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Abstract: Tandem mass spectrometry (MS/MS) generates a large number of 
spectra showing the signal intensity of detected ions as a function of mass-to-
charge ratio. Spectral clustering in proteomics is a powerful but under-utilised 
technique. Based on the similarity of spectra, the spectral clustering algorithms 
systematically and unerringly classify large numbers of spectra, such that all 
spectra in a given cluster belong to the same peptide. The data points in the 
spectral clustering approach are connected and do not require having convex 
boundaries. Spectral clustering therefore reduces the running time and 
computation requirements of spectral library and database searches. It enhances 
peptide identification process and has fuelled the development of many new 
proteomics algorithms recently. The goal of this review is to provide a clear 
overview of the most popular spectral clustering algorithms used in proteomics. 
It describes a systematic analysis of these spectral clustering algorithms, 
evaluating the benefits and limitations of each approach. 
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1 Introduction 

Proteins are the large, complex molecules made up of long chains of amino acids. They 
are the fundamental blocks of all cellular processes and their detection, quantification and 
characterisation is often confounded by their many proteoforms and complex chemistry. 
The standard technology that provides fast, high-throughput characterisation of complex 
protein mixtures is mass spectrometry-based shotgun proteomics (also known as Tandem 
Mass Spectrometry or MS/MS or MS2). The schematic of Tandem Mass Spectrometry is 
shown in Figure 1 (Nationalmaglab.org). 

Figure 1 Schematic of tandem mass spectrometry (MS/MS) 

 

Initially, proteins are digested (cleaved) into smaller amino acid chains known as 
peptides that are then passed into a mass spectrometer. This instrument is used to 
measure the intact mass-to–charge (m/z) ratio of peptides (protein fingerprint); the 
peptides are then isolated in the mass spectrometer and fragmented into shorter chains to 
generate mass spectrum signatures for each peptide as shown in Figure 2. 

Figure 2 Mass spectra generated from tandem mass spectrometry (MS/MS). To provide clarity 
minor lines with peak heights of 2% or less of the base peak (the tallest peak) are 
omitted 
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Peptides can be identified by matching the experimental and computational simulated 
spectra using peptide database searching algorithms, spectral library searching or Denovo 
sequencing. Finally, the peptide profiles are aggregated to report which proteins were 
more likely to produce the observed peptide set. Overall steps involved in the process of 
protein identification from tandem mass spectra starting from sample digestion using 
enzymes to protein inference is illustrated in Figure 3. 

Figure 3 A classical workflow model for protein inference from MS/MS data (see online version 
for colours) 

 

Thousands of peptide fragment ion spectra are produced in each proteomics experiment 
analysing complex protein mixtures from biological samples. The tandem mass spectra 
generated from bottom-up proteomics consist of mass-to-charge ratios and relative 
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abundances of a set of fragment ions generated from digested peptides as shown in  
Figure 2. The patterns of these fragment ions are useful for the identification and 
quantification of proteomes in the sample. More precisely, the goal of protein 
investigation is to accurately and quantitatively infer the proteins (output) that give rise to 
the peptides observed in the sample (Kim et al., 2017). However, the most challenging 
part in the process is the identification of ms/ms datasets, that is assigning peptides to the 
mass spectra. 

The remainder of this paper is as follows: Section 2 presents the background of 
spectral clustering. In Section 3, the significance of spectral clustering in proteomics is 
highlighted. Section 4 lays out a broad review of spectral clustering algorithms in 
proteomics. Section 5 provides a short discussion on the reviewed algorithms. Finally, 
Section 6 contains concluding remarks about spectral clustering algorithms. 

2 Background 

Many datasets can be notoriously difficult to cluster with traditional methods. Figure 4 
demonstrates a few toy datasets (Zelnik-Manor et al., 2004), which are difficult for 
traditional clustering algorithms. On such datasets, algorithms which implicitly assume 
specific shapes of clusters cannot achieve good results. For example, the Euclidian 
distance metrics assume a convex shape to the underlying clusters. Obviously, such 
assumptions can impact the quality of the clustering in arbitrary datasets. 

Figure 4 Examples of datasets which cannot be clustered using traditional clustering algorithms 
(see online version for colours) 

 
Source: Zelnik-Manor et al. (2004) 

Another disadvantage of the traditional algorithms is related to the inherent challenges in 
the expectation maximisation (EM) framework, which is often used to learn a mixture 
model for clustering. This framework is essentially an iterative process of finding local 
minima, and therefore multiple restarts are required to find a good solution. On the other 
hand, spectral clustering can solve problems in much more complex scenarios, such as 
intertwined spirals, or other arbitrary nonlinear shapes, because it does not make 
assumptions on the shapes of clusters. 

The history of spectral clustering can be traced back to Wilm, and Donath (1973) in 
which it was suggested that the eigenvectors of the adjacency matrix could be used in 
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order to determine the underlying partitions. Typically, this matrix is derived from a set 
of pairwise similarities between the points to be clustered. This task is called similarity-
based clustering or graph clustering. The main difference among spectral clustering 
algorithms is whether they use normalised or unnormalised ‘graph Laplacian’ methods. 
Different versions of spectral clustering have been successfully applied to image 
segmentation (Shi and Malik, 2000), text mining (Inderjit, 2001), speech processing 
(Francis and Bach, 1963), and general-purpose methods for data analysis and clustering 
(Inderjit et al., 2004, Ding et al., 2005, Ng et al., 2001, Zelnik-Manor et al., 2004). This 
success of spectral clustering has encouraged researchers to use it in proteomics for the 
identification of peptides. An excellent review on the history of spectral clustering can be 
found in Daniel and Spielman (1996). The spectral clustering process can be viewed as a 
three-step algorithm as shown in Figure 5: 

“One exceptional advantage of spectral clustering is its ability to cluster 
‘points’ which are not necessarily vectors, and to use for this a “similarity”, 
which is less restrictive than a distance. A second advantage of spectral 
clustering is its flexibility; it can find clusters of arbitrary shapes, under 
realistic separations” (Washington.edu.) 

Spectral clustering algorithms are mainly implemented as unsupervised machine learning 
algorithms that systematically and unerringly classify large numbers of spectra, such that 
all spectra in each cluster belong to the same peptide (Perez-Riverol et al., 2018). The 
basis of any spectral clustering algorithm relies on three main components 
(Nationalmaglab.org): 

i assessing the similarity between spectra (distance function) 

ii creating clusters of related spectra on the basis of pairwise similarities 

iii constructing a representative or consensus spectrum for each resulting cluster. 

The differences between algorithms and tools depend on how these principles are 
implemented and which preprocessing steps are used prior to the actual clustering step. 
Spectral clustering can use a connectivity approach to clustering, wherein data points that 
are connected to each other form a cluster-graph. The data points are then mapped to 
intrinsic dimensions so that it retains some meaningful properties of the original data. 

Figure 5 Typical steps in spectral clustering algorithm (see online version for colours) 

 

As stated earlier, spectral clustering uses information from the eigenvalues (spectrum) of 
special matrices (i.e., Affinity Matrix, Degree Matrix and Laplacian Matrix) derived from 
the graph or the dataset (Luxburg, 2007). Spectral clustering approaches are flexible and 
allow the grouping of non-graphical data also. There is no prior deduction about the 
depiction of the clusters. Other clustering techniques, like K-Means, assume that all data 
points are at the same distance from the cluster center. Conventional clustering 
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techniques are based on the compactness of data points; therefore, they require the data 
points to have convex boundaries. Data points in the spectral clustering approach should 
be connected and do not require having convex boundaries. Also, in the K-means 
clustering algorithm we have to initially specify the number of clusters to be created, 
however, the final number of clusters is unknown when performing spectral clustering 
(Absolutdata.com, 2019). Spectral clustering algorithms can range from simple linear 
models to highly complex deep learning approaches. However, they can be implemented 
efficiently by standard linear algebra software, which often outperforms traditional 
clustering algorithms such as the K-means algorithm. 

3 Significance of spectral clustering in proteomics 

The analysis of large amounts of data that result from the mass spectrometry process is a 
demanding task in terms of computing power, storage requirements and human 
inspection capabilities. Mass spectrometers naturally have limited resolution, accuracy, 
mass range, and sensitivity. Moreover, background noise, resulting from the presence of 
other substances in the mixture, may produce spurious peaks. These attributes can lead to 
misidentification or the inability to decide among numerous possible identifications 
(Nationalmaglab.org). 

Most of the proteomics work has focused on the downstream aspects of peptide and 
protein identification and quantification or post-identification results management; whilst 
the serious problems of data size, preprocessing of raw data and quality issues are often 
neglected by most tools. To address this, we need methods that can attack the problem 
closer to the core where it is created, at the raw data level, before peptide identification. 
These methods should take a global view of the gathered data such as clustering MS/MS 
spectra generated through tandem mass spectrometry to remove redundancy and improve 
spectral quality. 

Spectral clustering methods are attractive because they are easy to implement and are 
reasonably fast (for sparse datasets up to several thousands). They do not intrinsically 
suffer from the problem of local optima. It can allow comparing differences in data 
generated between different instruments or labs etc. Large scale proteomics data 
generated from tandem mass spectra can be clustered based on similarity of spectra. It is 
then common to generate a consensus spectrum for each cluster which can be used for 
further spectral library or database searching and identification of new experimental data. 
Spectral library searches are significantly faster and more accurate than sequence 
database searching (Käll et al., 2008). However, spectral library searches are limited to 
only identify previously identified spectra and can often be instrument specific or biased 
towards particular experimental setups. Using consensus spectra generated through 
clustering of multiple MS experiments can help elevate these limitations and improve 
coverage of all peptide-forms. After clustering spectra from multiple experiments some 
large clusters will form without any known peptide identification. These clusters of dark 
peptides are due to modifications, peptide variants and novel proteins that were not 
considered in the original identification of the spectra. Spectral clustering enables mining 
and identification of these dark peptides by examining relative mass shifts and consensus 
similarities to other spectral clusters (Deutsch et al., 2018; Horlacher et al., 2016). 
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The spectral methods for clustering usually involve taking the top eigen-vectors of 
special matrices (i.e., Affinity Matrix, Degree Matrix and Laplacian Matrix) based on the 
distance between points (or other properties) and then using them to cluster the various 
points. 

The input data for any clustering algorithm consists of: 

A mass spectra data in large proteomics repositories (unidentified, correctly identified, 
and/or incorrectly identified spectra) 

B identified spectra from smaller-scale experiments or curated databases e.g., NIIST. 

The primary output that is expected after the spectral clustering process is spectral 
archives. Spectral archives consist of two cluster categories: clusters with identified 
spectra (spectral libraries) and clusters of unidentified spectra. 

4 Review of spectral clustering algorithms in proteomics 

Large numbers of papers have been written on spectral clustering and there is a lot of 
literature available on various protein clustering approaches. The first commercially used 
clustering algorithm is Basic Local Alignment Search Tool clustering (BlastClust) 
(Altschul et al., 1990). BlastClust is a hierarchical clustering method that uses single-
linkage clustering technique and is functional for single-domain proteins. Systers 
(SYSTEmatic Re-Searching) (Krause et al., 2000) and ProtoMap (Yona et al., 1999) are 
not stand-alone applications and cannot be installed and run locally. GeneRAGE 
(Enrightand Ouzounis, 2000) is a stand-alone application but requires long running time. 
TribeMCL (Enright et al., 2002) uses Markov model to cluster larger proteome-scale 
datasets (>20,000 proteins). ProClust (Pipenbacher et al., 2002) uses graph-based 
techniques and can cluster small-scale proteomics data. FORCE (Wittkop et al., 2007) 
spectral clustering is stand-alone graph-based clustering technique and is used for small-
scale proteomics projects. 

It has been observed that most of these clustering algorithms require the user to 
specify several parameters, and it is not always clear what are the best values for these 
parameters. The results may highly depend on such parameters (Tang et al., 2009). For 
example, in a method such as GeneRAGE it is crucial to set the threshold to a value that 
will provide useful groupings. Notice that if the threshold is set to a value which is too 
conservative it is likely to generate many singleton clusters. On the other hand, a relaxed 
threshold would have the opposite effect of including many unrelated proteins into the 
same cluster. Also, the methods such as SYSters, ProtoMap, ProClust and GeneRAGE 
are ‘local’, in the sense that they assign a protein to a cluster considering only the 
distances between that protein and the other proteins in the set. Spectral methods differ 
from the ones described above in the sense that they are ‘global’, since they assign a 
protein to a cluster considering all the distances between every pair of proteins in the set. 
Spectral methods use the leading eigenvectors of a matrix derived from the distance 
matrix between the points. And we know that the eigenvectors of a matrix depend on the 
whole matrix: change one value in the matrix, and its eigenvectors will be different. This 
fact ensures the globality of the method. (Paccanaro et al., 2006). 

Considering a broad range of different algorithms, we are particularly interested in 
systematic review of spectral clustering algorithms that were particularly designed to 
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cluster proteomics data generated from tandem mass spectrometry. The review is based 
on certain criteria such as preprocessing of datasets, working structure, similarity 
function, reduction in dataset size, speed, accuracy and cluster purity. The algorithms 
selected at this date are among the most popular of the published ones. 

The algorithms are: 

a MS2Grouper (2004) 

b PepMiner (2005) 

c MS Cluster (2007) 

d Improved MS Cluster (2011) 

e PRIDE Cluster (2013) 

f PRIDE Cluster extended (2016) 

g MaRaCluster (2016) 

h msCRUSH (2018) 

These spectral clustering algorithms are reviewed on the basis of three main components: 

i assessing the similarity between spectra (distance function) 

ii creating clusters of related spectra on the basis of pairwise similarities 

iii constructing a representative or consensus spectrum for each resulting cluster. 

a MS2Grouper 

Tabb et al. (2005) proposed the MS2Grouper clustering algorithm which has three main 
tasks: to detect similarity between spectra, use pairwise similarities to assess groups of 
related spectra, and construct a representative spectrum for each similar group. 
MS2Grouper is a software written in C++ programming language. 

Preprocessing 

MS2Grouper reads in all spectra, sorts (according to their precursor m/z value) and writes 
a new set of spectra (in MS2 file format) to disk. 

Functioning 

1 Detect similarity between spectra by: 

a Comparing each ms/ms spectra to others within 3Da. 

b Removing singletons. 

c Isolating the next set of spectra. 

2 For clustering, MS2Grouper uses a pairwise similarity approach to assess groups of 
related spectra. 

a Finds a clique of at least 3 ms/ms spectra. 

b Extends paraclique to include neighbours. 
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3 Consensus representation: After the synthesis of a summary spectrum, the most 
intense spectrum is selected as the representative spectrum. 

4 Remove spectra in paraclique. 

5 Re-compute similarity within the subgraph. 

Benefits 

i Reduce spectral counts by up to 20%, as compared to un-clustered spectral datasets. 

ii Reduce database search times without reduction in identified peptides. 

iii Higher signal-to-noise. 

iv Use of synthetic representative spectrum in MS2Grouper eliminated the need for  
‘re-centroiding’ the data points. 

Limitations 

i Normalised dot products used in this algorithm have more error rates than 
probability-based assessments of similarity. 

ii A synthesised representative often produces spectra that do not score as well as the 
most intense spectra in the same group. 

iii It is possible to improve detection of precursor charge state, quality of filtering, and 
de novo sequence inference. 

b Pepminer 

Beer et al. (2004) suggest a method that takes a global view of the gathered data by 
clustering the MS/MS spectra of an entire project consisting of multiple LC-MS/MS runs. 
Spectra that express similar characteristics, and are therefore believed to represent the 
same peptide, are grouped in one cluster. A representative spectrum is generated for each 
of the clusters, replacing the raw spectra. 

Preprocessing 

None 

Functioning 

1 First, similarity between two MS/MS spectra is calculated using normalised dot 
product. Similarity score is the cosine of the angle between two vectors, it is between 
0 and 1. 

2 To perform clustering, compute the transitive closures of MS/MS spectra whose 
pairwise similarity is above 0.6 and whose parent masses differ no more than by 2.5 
atomic mass unit. To avoid unjustifiably coupled clusters, other clustering algorithms 
are also applied. 
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3 Consensus representation: Generation of cluster representative spectrum is 
accomplished by summing the intensities of all peaks, in all cluster members, across 
the mass axis. 

4 Retention time normalisation: Two LC-MS/MS runs, R and S, share k clusters. 
Retention times of all spectra of S are normalised to the time scale of R. 

Benefits 

i Analysis is faster and less costly. 

ii Eases and improves data management. 

iii Improves peptide identification. 

iv Facilitates the comparison of peptide mixture. 

v Allows retention times of different LC-MS/MS runs to be correlated. 

Limitation 

i Peptides fragmented only once escape clustering and be ignored. 

ii The data acquisition methodology may also influence the results. 

iii Number of identifiable peptides that are not clustered decreases as the number of 
LC-MS/MS runs in the project grows. 

iv Spectra of the same peptide that have different charge states do not join the same 
cluster because their fragmentation patterns often differ. 

c MS Cluster 

Frank et al. (2008) developed a practical MS-Clustering algorithm capable of handling 
large datasets using a single desktop PC. Instead of joining the clusters with maximum 
similarity, it joins the first ones it encounters that have a similarity above a threshold. As 
compared to traditional hierarchical clustering algorithms, MS-Cluster uses a heuristic 
approach which enables it to reduce the number of spectral similarity computations. 

Preprocessing 

The algorithm first filters the MS/MS datasets to remove low quality spectra that cannot 
result in reliable peptide identifications. 

Functioning 

1 Spectral similarity: MS Cluster uses a normalised dot-product approach to find 
similarity among spectra. 

2 Cluster representatives: The consensus spectrum is constructed by consolidating the 
peak of all spectra in the cluster. Each consensus peak is assigned a mass that equals 
the weighted average of the joined peak’s masses and an intensity that equals the 
sum of the peak’s intensities. 
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3 Clustering algorithm: It uses a ‘bottom-up’ approach like incremental hierarchical 
clustering, which would start with clusters containing single spectra and build the 
clusters up by merging clusters with similar spectra. 

Benefits 

i Rapidly process large MS/MS datasets (~10 million) while ensuring high quality of 
resulting clusters. 

ii Reduces the number of spectra by up to 90% (as compared to un-clustered data) 
without reducing the number of identified peptides and proteins. 

iii False database identifications that occur due to low-quality of spectra are also 
reduced. 

Limitations 

i Using this algorithm for smaller datasets may lead to small loss of peptide 
identifications. 

ii Spectra of previously unidentified peptides are difficult to identify due to the use of 
spectrum libraries search method in this algorithm. 

d Improved MS Cluster 

Frank et al. (2011) revised the MS Cluster algorithm in 2010. They propose a single 
consensus spectrum approach that clusters MS/MS datasets. For this purpose they use 
spectral archives, which extend spectral libraries by analysing both identified and 
unidentified spectra and also information about peptide spectra that are common across 
species is maintained. 

Preprocessing 

Remove low quality spectra using a regression model that relies on features that 
distinguish spectra of non-peptide material or poorly fragmented peptides. Typically 40-
50% of the spectra are discarded at this stage. 

Functioning 

1 Clustering algorithm: Next, bottom up heuristic hierarchical clustering approach is 
used to join similar spectra that are likely to have originated from the same peptide. 

2 Spectral similarity 

a First reduce each spectrum to vectors. 

b Then restrict the dimensionality of these vectors. 

3 Constructing consensus spectra is generated by aggregating the spectra in the cluster. 
It involves several steps: peak list merging, intensity normalisation and peak 
filtering. 

4 Finally, spectral archives are created and updated by the MS-Cluster algorithm. 
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Benefits 

i Peptide identifications with spectral archives. 

ii Identification of peptides conserved across species. 

iii Short peptide identification. 

iv The time required to generate an archive is practically the same as the time required 
to cluster the dataset. 

Limitations 

i Focuses on ion-trap. 

ii Large computational time. 

e PRIDE Cluster 

Griss et al. (2013) proposed a clustering algorithm called PRIDE cluster, based on the 
MS-Cluster algorithm. It was optimised to increase the quality of the generated clusters at 
the cost of reducing its speed. The PRIDE cluster algorithm can split clusters and always 
assigns spectra to the cluster with the most similar consensus spectrum. It uses methods 
that can be used on data from any type of mass spectrometer. These changes considerably 
increased the execution time of the algorithm but were necessary to make the algorithm 
usable for heterogeneous datasets. 

Preprocessing 

Spectrum normalisation: Spectrum intensities are normalised so that the sum of 
intensities of all peaks is 1000. 

Functioning 

1 Spectra Similarity is calculated by using normalised dot product method. 

For comparison of two spectra only K highest peaks are taken into consideration. K 
is calculated by dividing the precursor m/z by 50. 

2 Spectrum quality assessment: roughly assess a spectrum’s signal to noise ratio. 
Advantage of this simpler approach is that it is applicable to spectra originating from 
virtually any mass spectrometer platform. 

3 Consensus spectrum building: 

 Same as used in MSCluster 

a Add all peaks from all spectra to the consensus spectrum (CS). 

b Merge identical peaks. 

c Adapt peak intensities. 

d Filter CS, keep only top 5 peaks. 
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4 Spectra Clustering: 

a Sort Spectra. 

b Clustering Spectra: if similarity is above threshold t, add spectra to the cluster. 

c Merging Spectra: if a cluster’s CS is similar (above threshold t) to another 
cluster’s CS the clusters are merged. 

d Remove non-fitting spectra.  

e Goto (b) Until all spectra fit their cluster or a maximum of N iterations is 
reached. 

Benefits 

i Annotations in the PRIDE cluster are reliable. 

ii Methods can be used on data from any type of mass spectrometer. 

iii Algorithm usable for heterogeneous datasets. 

iv Improve the quality of the generated spectra. 

v Spectra are not added to the first fitting cluster, but to the best fitting cluster. 

Limitations 

i Increased execution time of the algorithm, as compared to MS Cluster algorithm. 

f PRIDE Cluster Extended 

Griss et al. (2016) extended the PRIDE cluster algorithm. The PRIDE cluster extended 
algorithm uses Apache Hadoop framework thereby increasing spectrum-clustering 
accuracy and scalability to handle the exponential data increase in the PRIDE Archive. 
Instead of the normalised dot product that is commonly used, authors used a probabilistic 
scoring approach to assess the similarity between two spectra. 

Functioning 

1 To assess the similarity between two spectra: 

a First, precursor peaks are removed from the MS/MS spectrum and 70 highest 
peaks per spectrum are kept. 

b Hypergeometric distribution is used to model the probability that the number  
of matched peaks occurred randomly. 

c Only the peaks that have at least 50% of the total ion current (of the prefiltered 
spectrum) or at least the 25 highest peaks are used for spectra comparison. 

d The algorithm uses all peaks to build the consensus spectrum. 
 
 
 
 



   

 

   

   
 

   

   

 

   

    Review of spectral clustering algorithms 29    
 

    
 

   

   
 

   

   

 

   

       
 

2 For clustering, a probabilistic spectrum comparison method is used instead of a 
normalised dot product. 

a First, peak filtering is performed in a pure mapping job. 

b Five successive rounds of clustering are performed with decreasing similarity 
thresholds to reach a final accuracy of 99%. 

c Depending on the precursor’s mass-to-charge ratio value, spectra are segregated 
into bins. 

3 Consensus spectra are identified from reliable human spectral clusters, using all 
peaks. 

Benefit 

i Cluster large amounts of unidentified spectra without incurring a high degree of false 
positive matching. 

ii Able to identify roughly 20% of the originally unidentified spectra in the PRIDE 
archive. 

iii More accurate than the MSCluster clustering algorithm. 

Limitation 

i Computational complexity is more as compared to its previous counterparts. 

g MaRaCluster 

The and Käll (2016) present a scheme for hierarchical clustering of fragment spectra, 
MaRaCluster. This approach gives more weight to rare peaks while lowering the 
contribution of frequently present peaks. To counteract cluster contamination through 
chimeric spectra, it employs complete-linkage hierarchical clustering. 

Preprocessing 

The spectra are converted to MS2 format and assigned accurate precursor masses. 
Subsequently spectra are split into separate files based on these precursor masses to 
accommodate parallel processing. 

Functioning 

1 Only N most intense fragment peak locations in the spectra are considered and their 
mass-to-charge ratio is registered as a function to find the background frequency of 
the fragments. 

2 A scoring function is used to calculate pairwise distances between spectra. 

3 For clustering of spectra, a bottom-up hierarchical clustering is applied using a 
memory constrained complete linkage algorithm. 

4 The consensus spectrum is generated for each cluster using the merging procedure 
employed by MS-Cluster. 
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Benefits 

i As compared to its previous counterparts, 40% more peptides are identified for the 
same number of consensus spectra. 

ii Independent of cluster size, MaRaCluster generates more purer clusters. 

iii Only fewer spectra are left unclustered. Size of the clusters generated by 
MaRaCluster is relatively small as compared to the size of clusters generated by 
MSCluster. 

iv Require less runtime as compared to typical runs of MS-Cluster. 

v Rarity based distance measure is superior to the cosine distance and its complete 
linkage is better than single linkage. 

vi Rarity based scoring function is a useful alternative to spectral dot product. 

Limitation 

i Rarity based scoring function increases complexity of MaRacluster algorithm. 

ii Careful consideration between sensitivity and specificity is needed. 

iii When processing large datasets, the number of comparisons will most likely become 
too large. 

h msCRUSH (mass spectrum ClusteRing Using locality Sensitive Hashing) 

Wang et al. (2019) present msCRUSH software, which uses locality sensitive hashing 
(LSH) technique to implement spectral clustering algorithm. msCRUSH is implemented 
in C++ and is released as open source software. The algorithm can significantly speed up 
clustering by selecting a subset of highly similar spectra through one-time processing of 
all spectra while retaining comparable or higher sensitivity and accuracy. 

Preprocessing 

a First putative noise peaks in each input ms/ms spectrum is removed. 

b Vector conversion is done in which each input MS/MS spectrum is embedded into a 
numerical vector. 

Functioning 

1 Random projection 

The numerical vectors are then randomly projected into buckets by utilising the selected 
similarity Hash functions 

2 Merge 

a Within each bucket, Locality Similarity Hashing (LSH) instead of cosine similarity 
is used between each pair of spectra of the same charge and close precursor mass is 
calculated. 
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b Two spectra are merged into a consensus spectrum if their pairwise similarity is 
higher than the specific threshold; otherwise, they will remain separate. 

c After merging and replacement, the new spectrum (i.e., consensus spectrum) vector 
will proceed into the next iteration of vector conversion, random projection and 
merge. 

3 Consensus generation: After a maximum number of iterations, msCRUSH will 
generate consensus spectra as the final clustering report. 

Benefits 

i Faster than the PRIDE cluster algorithm. 

ii Higher clustering sensitivity. 

iii Comparable accuracy. 

iv Identify 1% – 3% more unique peptides. 

v msCRUSH outputs fewer singleton clusters. 

Limitations 

msCRUSH generates clusters with slightly lower purity values as compared to PRIDE 
clusters. 

Table 1 shows the comparison of all the spectral clustering algorithms discussed in 
this paper. 

Table 1 Comparison of the spectral clustering algorithms 
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Table 2 Summary of characteristics of spectral clustering algorithms used in proteomics 
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Table 2 Summary of characteristics of spectral clustering algorithms used in proteomics 
(continued) 

 

S.
 n

o.
 

 
M

S2
 G

ro
up

er
 

Pe
pM

in
er

 
M

S 
C

lu
ste

r 
Im

pr
ov

ed
 M

S 
Cl

us
te

r 
PR

ID
E 

Cl
us

te
r 

PR
ID

E 
C

lu
st

er
 

ex
te

nd
ed

 
M

aR
aC

lu
ste

r 
M

sC
RU

SH
 

5 
C

on
se

ns
us

 
re

pr
es

en
ta

tiv
e 

Sp
ec

tra
 (C

S)
 

Se
le

ct
 m

os
t 

in
te

ns
e 

sp
ec

tru
m

 a
s 

co
ns

en
su

s 
sp

ec
tru

m
 

C
S 

is
 g

en
er

at
ed

 
by

 su
m

m
in

g 
th

e 
in

te
ns

iti
es

 o
f a

ll 
pe

ak
s i

n 
al

l 
cl

us
te

r 
m

em
be

rs
 

C
S 

is
 g

en
er

at
ed

 
by

 c
on

so
lid

at
in

g 
th

e 
pe

ak
s 

C
S 

is
 g

en
er

at
ed

 
by

 
co

ns
ol

id
at

in
g 

th
e 

pe
ak

s 

C
S 

is
 g

en
er

at
ed

 
by

 
co

ns
ol

id
at

in
g 

th
e 

pe
ak

s 

C
S 

is
 

ge
ne

ra
te

d 
by

 
co

ns
ol

id
at

in
g 

th
e 

pe
ak

s 

In
vo

lv
es

 se
ve

ra
l 

st
ep

s s
uc

h 
as

: 
pe

ak
 li

st
 

m
er

gi
ng

, 
in

te
ns

ity
 

no
rm

al
is

at
io

n 
an

d 
pe

ak
 

fil
te

rin
g 

to
 fi

nd
 

C
S 

C
on

so
lid

at
io

n 
of

 p
ea

ks
 is

 
fo

llo
w

ed
 b

y 
ve

ct
or

 
co

nv
er

si
on

 

6 
R

ed
uc

tio
n 

of
 

da
ta

se
t s

iz
e 

R
ed

uc
e 

sp
ec

tra
l 

co
un

ts
 b

y 
up

 to
 

20
%

 

Li
ke

 th
at

 o
f 

M
S2

G
ro

up
er

 
R

ed
uc

es
 th

e 
nu

m
be

r o
f 

sp
ec

tra
 b

y 
up

 to
 

90
%

 w
ith

ou
t 

re
du

ci
ng

 th
e 

nu
m

be
r o

f 
id

en
tif

ie
d 

pe
pt

id
es

 

Li
ke

 th
at

 o
f M

S 
C

lu
st

er
 

Li
ke

 th
at

 o
f M

S 
C

lu
st

er
 

M
or

e 
ef

fe
ct

iv
e 

as
 c

om
pa

re
d 

to
 

pr
ev

io
us

 
al

go
rit

hm
s 

Li
ke

 th
at

 o
f M

S 
C

lu
st

er
 

M
or

e 
ef

fe
ct

iv
e 

as
 c

om
pa

re
d 

to
 

M
aR

aC
lu

st
er

 
al

go
rit

hm
 

7 
C

lu
st

er
 p

ur
ity

 
Pr

od
uc

es
 

sp
ec

tra
 th

at
 d

o 
no

t s
co

re
 a

s 
w

el
l a

s t
he

 
m

os
t i

nt
en

se
 

sp
ec

tra
 in

 th
es

e 
gr

ou
ps

’ 

Pe
pt

id
es

 
fr

ag
m

en
te

d 
on

ly
 o

nc
e 

es
ca

pe
 

cl
us

te
rin

g 
an

d 
be

 ig
no

re
d 

Li
ke

 th
at

 o
f 

Pe
pM

in
er

 
Li

ke
 it

s 
pr

ev
io

us
 

co
un

te
rp

ar
ts

 

Li
ke

 it
s 

pr
ev

io
us

 
co

un
te

rp
ar

ts
 

G
en

er
at

e 
m

or
e 

pu
re

r c
lu

st
er

s 
as

 c
om

pa
re

d 
to

 
m

sC
R

U
SH

 

98
%

 m
or

e 
av

er
ag

e 
pu

rit
y,

 
in

de
pe

nd
en

t o
f 

cl
us

te
r s

`4
e 

C
lu

st
er

 p
ur

ity
 is

 
le

ss
 th

an
 

M
aR

aC
lu

st
er

s 

 



   

 

   

   
 

   

   

 

   

   34 S. Kumar et al.    
 

    
 

   

   
 

   

   

 

   

       
 

Table 2 Summary of characteristics of spectral clustering algorithms used in proteomics 
(continued) 
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5 Discussion 

Eight of the most prominent spectral clustering algorithms (MS2 Grouper, PepMiner, MS 
Cluster, Improved MS Cluster, PRIDE Cluster, PRIDE Cluster extended, MaRaCluster 
and msCRUSH) have been discussed in detail as shown in Table 2. Among these 
MS2grouper and Pepminer algorithms are suitable for smaller datasets, whilst all other 
work efficiently with larger datasets. Except for Pepminer, all other algorithms perform 
preprocessing of the raw proteomics data. To detect similar spectra, MS2Grouper 
performs one-to-one comparison of the generated spectra. Pepminer, MSCluster, 
Improved MSCluster and PRIDE cluster use normalised dot product in similarity 
function. PRIDE cluster extended use probabilistic spectrum comparison and 
MaRaCluster uses pairwise distances between spectra, and msCRUSH uses locality 
similarity hashing (LSH) to compare two spectra. In MS2Grouper, the consensus 
representative spectra is selected as the one with highest intensity, in PepMiner a 
representative spectra is generated by summing the intensities of all peaks in all cluster 
members, whereas in MSCluster, PRIDE Cluster, PRIDE Cluster Extended and 
MaRaCluster it is generated through consolidation of the MS/MSpeaks. In msCRUSH 
consolidation is followed by vector conversion. Improved MSCluster involves several 
steps such as peak list merging, intensity normalisation and peak filtering to find 
representative spectra. Each of the discussed algorithms has its own contribution in 
reducing the size of the spectral dataset, but PRIDE Cluster Extended and msCRUSH 
turn out to be most effective. PRIDE Cluster Extended generates cleaner clusters 
compared to msCRUSH. However, msCRUSH is faster, with better sensitivity, accuracy 
and identifies more unique clusters compared to PRIDE Cluster Extended. These 
approaches show an ongoing trend in the improvement of spectral clustering algorithms, 
further advanced approaches such as deep learning with neural networks could be 
explored for further improvement of spectral clustering. 

6 Conclusion 

In this paper, a thorough review of the spectral clustering algorithms used in proteomics 
is presented. The algorithms discussed are the most popular and most referenced up to the 
current date. The paper provides a deeper dive into these spectral clustering algorithms 
and highlights their benefits, shortcomings, functioning and improvements that are 
provided through different approaches. A comparison on important features and their 
availability in the various spectral clustering algorithms has also been done, summarised 
and presented in the paper. It has been observed that there is tremendous opportunity for 
exploitation of current spectral clustering algorithms and further exploration to solve 
various problems related to peptide identification. Spectral clustering is currently 
constrained by accuracy and identification of unique clusters. If we can overcome these 
challenges, spectral clustering will accelerate peptide and protein identification. 
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