with other 
metaheuristic algorithms. The results show that the optimum results and their 
responses found through experiments are Ra 0.2837 µm, Fz 137 N, and 
Res 406 MPa, which are less than a 10% average error on the predicted value. 
The HHO-TOPSIS showed an improvement in convergence rate by 9.57%, 
12.04%, 11.73%, and 32.65% at the optimal determined values compared to 
other hybrid algorithms. 

Keywords: Inconel 800H; minimum quantity lubrication; MQL; tool wear; 
Harris hawk optimisation; HHO; analysis of variance; ANOVA; TOPSIS. 
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1 Introduction 

The superalloys are used in many industries, including automotive, nuclear, petroleum, 
space, and chemical, for their high strength. Nickel based superalloys are widely utilised 
in the aircraft industry; specifically, gas turbine engine utilisation was nearly 45–50% 
(Palanisamy and Selvaraj, 2018; Angappan et al., 2017). Inconel 800H, an iron-based 
superalloy, has a high withstand temperature of 810°C and is used in power, 
petrochemical, nuclear plants, and heat exchangers components. This alloy is used as a 
cutting tool in machining because of the material’s high creep strength and higher 
oxidation-corrosion resistance capability. Inconel 800H is hard-to-machine material 
following important properties like rapid hardening, low thermal conductivity, and rapid 
tool work adhesion (Palanisamy et al., 2021; Byrne and Scholta, 1993). Machining such 
alloy in a dry condition is a comprehensive task and leads to poor machinability, damage 
to tools, and poor surface finish. To meet such challenges, minimum quantity lubrication 
(MQL) technology is applied and succeeded in many machining applications (Majak  
et al., 2020). In machining processes, 85% of cutting fluids are petroleum-based oils. In 
addition, non-toxic, non-negative impact, and ecologically sustainable cutting fluids are 
preferable over petroleum oils (Robinson Gnanadurai and Mesfin, 2022). Furthermore, 
tribological studies of vegetable oils demonstrated outstanding anti-friction and anti-wear 
capabilities. Other improvement includes biodegradability, ease of readiness, and 
affordability. In addition, many researchers applied vegetable oil such as coconut oil, 
olive oil, sunflower oil, canola oil, sesame oil, and other oils as cutting fluids in various 
machining applications. For example, Saleem and Mehmood (2022) investigated the 
performance of sunflower (MQLSO) and castor oil (MQLCO) during the turning of 
Inconel 718. The results showed that the MQLSO outperformed other MQLCO and dry 
because of sunflower properties (viscosity and ability to wet the surface better). The tool 
wear and surface roughness obtained with MQLSO improved better than the dry 
conditions. Singh et al. (2022) studied the performance of three oils, synthetic oil (SO: 
local brand), vegetable oil (VO: soybean oil), and used motor oil (UO: 10W-30), during 
the MQL turning of Hastelloy C-276. The experimental results revealed that VO 
improved roughness in MO compared to SO at the lower levels of input parameters. The 
SEM results reveal lower flank wear values during VO than SO. Rapeti et al. (2018) 
conducted an MQL-turning on AISI 1040 steel with coconut oil, sesame oil, and canola 
oil dispersed with MoS2. This study concluded that coconut oil nano-MQL (NMQL) is 
very capable and promising in machining to reduce surface roughness, cutting tool 
temperature, tooltip wear, and cutting force. Vasu and Pradeep Kumar Reddy (2011) 
accomplished a comparative turning process on Inconel 600 using three lubrication 
methods (dry, MQL, and NMQL). The results concluded that the NMQL lubrication 
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technique attained reduced force, temperature, roughness, and flank wear. Jeevan and 
Jayaram (2018) examined the performance of Jatropha, Pongamia, and mineral oils as 
MQL in turning AA6061, where noticeable lower flank wear and reduced cutting force 
were observed during Pongamia oil in MQL machining. Talib et al. (2017) investigated 
and compared the tribological performance of different concentrations of hexagon boron 
nitride (hBN) with modified jatropha oil to crude jatropha oil and synthetic ester (SE). 
Modified jatropha oil with lower hBN exhibited better friction and wear behaviour 
reduction with superior machining performance than other tested oil. The study also 
reported lesser weight percent of hBN particles in altered oil significantly reduced the 
cutting force, temperature, and tool chip contact length and improved surface quality and 
tool life. Hegab et al. (2018) reported the performance of multiwall carbon nanotube 
(MWCNT) and Al2O3 with rapeseed oil MQL lubricant method in turning Inconel 718, 
where MWCNTs with rapeseed oil MQL outperform Al2O3 and given significant changes 
in modes of tool wear. Yıldırım et al. (2019) investigated the process performance of tool 
life, surface roughness, and temperature of Inconel 625 in four different cutting 
environments: dry, pure MQL (plantocut 10 SE), MQL machining with 0.5 vol.% hBN 
and MQL machining with 1.0vol%hBN. MQL with 0.50 vol.% hBN produced excellent 
surface finish, lower tool wear, and high tool life. Korkmaz et al. (2021) studied the 
performance of duple-jets MQL and hBN nanoparticles (1.0 wt.%) with WerteMist on 
turning of Nimonic 80A. The study reveals that the position of the nozzle plays an 
important role in the machining improvement during the turning of alloy. The hBN 
nanofluids showed an improvement in tool wear compared to dry. Abrasion and adhesion 
are two major tool wear mechanisms observed in dry. Venkatesan et al. (2020) 
investigated the application of hBN particles with a range of weight percentages blended 
with groundnut oil as nanofluid on turning of Nimonic 90 alloy and found the improved 
surface roughness and cutting force in comparison to dry condition. Huang et al. (2018) 
effectively studied the influence of electrostatic minimum quantity lubricant (EMQL) on 
cutting force, roughness, and tool wear during turning AISI 304 stainless steel and 
compared it with dry, conventional wet, and MQL. The oil mist input parameters are 
charging voltage, lubricant flow rate, nozzle angle, distance, and air pressure. Results 
found that surface roughness and cutting force decreased with the fluid flow rate increase. 
On the other hand, the force decreases, but roughness increases when air pressure 
increases. Liu et al. (2011) studied the effect of air pressure, oil flow rate, and nozzle 
position in MQL-based end-milling Ti-6Al-4V. The oil flow rate was vital in decreasing 
cutting force and temperature. Therefore, a well-chosen set of MQL parameters is 
required for a highly proficient MQL system. Ross et al. (2022a) studied the effect of the 
hybrid cooling approach during the machining of Nimonic 80A and compared it with 
MQL and cryogenic conditions. The results revealed that the hybrid C/L decreased 
temperature and specific consumption energy compared to MQL. Singh and Sharma 
(2022) studied the effect of different lubrication strategies (dry, flood, UAF) during the 
machining of Hastelloy C-276. The results showed a reduction in cutting force, feed 
force, radial force, and roughness under UAF compared to dry and flood. Zhou et al. 
(2022) studied the effect of dry, MQL, and cryogenic conditions on the force, roughness, 
temperature, and tool wear during the turning of Hastelloy-X. Cutting forces were 
reduced with MQL and cryogenic cooling compared to dry conditions. The measured 
surface roughness values are lowest under the cryogenic cooling condition. The adhesion 
and chipping wear mechanism observed on the tool edge was reduced with cryogenic 
cooling. Sun et al. (2022) studied the influence of different lubrication strategies (dry, 
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MQL (pure oil), and pure oil mixed with water) on the cutting performance of high-speed 
machining of GH4099. The results reveal a reduction in milling force for MQL and MQL 
mixed with water compared to dry milling. The cutting temperature was reduced 
significantly for the above two lubrication strategies. In addition, improving the 
workpiece’s surface quality was observed under MQL and water+pure oil. Compared to 
dry milling, adhesive wear, diffusion wear, and notch wear are the dominant tool wear 
mechanisms under MQL and water+Pure oil. Ross et al. (2022a) studied the effect of 
different cooling and lubrication environments on Monel-400 alloy. The study’s results 
highlighted that flank wear reduction was observed under CO2 + MQL compared to dry, 
MQL, and CO2 conditions. 

Different optimisation approaches have been used in the literature to optimise the 
process parameters due to the effective MQL C/L. For example, Gupta and Sood (2017) 
reported that particle swarm optimisation (PSO) and bacterial foraging optimisation 
(BFO) performed better in optimising the machining parameters on cutting force, tool 
wear, chip control, and roughness than the desirability function approach of Inconel 800 
under MQL environment. Rubaiee et al. (2022) reported that non-dominated sorting 
genetic algorithm II (NSGA-II) and the teaching-learning-based optimisation (TLBO) 
approach) to determine the same optimal combination of machining indices turning of 
Inconel 718 under four lubrication mediums (dry, MQL, nMQL, and cryogenic). 
Sivalingam et al. (2021) reported that the Moth-Flame optimisation (MFO) algorithm 
outperformed compared to genetic (GA), Grass-Hooper (GH), grey-wolf (GW), and PSO 
algorithms in finding the range of reduction in force, roughness, and cutting temperature 
values in turning Hastelloy X. Salem et al. (2021) evaluated an experimental study on 
Inconel 718 using both nano additives (MCNT and Al2O3), and NSGA-II was applied for 
muli-objective optimisation. It was found that the Al2O3 Nanofluid shows better 
performance for the machining cost. In comparison, the MCNT nanofluid shows better 
performance for energy. Elsheikh et al. (2021) applied hybrid models composed of a 
conventional ANN model (C-ANN) combined with two bioinspired optimisers, such as 
the pigeon optimisation algorithm (POA) and PSO, to predict residual stresses during the 
machining of Inconel 718. Compared to C-ANN, both hybrid machining learning (ML) 
models showed good prediction accuracy for residual stress. Further, POA is suggested to 
improve the prediction accuracy of the conventional ANN. Viswanathan et al. (2020) 
used a combination of Grey relation and principal component analysis to find the optimal 
process parameters. It was reported that the cutting depth influences and dominates much 
on desired surface roughness and cutting force on AZ91D Magnesium alloy. Han et al. 
(2020) developed a multi-objective model to determine the trade-off between cutting 
power (P) and material removal rate (MRR) in the milling process. GRA was used to 
determine the weight of the objective functions. Linear Decreasing Particle Swarm 
Algorithm (LDPS) optimisation algorithm optimised the cutting parameters for producing 
maximum MRR while minimising cutting power. Hegab et al. (2021) developed an 
evolutionary optimisation algorithm based on soft computing intelligent methods for the 
MQL turning of Inconel 718. The modelling of the machining process (tool wear, surface 
quality, and energy consumption) developed using soft computing methods of ANN, 
adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) was 
compared with RSM models. In addition, a non-dominated sorting genetic algorithm 
(NSGA-II) optimised the process parameters. The GP models achieved the highest 
determination coefficient in predicting the process variables compared with other soft-
computing methods. Abbasi et al. (2021) used the Harris hawk optimisation (HHO) 
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method for microchannel heat sinks. To minimise the formation of entropy, it stated that 
the exploitation and exploration capability of the HHO results are better when compared 
with the whale optimisation algorithm, dragonfly algorithm, bees optimisation algorithm, 
PSO, and grasshopper optimisation algorithm. 

The literature shows that MQL, MQL, NMQL, and cryogenic are promising and 
viable substitutes for machining performance improvement during nickel-based super 
alloys compared to dry and flood. However, further improvement in performance 
indicators, MQL (oil-mist), and machining parameters must be optimised together for 
multiple purposes with advanced algorithms. Hitherto, no mathematical model has been 
determined using RSM, which can predict MQL and machining parameters on output 
responses in turning nickel based alloy. By considering all the facts taken into account, 
the current study has two objectives. First, to study the effect of MQL (oil mist) 
parameters on machining performance. Second, use contemporary methods to improve 
machining characteristics by optimising the combined MQL and cutting parameters. In 
this context, the presented research work is focused on using the recent swarm-based 
intelligence algorithm, so-called HHO, coupled with technique for order preference by 
similarity to the ideal solution (TOPSIS) to obtain the most optimal feasible solution. 
Finally, design variables (optimal parameters) and their attainment have been compared 
to the results of the various benchmarked algorithms. 

2 Materials and methods 

Inconel 800H was the workpiece material used in this study for conducting  
experiments. It measures 32 mm in diameter × 300 mm in length. The experiments were 
conducted on the computerised numerical controlled machine (CNC) Simple Turn 
5075SPM lathe. For experiments, carbide-coated inserts ISO designation KC5010 for 
PVD; CNMG120408-MP with an appropriate tool holder under MQL condition were 
used. When turning Inconel 800H alloy, cutting parameters such as cutting speed, feed 
rate, nozzle distance, and nozzle angle were varied, as presented in Table 1. Throughout 
the experiment, the depth of cut was kept /maintained at 0.5 mm. Taguchi’s L27 

orthogonal array was chosen as the proper experimental design for factors and levels 
(presented in Table 1). The output responses of the experiments are surface roughness 
(Ra), cutting force (Fz), and residual stress (Res). Table 2 presents an overview of the 
parameters applied in the trials and experimental outputs. The machining experiment was 
carried out under MQL conditions for a cutting length of 10 mm. The flow rate of the 
MQL was fixed as 50 ml/hr at the pressure of 4 bar during all experiments. Furthermore, 
the schematic view of the complete process flow, including the pre and post-experiments 
used in the present work, is shown in Figure 1. A small amount of cutting fluid was 
mixed with compressed air into the mixing chamber to form an atomised fluid using a 
positive displacement pump in the MQL system. The fluid chamber delivered 
compressed air and oil. The airflow valve regulates air quantity, and the frequency 
generator controls the pumping cycle. Micro-nozzles were employed to supply the 
atomised fluid and were targeted on the cutting tool’s edge. In the present MQL delivery 
system, the nozzle angle and distance can be varied. For nanofluids preparation, a  
two-stage mixing process was employed. Following this, hBN particles with an average  
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particle size of 50 nm were added to olive oil in a proportion (0.2% weight 
concentration), as previously estimated through knowledge of the literature (Vasu and 
Pradeep Kumar Reddy, 2011). And it was subjected to a series of mixing processes. 
Olive oil and nanoparticles were first combined in a sonicator for 60 minutes at a pulse 
rate of 3 seconds before the subsequent phases in the mixing procedure. A magnetic 
stirrer was used to stir nanofluids for 60 minutes. Herein, nano additives are distributed 
homogeneously in olive oil. As a result, the fresh nanofluids obtained, the prepared 
nanofluid was stable, and no signs of sedimentation were detected throughout the 
machining process. Fluid properties such as dynamic viscosity, surface tension, wetting 
behaviour, and thermal conductivity significantly impact fluid performance. As a result, 
substantial knowledge about the nanofluid and its thermo physical properties was 
required. The viscosity of 0.20 wt.% hBN nanofluids was measured with a redwood 
viscometer. The kinematic viscosity at three temperatures of 40, 50, and 60°C was  
2.04 × 10–6 m2/sec, 1.45 × 10–6 m2/sec, and 1.20 × 10–6 m2/sec. A piezoelectric 
dynamometer (Kistler type 9257B) was applied to measure the cutting force during the 
experiments. Surface roughness measuring instrument (brand: MAHR; Model: MarSurf 
PR200) used to measure surface roughness. The residual stress on the sample was 
measured using an instrument (Pulstec X360) residual stress analyser based on the  
non-destructive X-ray diffraction method. 
Table 1 Cutting parameter of Inconel 800H 

Parameters Values 
Cutting velocity (Vc, m/min) 70–210 m/min 
Feed (f. mm/rev) 0.1–0.2 mm/rev 
Spraying angle (θ °) 15–45 ° 
Spraying distance (L, mm) 4–12 mm 

2.1 Multi-objective optimisation 

Optimisation techniques were primarily used to maximise or minimise the variables in its 
design range. Optimisation methods identify the optimal parameter for numerous 
complex engineering problems. In this present research work, HHO’s main objective is to 
predict the optimal input values based on population sise and the number of search 
agents. TOPSIS, one multi-criteria decision-making method (MCDM), was used to rank 
the best possible solution obtained in non-dominated solutions from HHO (Abbasi et al., 
2021). Therefore, multi-objective optimisation coupled with MCDM was incorporated in 
this research to determine optimum machining parameters. 

2.2 Statistical evaluation of the experimental data 

An analysis of variance (ANOVA) tool was used to investigate the experimental 
parameters’ influence on output responses. The ANOVA provides several crucial aspects 
of statistics, including the (SS) sum of squares, (MS) the mean square, (DF) degree of 
freedom, the P-value, and the F value. On the other hand, the RSM presents an overview 
of a numerical model that relates the machining parameters (Vc, f, θ, and d) and the  
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machining responses (Ra, Fz, Res). The RSM model can be quadratic or linear. The 
performance assessment test of ANOVA, which determines whether the RSM models are 
adequate, justifies the established models (Sen et al., 2019). In this particular 
investigation, the (RMSE) root mean square error, (MAPE) mean absolute percentage 
error and the (R2) coefficient of determination are all utilised in the process of 
determining the amount of difference that occurs between predicted values (Pi) and 
experimental values (Ei). 
Table 2 Experimental inputs and outputs 
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1 70 0.1 15 4 0.67 133.00 378.00 20.08 37.23 
2 70 0.1 30 8 0.39 127.60 521.00 20.09 38.33 
3 70 0.1 45 12 0.27 123.50 423.00 20.08 25.55 
4 70 0.15 15 8 0.85 152.30 549.00 44.20 40.56 
5 70 0.15 30 12 0.86 169.40 647.00 48.22 50.68 
6 70 0.15 45 4 0.88 145.80 480.00 52.24 55.32 
7 70 0.2 15 12 0.87 182.10 445.00 68.43 68.53 
8 70 0.2 30 4 1.55 214.70 519.00 68.31 66.49 
9 70 0.2 45 8 0.97 191.60 423.00 56.22 69.81 
10 140 0.2 15 4 1.57 77.98 600.00 56.22 86.001 
11 140 0.2 30 8 1.56 177.70 686.00 84.38 93.68 
12 140 0.2 45 12 1.42 157.40 707.00 76.40 95.94 
13 140 0.1 15 8 0.37 51.67 337.00 28.13 42.31 
14 140 0.1 30 12 0.39 111.30 646.00 32.15 42.58 
15 140 0.1 45 4 0.39 70.45 387.00 36.14 42.50 
16 140 0.15 15 12 1.01 138.40 671.00 52.24 63.50 
17 140 0.15 30 4 0.79 125.96 614.00 50.58 72.39 
18 140 0.15 45 8 0.77 126.50 550.00 32.15 59.62 
19 210 0.15 15 4 0.78 58.25 548.00 68.31 81.14 
20 210 0.15 30 8 0.93 138.20 614.00 66.31 72.10 
21 210 0.15 45 12 0.52 114.60 486.00 68.31 89.43 
22 210 0.2 15 8 1.55 98.90 761.00 80.36 94.01 
23 210 0.2 30 12 1.39 168.60 608.00 88.40 103.26 
24 210 0.2 45 4 1.38 154.60 648.00 88.40 81.07 
25 210 0.1 15 12 0.68 101.90 305.00 52.21 74.33 
26 210 0.1 30 4 0.64 89.93 452.00 56.22 63.75 
27 210 0.1 45 8 0.47 97.51 373.00 60.27 63.75 
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Figure 1 Preparation of nanofluid, experimental setup, measurement, and optimisation  
(see online version for colours) 

 

2.3 Harris hawks optimisation 

Heidari et al. (2019) developed the optimisation algorithm known as HHO. It is an 
optimisation method inspired by Harris hawk birds’ nature and behaviour modelling. In 
terms of performance, quality of results, and acceptable convergence in dealing with 
various applications in real-world situations, the HHO has gotten a lot of attention from 
researchers. The HHO algorithm includes the exploration and exploitation phases, which 
mimic the natural hunting habits of Harris hawks. In this algorithm, a group of hawks 
targets a hunt to surprise it (exploration phase). When escaping and fleeing the hunt, the 
Hawks can undertake a series of fast dives close to the target to startle it and exhaust it 
(exploitation phase). The running process can significantly reduce the energy of the prey. 
The HHO algorithm can switch from the exploring phase to the exploit phase depending 
on the escaping energy of that prey and then move between different opportunistic 
modes. 
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( )
1 2

3 4

( ) ( ) 2 ( ) 0.5
( 1)

( ) ( ) ( ) otherwise
r r

b m

X t r X t r X t q
X t

X t X t r LB r UB LB
 − − ≥

+ =  − − + −
 (1) 

max
2 1 iteraE Eo

itera
 = − 
 

 (2) 

The prey’s energy model has given above, where E stands for the energy of the prey’s 
running and fleeing at each iteration. The initial energy of prey is E0, and the value of E0 

varies between (–1 to 1). The user gives iteration maximum value. E0 fluctuates randomly 
within the range (–1 to 1) at each cycle. The prey is exhausted when the E0 value 
decreases from 0 to –1; when the E0 value rises from 0 to 1, the prey strengthens. During 
iterations, the prey’s stamina for escaping from Harris hawks usually fades away. When 
|E| ≥ 1, the hawks look in different sites to make the prey’s position, and the HHO is in 
charge of the exploration phase. When |E| < 1, on either hand, the exploitation phase is 
performed on the HHO. The HHO (Heidari et al., 2019) presents four strategies for the 
mathematical model to attack the prey based on its running ways and the chasing trends 
of the Harris hawks. These strategies are: 

1 hard besiege with progressive rapid dives 

2 soft besiege 

3 hard besiege 

4 soft besiege with progressive rapid dives. 
Table 3 Conditions for different strategies used in exploitation phases 

Different strategies Conditions Mathematically formula Equations 
Soft besiege C1: |r| ≥ 0.5 and 

|E| ≥ 0.5 
( 1) ( ) ( ) ( )bX t X t E J X t X t+ = Δ − ∗ −  (3)

  ( )5( ) ( ) ( ) 2 1bX t X t X t J rΔ = − = −  (4)

Hard besiege C2: |r| ≥ 0.5 and 
|E| < 0.5 

( 1) ( ) ( )bX t X t E X t+ = − Δ  (5)

Soft besiege with 
progressive rapid 
dives 

C3: |r|<0.5 and 
|E| ≥ 0.5 

( )
( )

 if ( ) ( )
( 1)

 if ( ) ( )

( ) ( ) ( )
( )

b b

Y Fit Y Fit X t
X t

Z Fit Z Fit X t

Y X t E J X t X t
Z Y S levy D

 <+ =  <
= − ∗ −
= + ∗

 (6)

Hard besiege with 
progressive rapid 
dives 

C4: |r| <0.5 and 
|E| < 0.5 

( )
( )

 if ( ) ( )
( 1)

 if ( ) ( )

( ) ( ) ( )
( )

b b m

Y Fit Y Fit X t
X t

Z Fit Z Fit X t

Y X t E J X t X t
Z Y S levy D

′ <+ =  ′ <
′ = − ∗ −
′ ′= + ∗

 (7)

Notes: J is the random jump strength of the rabbit which used to escape from the hawks. 
r5 is a random value created from the interval [0, 1]. 
levy (D) is the levy flight function with dimension D. 
D is the dimension of the optimisation problem to be solved. 
S is the random vector by size (S ∈ R1×D). 
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Figure 2 Methodology for proposed work (see online version for colours) 

 

2.4 TOPSIS method 

TOPSIS is one of the MCDMs, which is exploited to find the Relative closeness index or 
criterion (Hussain et al., 2018). In this work, TOPSIS is coupled with HHO to rank the 
non-dominated solutions into a single solution (Deb et al., 2016). TOPSIS applied to 
choose the best replacements by reducing the distance to the ideal positive result and 
increasing the distance to the negative result, where all alternates are ranked based on 
their closeness index. 

Step 1 Formation of decision matrix. 

 Identify the objective and the assessment features or responses that are 
pertinent to it. For example, the decision matrix is depicted in equation (8). 
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Step 2 Calculating normalised values; using the vector normalisation method, 
compute the normalised decision matrix, Bij, as shown in equation (9). 

2
1

1, 2, ,ij
ij

n
iji

x
B j m

x
=

= =


  (9) 

Step 3 Calculating weights for responses. Weighted normalised matrix vij is obtained 
by multiplying each element by its affiliated weight (obtained by distinct 
weight methods). Normalised weighted matrix vij denoted by equation (11). 

for 1, , ; 1, , .ij j ijV W B i n j m= = =   (10) 

Step 4 Finding the ideal positive solution and ideal negative solution. 

 With equations (11) and (12), find the ideal (highest) and negative ideal 
(lowest) solutions (19). The ideal (highest) and negative ideal (lowest) solution 
for a given feature may be the largest or minimum value among all possible 
values. 

( ) ( ) ( )1 2, , , min , maxm i ij i ijA v v v V j ε I V j ε I− − − −  = ⋅ =    (11) 

( ) ( ) ( )1 2, , , max , minm i ij i ijA v v v V j ε I V j ε I+ + + +  = ⋅ =    (12) 

Step 5 Finding separation value from positive ideal and negative ideal solution. 

 Take the necessary separation measures (di). The distance between each 
alternative and the ideal one is known as the Euclidean distance. 
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1
22
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m

iji j
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  = − =      
   (13) 
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1
22

1

, 1, 2, ,
m

i ij j
j

d v v i n− −

=

 
  = − =      
   (14) 

Step 6 Calculate relative closeness value: To determine how near an alternative is to 
the ideal solution by using that relative closeness (RCi) formula shown below. 
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3 Results and discussion 

3.1 Statistical analysis of machining responses 

As previously indicated, the ANOVA approach was used to determine the influence of 
each machining input response on machining. The F value was used to compute the 
percentage contribution of each component to machining outputs, and the P value less 
than 0.05 demonstrated the statistical importance of each element (Sen et al., 2019). The 
calculated ANOVA for all machining responses was established in Table A Appendix 
(added in Annexure A). ANOVA was accomplished to predict the influence of machining 
factors on surface roughness, cutting force, and residual stress. The contribution of a feed 
rate of 81.74%, nozzle angle of 2.74%, nozzle distance of 1.07%, and cutting speed of 
0.57% for surface roughness. All input parameters are statistically substantial when the P 
value is considered. Then the F value shows that the feed rate was the most important 
component, followed by nozzle angle, nozzle distance, and cutting speed. The F-value 
indicates the feed rate affects the resultant force of cutting with 33.80%, followed by a 
cutting speed of 28.43%, nozzle angle of 13.87%, and nozzle distance of 4.86%. The 
ANOVA for residual stress is also implicit. The feed rate is the most contributing factor 
at 40.77%, followed by nozzle angle at 11.41%, cutting speed at 9.35%, and nozzle 
distance at 1.40%. The F-value in residual stress revealed dominance of feed rate. 

3.2 Meta-modelling and performance evaluation 

RSM is a popular statistical modelling and optimisation tool that finds a region around 
the optimal solution. As a result, RSM has been employed to develop the mathematical 
model correlation between cutting parameters and each process response, i.e., Ra, Fz, and 
Res. Despite the complexity of machining, the first-order linear equation cannot 
sufficiently validate the experimental study. As a result, in this work, RSM was 
developed using 2nd order equations with mutual connections for machining responses. 
[as shown in equations (16)–(18)]. Following that, RMSE, R2, and MAPE are used to 
estimate the difference between RSM-predicted values and experimental values. Table 4 
exposed that the RSM model prediction of cutting performances with experimental data 
yields RMSE ranges from 0.7652 to 0.8842%, R2 ranges from 0.90124 to 0.92315, and 
MAPE ranges from 2.321 to 1.956%, demonstrating the effectiveness of the meta-model. 

2
a

2 2 2

R 0.42 0.00049 3.7 0.0202 0.043 0.000010
 38.9 0.000390 0.00118 0.0118 0.000022

0.000253 0.0175 0.163 0.000144

v v

v v

v

c f θ L c
f θ L c f c

θ c L f θ f L θ L

= + × − × + × − × − ×
+ × − × + × + × −
× + × + × − × − × ×

 (16) 

2 2
zF 97.7 1.844 108 5.49 8.06 0.00443 0.1160

 0.00905 × 15.56 0.1778
v v

v

c f θ L c θ
c θ f θ θ L

= − × + + × + × + −
+ + × − ×

 (17) 

2

2 2

Res 371 1.25 6,337 22.43 0.01379
 24,422 0.381 19.57

v v

v

c θ θ c
f θ c θ

= − + × + × + × −
− × − × + ×

 (18) 
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Table 4 Performance assessment of the RSM model on the statistical platform 

Parameter RMSE (%) R2 MAPE (%) 
Ra (μm) 0.8012 0.91235 2.135 
Fz (N) 0.7652 0.92315 2.321 
Res(MPa) 0.8842 0.90124 1.956 

3.3 Influence of cutting conditions on machinability 

Figure 3(a) shows the one-dimensional main effect plot on cutting force (Fz). As cutting 
speed increases, the overall value of cutting forces decreases. From Figure 3, it was 
detected that the lowest resultant cutting force was found at a cutting speed of 210 m/min. 
The increase in cutting force was observed with an increase in feed rate. The higher the 
cutting speed, the hotter the border amid the workpiece material and cutting tool. As a 
result, the shear strength of the cutting zone decreases, reducing the cutting force. While 
increasing the cutting speed decreases the tool chip contact area, resulting in low 
frictional force at the rake surface, thus reducing cutting force. The reduction in the 
growth of cutting force along with an increment of cutting speed is because of the energy 
balance between the thermal softening and strain-hardening rate. The strain-rate 
phenomenon of material can also explain this situation. The material surface becomes 
brittle facture behaviour as the strain-rate parameter increases, and after a certain speed, 
the material sensitivity to the speed grows uncertain. Thus, a decrease in cutting force is 
observed at a higher cutting speed. This consequently reduces the contact surface with the 
cutting tool and considerable friction. The observation is parallel with preceding surveys 
(Movahedi et al., 2020; Damir et al., 2017). Increasing the feed rate will increase the chip 
load per tooth, where an increased tendency of the resultant force is observed. During the 
turning process, the increase in feed rate results in a reduction in the oil mist penetration 
rate at the turning zone, resulting in an increase of friction at the too-chip interface part. 
Thus, the cutting force increased with the increment of feed rate under the MQL 
environment. Figure 3(a) shows the force increase with the nozzle angle and distance 
increment. The decrement cutting force of 45° is due to the bulk cooling that may be 
happened of MQL spray mist delivered at the turning zone. This bulk cooling is due to 
the diminished effect of splashing lubricating oil into the contact zone. Further, some 
portion of the lubricant droplet is deposited on the tool-work part interface at a higher 
value of the spraying angle of the nozzle. Therefore, effective lubrication occurs, and 
cutting force is minimum. The lubrication efficiency decreased with an increase in nozzle 
angle of 30°. At the 30° nozzle angle, a smaller amount of oil droplets penetrate the 
cutting surface. This eventually decreases the lubricant droplet’s wetting ability and thus 
increases the cutting force. However, with the given air pressure and flow rate input, the 
nozzle distance and angle to the turning edge should be kept minimum to achieve lower 
cutting force. At these MQL conditions, nanofluids’ deposition rate and penetration 
ability into the tool-work interface increased, resulting in decreased friction at the contact 
layer. The formation of the thin and strong lubricating layer at the tool-work edge brings 
down the cutting temperature due to friction heat. The combination of boron and nitrogen 
atoms arranged in the nanofluid has strong adhesive forces and provides an excellent 
lubricant film under high pressure. Hence lead to a lower machining force through the 
smaller value of impingement nozzle angle and distance under the MQL environment. 
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Figure 3(b) shows that increasing cutting speed decreases Ra. The lowest surface 
finish value was achieved at 70 m/min cutting speed. In effect, a higher cutting speed aids 
in softening the material by increasing the heat in the cutting zone. As a result, cutting at 
a lower temperature is possible at faster cutting speeds. However, the increment in Ra 
with an increase in cutting speed is minimal compared to the increase in feed rate. The 
irregular built-up edge (BUE) formed on the rake face at a higher cutting speed. The 
formed BUE [Figure 6(c)] pushes the tool from its original path, increasing the roughness 
value. An insignificant increase in surface roughness with an increment in cutting speed 
may be related to less mechanical load on the tooltip. In addition, the high thermal 
conductivity of hBN particles reduces the cutting temperatures at the cutting zone by 
giving effective cooling and lubrication actions. The formed thin film lubricant improves 
wettability and lowers friction at a higher cutting speed. As a result, it decreases the 
abrasion marks on the tool’s surface. Hence, the increment in Ra value is very low at a 
higher cutting speed. In the same way, the increase in the feed rate increase of Ra vale. 
The lubricant effect of nanofluid at the cutting zone is ineffective with an increase in feed 
rate, which increases friction at the tool chip and works piece-tool junction regions. This 
could increase the Ra value by increasing the feed rate during the machining process. The 
tooltip region is subjected to a high cutting force when the feed rate value increases, 
producing a rougher surface finish. Finally, the mechanical load was increased, and the 
increased rubbing action negatively impacted the Ra at the tooltip and the lubricating oil 
being broken at a faster feed rate. The decrease of Ra with the given increment value of 
nozzle angle and distance is noticed when both nozzle orientation and spraying distance 
parameters are kept high. The difference in Ra value is insignificant when the spraying 
angle is at 15° and 30°. The oil mist does not completely penetrate the tool chip and 
workpiece’s junction zones at these two positions. With the given air pressure and flow 
rate input, the increase of spraying angle to 45° reduce the droplet size and increase the 
number of droplets and velocities. This helps the nan fluid droplet to penetrate the contact 
zones efficiently, resulting in decreased friction at the contact area. Thus, consequently, it 
enhances the surface quality and cutting force when the spraying angle of the nozzle is at 
45°. Likewise, the decrement in surface roughness with increment in spraying distance 
was noticed from the main effect plot of the spraying distance column. This reduction is 
due to droplet velocity and diameter concerning spraying distance. Moreover, the 
increment in spraying distance leads to higher droplet velocities; therefore, the 
penetration and deposition rate into the contact surface increases. Additionally, increasing 
the spraying distance decreases the droplet diameter and increases the lubrication 
efficiency. These results parallel the literature source (Movahedi et al., 2020; Mia, 2018; 
Kumar et al., 2019). Figure 4 shows the optical microscopic images of the machined 
surface with Trail 9, Trail 12, and Trail 27, along with the surface profile image captured 
with Mahr Surf. The machined surface morphology demonstrates that smoother and 
shallower groove (refer to 2D machined surface images) surfaces are observed at Trial 9. 
In other words, the surface irregularities using NFMQL conditions showed the peak and 
valley differences decreased when the nozzle angle was at 45°. For the same nozzle 
angle, the peak-to-valley height difference for Trail 12 decreased with the increased 
cutting speed. However, it was noticed that the difference between the peak-to-valleys 
height was very little climb as the cutting speed increased at a high spraying angle. The 
distinctive feed marks were reduced for Trail 27 with the NMQL system. The efficient 
operation of both C/L can explain this. 
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Figure 3 Effect of input values on (a) cutting force, (b) surface roughness, and (c) residual stress 
(see online version for colours) 

 
(a) 

 
(b) 

 
(c) 
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Figure 3(c) shows the one-dimensional mean effect on residual stress. The residual stress 
is tensile with the applied range of parameters. The variation in the magnitude of tensile 
residual stress is due to the cutting and lubrication parameters employed. The external 
surface is caused to deform plastically (plastic deformation) by compression during 
machining. Therm load is the main source of tensile residual stress on the surface layer. 
The graph’s findings showed that tensile residual stress increased with an increment of 
cutting speed and feed rate. The lowest tensile residual is produced at 70 m/min. In 
addition, the penetration of nanofluid droplets in the tool-chip contact region at a low 
cutting speed significantly improves heat evacuation from the turning zone. As a result, it 
increases the work-hardened of the machined surface layer. The increase of tensile stress 
at 140 m/min is owed to a larger heat generation. With the shorter contact duration 
between the tool-work piece chip with the increment of turning speed, the generated heat 
is not removed through the produced chip. Instead, it results in the difference in cooling 
temperature between the surface and subsurface layer. This, in turn, will be led to tensile 
residual stress. The increase in cutting speed increases the cutting temperature and heat 
concentration into the turning zone owing to the lesser thermal conductivity of Inconel 
800H. Hence, tensile residual stress is observed. Further, the PVD coatings are a thermal 
barrier, delaying the heat transfer tool. As a result, the generated heat near the primary 
zone is choked in the workpiece. The decrease of tensile residual stress at a higher cutting 
speed may be explained by the presence of more unsaturated fatty acids percentage 
(85%) in olive oil helps form a lubricant layer between the contact surfaces, as reported 
in a previous note (Talib et al., 2017). Further, the high heat conductive of hBN transmit 
a substantial quantity of the released heat from the turned layer. This, in turn, decreases 
the scale of tensile stress at the surface turned. Therefore, the cutting force and lower 
tensile residual stress are noticed at a higher cutting speed. The rise in feed rate increases 
the surface tension in the cutting direction. The increased pressure in the cutting direction 
cause it to grow in a more considerable compressive plastic deformation. The increase of 
tensile residual stress at a high feed rate is comparatively less than the moderate feed rate. 
From the mean effect graph, an increase in spraying angle from 15° to 30° increase the 
tensile stress and then decline with a further increase in nozzle angle. The lowest value of 
tensile residual stress is observed at 45°. The lubrication effect of the nanofluids 
increases at 45° due to the nanoparticle’s effective deposition rate and penetration 
capability at the contact zones. The nanofluids form a consistent hydrodynamic film that 
separates the contact surface during machining and reduces the workpiece’s thermal 
loads. Thus, frictional force reduces the surfaces in contact, leading to lessening tensile 
residual stress; hence, the lower cutting force and surface quality are observed when the 
spraying angle of the nozzle is at 45°. The larger droplet diameter with lower velocities 
reduces the thermal and mechanical load at a lower spraying angle. Thus the tensile stress 
at the surface turned is minimal compared to the 30° spraying angle. The increment in 
tensile residual stress with an increment in spraying distance is noticed from the main 
effect plot of the spraying distance column. Observing tensile residual stress at a given 
spraying distance is mostly contingent on the mechanical stress produced by cutting force 
during the turning process. The results parallel the literature source (Emami et al., 2013; 
Zaman and Dhar, 2020). 
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Figure 4 Surface roughness images with an optical microscope (see online version for colours) 

 

 

Cutting speed – 70 m/min Trail 9  
(a) 

 

 

Cutting speed – 140 m/min Trail 12  
(b) 

 

 

Cutting speed – 210 m/min Trail 27  
(c) 

3.4 Correlation between the machining responses 

The contour plots are more informative as it clearly shows the feasible region and the 
optimal point while measuring the effect of numerous independent factors that affect the 
response (Viswanathan et al., 2020). The contour effect plots [Figures 5(a)–(d)] were 
used to establish the influence of different machining conditions on surface roughness, 
cutting force, and residual stress values. The plots are drawn based on the highest 
contributing factor (ANOVA table) on the responses. Figure 5(a) contour effect plots 
show the surface roughness values were found to be maximum at high nozzle angle and 
feed rate values. Lower surface roughness values were observed at lower nozzle angles 
and feed rates. Figure 5(b) demonstrates that the lower magnitude of force was observed 
at a low feed rate and nozzle angle. This occurs because the nozzle’s proximity to the 
cutting edge increases the overall mass of oil mist particles accumulated on the tool and 
chip contacts. A stronger lubricating effect will be produced during the material removal 
process when a greater amount of oil mist is penetrated the cutting zone. When the 
cutting tool and workpiece surfaces are properly lubricated, the frictional forces between 
them are reduced, which lowers the cutting forces needed to generate chips. The force 
value increased when the nozzle angle and feed rate value changed from low to moderate. 
In this position of nozzle angle, along with a low feed rate, more droplets of nanofluids 
were gusted away from the tool surface while the tool rotated systematically. In addition, 
the generated heat was not properly dissipated from the cutting zone because of the poor 
thermal conductivity of the alloy. Similarly, Figure 5(c) demonstrated that the higher feed 
rate and low cutting speed resulted in higher cutting force values. Figure 5(d) shows the 
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contour plots of residual stress measurements for feed rate and nozzle angle for MQL 
conditions. The role of feed rate has more impact when equated with the cutting speed, 
nozzle distance, and nozzle angle. The observation results of these plots claim that the 
higher the feed rate, the higher the residual stress. Moreover, when increased feed rate 
depreciates the surface roughness value. This increment of tensile stress is due to a larger 
heat generation that prompts the higher residual stress. Nevertheless, at a feed rate of 0.1 
mm/rev and a minimum nozzle angle of 15°, minimum residual stress of 450–500 MPa 
was obtained, and it inferred that the. A larger feed rate leads to higher residual stress. It 
may be due to increased spraying distance, which decreases the droplet diameter and 
thereby decreases the lubrication efficiency at the cutting zone. Thereby, the increase of 
residual stress on the machined surface. At a lower feed rate of 0.1 mm/rev and nozzle 
distance of 12 mm, the minimum value of residual stress is obtained. However, it may be 
due to increased spraying distance, which decreases the droplet diameter, increases 
lubrication efficiency, and encourages lesser residual stress. 

Figure 5 Represents of contour plot for machining responses on (a) surface roughness,  
(b, c) cutting force (b,c), and (d) residual stress (see online version for colours) 
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Figure 5 Represents of contour plot for machining responses on (a) surface roughness,  
(b, c) cutting force (b,c), and (d) residual stress (continued) (see online version  
for colours) 
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3.5 Effect of tool wear 

In the current work, cutting tool wear is one of the selected objectives under MQL 
conditions. Cutting tool wear is the most basic indicator of a tool’s lifespan and refers to 
material deterioration in the contact region between tool-work material (Ross et al., 
2022b). For every experimental trial, nose and flank wear was measured with a Dinolite 
optical image analyser, and their values were presented in Table 2. Micro-optical images 
of nose and flank wear are shown in Figures 6(a)–6(d). The nose (29.84 µm) and flank 
wear (43.26 µm) were observed to lower at low cutting speed and feed. nMQL has two 
important characteristics in these MQL conditions. The first one was the less frictional 
impact, and the second reduced temperature (at a lower speed). With MQL, hBN was 
used to enhance efficient heat transfer. However, the fact that the hBN lowers the MQL 
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fluid’s temperature makes this nMQL approach work so well. Because of this, despite the 
tremendous heat in the cutting area, the droplets do not evaporate. For increased cutting 
speed and feed rate, flank wear and nose wear were increased by 88.40 µm and  
103.26 µm, respectively. This is because the rising heat causes nMQL to lose its 
lubricating ability. As a result, the oil droplets vanish before it reaches the work-tool 
connection. The flank and nose wears were 51.48 µm and 63.08 µm, respectively, when 
the nozzle angle was lower, and the nozzle distance was moderate. This shows that the 
penetrating ability of nMQL oil mist significantly provided sufficient C/L action at the 
main turning zone, thereby reducing produced temperature. As a result, the tool flank and 
nose wear were decreased. Figure 6(b)–6(d) represents trails 11 and 22, where abrasion, 
adhesive/built-up-edge (BUE), and chipping were found as the basic wear mechanism for 
all tuning conditions. Abrasive wear lines occurred along the cutting edge due to the 
abrasive wear mechanism, forming parallel grooves that lead to flank wear. BUE 
formation on the cutting insert was due to temperature and a high friction coefficient. 
When the cutting speed and feed rate were increased, the lubricating property had little 
influence. Before the nanofluid gets to the cutting area, the nanofluid vaporises. 
Periodically, unstable BUE causes small amounts of tool material to be removed, which 
causes the cutting edge to chip. For the experimental inputs, it was observed that the 
lower amount of flank wears by 25.50 µm and nose wear by 20.08 µm were observed at 
70 m/min, 0.1 mm/rev, 15o, and 8 mm. The MQL approach lowers friction and inhibits 
heat build-up by covering the tool-chip interface with a thin oil film, as was indicated in 
earlier investigations (Damir et al., 2017; Kannan and Kannan, 2018). 

Figure 6 (a) Flank wear and nose wear for 27 trials (b) Flank wear at Trial 11 (c) Flank wear at 
Trial 22 (d) Nose wear at Trial 22 (see online version for colours) 
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Figure 6 (a) Flank wear and nose wear for 27 trials (b) Flank wear at Trial 11 (c) Flank wear at 
Trial 22 (d) Nose wear at Trial 22 (continued) (see online version for colours) 

 
(b)    (c) 

 
(d) 

3.6 Optimisation and validation of results 

The results of the experimental work’s machining trials completely satisfied the 
necessities of the computational optimisation study. A computational experiment with 
100 populations and 100 generations was completed to evaluate the stability of the 
generated Pareto results. Additionally, total solutions in various parametric combinations 
underwent the validation test. Three similar investigations were conducted, and the mean 
value was noted. The validation test agrees with the relative error being less than 5%, 
demonstrating the HHO model’s intelligence. This allows quantitatively determining the 
relationship between the machining parameters and their reactions. Table 5 shows the 
optimisation parameters of the HHO algorithm. The Pareto front had a hundred optimum 
options, but none could be called the best solution. However, the contradictory nature of 
the alternatives prevents researchers from choosing the best optimal solution. As a result, 
the TOPSIS technique was used to determine the optimal compromise solution. TOPSIS 
approach is heavily reliant on the relative importance of the objectives. As a result, the 
assignment of equal weightage to each target was fixed. Furthermore, the values of Rci 
were calculated using the values of Di+ and Di- to find the rank of the hundred optimal 
results detected. For the current challenge, a lower Rci number resulted in a higher rank. 
As a result, the 17th generation ranks top among the 100 generations. The best result 
attained by the TOPSIS method is shown in Figure 7. The best results correspond to 
cutting speed as 70 m/min, feed rate as 0.1 mm/rev, nozzle angle as 45θ, and nozzle 
distance as 12 mm, which gives minimum Ra (0.2377 μm), Fz (144 N), and  
Res (360 MPa). In addition, experimental trials were conducted at optimal conditions to 
validate the predicted responses. Table 6 shows the differences between the experimental 
and projected response values. The comparison reveals that the error percentage (RMSE) 
produced between the predicted and experimental responses were approximately 10.79%, 
proving the validity of the optimal parametric order. Compared to experimental values, 
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the HHO predicted values showed an error percentage in Ra of 16.21%, Fz by 4.86%, and 
Res by 11.3%. To test the efficiency of the HHO algorithm, the same optimisation is 
done with some powerful leading algorithms. Comparative results are given in Table 7. 
Due to its strong exploration and search pattern, HHO could find solutions based on 
stability and steadiness between diversification and strengthening. Comparing it to other 
algorithms, it also converges close to the global optimum without getting trapped at the 
expense of the confined local optimal solutions. The HHO-TOPSIS showed an 
improvement in convergence rate by 9.57 %, 12.04 %, 11.73 %, and 32.65 % at the 
optimal determined values compared to other hybrid algorithms (NSGA-II, PSO, GA, 
and MFA). 
Table 5 The optimisation parameters 

Parameters Values 
Number of search agents 25 
β 2 
Number of iterations 200 
Mutation rate 0.1 
Inertia weight 0.5 
Population size 100 

Figure 7 Best solution obtained with TOPSIS-HHO (see online version for colours) 

 

Table 6 Assessment of the predicted results and experimental results 

Response 
parameters 

Optimised 
parameters 

Experiment 
values 

Values 
predicted Errors (%) 

Ra (μm) Vc =70 m/min, 
f = 0.1 mm/rev, 

angle = 45°, 
distance = 12 mm 

0.2837 0.2377 16.21 
Fz (N) 137 144 4.86 
Res (MPa) 406 360 11.3 
Error average = 10.79 
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Table 7 Comparison of optimum design variables with other techniques 

Algorithms HHO NSGA-II PSO GA MFA 
Best rank achieved 18 8 23 25 38 
Rci values 0.1256 0.1389 0.1428 0.1423 0.1865 
Errors (%)  9.57 % 12.04 % 11.73 % 32.65 % 

4 Conclusions 

An experiment trial was carried out on a CNC-lathe machine with the MQL technique on 
the machining performances of Inconel 800H alloy. Taguchi’s L27 orthogonal array was 
used to frame the experimental design combinations to reduce the experimental effort. 
The best combination for obtaining the lowest value of the Ra-Fz and Res was determined 
by incorporating the combination of the HHO and TOPSIS hybrid algorithms. The 
effectiveness of hybrid HHO-TOPSIS was compared with other benched-marked 
algorithms. The subsequent conclusions drawn from the present study were: 

• At the 90% confidence level, the constructed ANOVA models were shown to be 
statistically significant. Furthermore, the feed rate was the most important element 
influencing machining outputs, accounting for 81.74% of the reduction in surface 
roughness, 33.80% of the reduction in resulting cutting force, and 40.77% of the 
reduction in residual stress. 

• The RSM technique successfully advanced a relationship between input parameters 
and machining responses and revealed RMSE ranges from 0.7652 to 0.8842%, R2 
ranges from 0.90124 to 0.92315, and MAPE ranges from 2.321 to 1.956%. 

• The main effect plot study reveals that the optimal input variables for minimising Ra 
are cutting speed 70 m/min, feed rate 0.1 mm/rev, nozzle angle 45°, and nozzle 
distance 12 mm. The Fz was reduced at a cutting speed of 210 m/min, feed rate of 
0.10 mm/rev, nozzle angle of 15°, and nozzle distance of 12 mm. Similarly, the 
minimum residual stress was recorded with a cutting speed of 70 m/min, feed rate of 
0.10 mm/rev, nozzle angle of 45°, and nozzle distance of 4 mm. 

• The increment of MQL parameters of nozzle angle and distance increases the value 
of force and tensile residual stress and decrement in case roughness value when 
cutting speed and federate is kept at a higher and lower value. 

• TOPSIS identified the most optimal outcomes from a Pareto front generated by 
HHO. The optimum solution corresponds to cutting speed at 70 m/min, feed rate of 
0.1 mm/rev, nozzle angle at 45°, and nozzle distance of 12 mm, which gives 
minimum Ra (0.2377 μm), Fz (144 N), and Res (MPa). 

• When the predicted results were compared to the experimental results, the error 
percentage was approximately 10.79%. The HHO predicted values showed an error 
percentage in Ra of 16.21%, Fz by 4.86%, and Res by 11.3% compared to 
experimental values. The HHO-TOPSIS showed an improvement in convergence 
rate by 9.57 %, 12.04 %, 11.73 %, and 32.65 % at the optimal determined values 
compared to other hybrid algorithms (NSGA-II, PSO, GA, and MFA). 
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• The proposed HHO-TOPIS is recommended for other machining processes to 
determine the most sustainable and eco-friendly solution. 

Limitation, future scope, and implications 

1 The present study will be extended for a detailed investigation of machinability 
indices and chip-tool interface indices (chip thickness, shear angle, coefficient 
friction) by considering the other oil-mist parameters, such as nozzle diameter, oil 
flow rate, and air pressure. 

2 Machinability predictions for tool wear and cutting temperature can be implemented 
with the proposed hybrid optimisation algorithm. 

3 Future research endeavors might be to evaluate the performance of hybrid 
optimisation coupled with ANN for better prediction accuracy instead of using RSM. 

4 The performance of other machining approaches can be investigated by 
implementing the texture on the rake and flank face with different C/L conditions. 

5 The effect of nozzle angle, distance, and machining parameters on surface integrity, 
such as microhardness and chip morphology, can be carried out. 
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Appendix 

Table A1 ANOVA for machining responses (Ra, Fz, Res) 
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