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Abstract: The Benford-like behaviour is commonly seen in practical data.
That is, the digit frequency more or less has the distribution first introduced
by Benford. Despite common belief, however, most datasets do not conform
perfectly to Benford’s law; they fail famous Benford tests in the literature, or
as Nigrini puts it, these tests are too powerful for checking the conformity.
We propose a new approach on measuring the deviation of datasets from
Benford distribution to determine possible abnormality. We show that the
conventional digit frequency tests do not fully absorb the ‘significant digit’
property. We discuss barriers on the way of auditors in using digit tests
mainly when the number of samples is too small or too large. We then
propose our method using the logarithmic basis of Benford’s law which
states the mantissa of the logarithm of all practical numbers should be
uniformly distributed. We then test several goodness-of-fit techniques that
compare the sample data’s mantissa distribution with that of the uniform
distribution between zero and one. Our experiment on sample datasets show
that Kolmogrov-Smirnov test for uniformity works best for small, medium
size and even large records.
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1 Introduction

Benford’s law was the result of a simple discovery; that certain pages of logarithmic
tables have more tear and ware compared to others (Newcomb, 1881). There has
been a lot of effort ever since in verifying and explaining the ‘significant digit’
phenomenon (Raimi, 1976; Pinkham, 1961; Washington, 1981; Sarkar, 1973). Frank
Benford’s explanation of this phenomenon was rather philosophical; that “the 1, 2,
3, ... scale is not the natural scale [...] Nature counts e°,e”,e??, e3*, ... and builds
and functions accordingly” (Benford, 1938). While the statement was not exactly
mathematical, it more or less served as a foundation for Theodore Hill’s proof of the law
(Hill, 1995). Hill showed through rigorous derivations that “if distributions are selected
at random (in any ‘unbiased’ way), and random samples are then taken from each of
these distributions, the significant digits of the combined sample will converge to the
logarithmic (Benford) distribution”. The logarithmic (Benford) distribution here refers
to Newcomb’s finding on practical numbers for which the mantissa of the logarithm
is uniformly distributed. In other words, despite the common belief, the ‘significant
digit’ phenomenon is more than mere digit frequency property that was pointed out by
Benford. The digit frequency property mentions that in a set of practical numbers the
percentage of the leftmost digit, roughly follows the last column in Figure 1. It further
states that the distribution of the combination of the first two digits resembles the inner
matrix of Figure 1. Benford provided a method of calculating these distributions for any
set of combined first digits, e.g., first two digits, first three digits and etc. However, the
digit frequency property which is the building block of most conventional Benford tests
used in fraud detection industry is only a by-product of the logarithmic property. The
logarithmic property that was found by Newcomb and elaborated by Hill states that if
you take the logarithm of a set of practical numbers the fractional part of the log values
will be uniformly distributed. A test of abnormality, i.e., Benford test, should naturally
be defined based on the amount of deviation of this distribution from ideal (Kazemitabar
and Kazemitabar, 2019). In other words, one should measure how much the distribution
of the fractional part of the log values of a dataset differs from uniform. This difference
would then determine how abnormal the dataset is. Conventional Benford tests or
more formally digit tests, are only partially using this information as a measure of
abnormality. Moreover, these tests are limited in scenarios where the sample size is
either too large or too small. According to Nigrini, using digit frequency test on data
samples sized less than 300 is not recommended (Nigrini, 2011). Nigrini further adds
that for a dataset to conform to Benford’s law properly (in the digit frequency sense),
the size should be at least 1,000. The rationale is simple; the proportion of each digit
has a precision that increases by size of the data. For example, in a list of size 1,000 we
may have about 100 numbers (or 10%) that have 4 as their first digit. If we are going
to estimate the probability of having 4 as the first digit with an acceptable percision,
we roughly need that much number. On the other hand, when the list is larger than
5,000, the test suffers from excess power. In other words, most practical datasets of size
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larger than 5,000 will not pass Benford digit test. This is because common measures
used such as Z-test and chi-square tighten their criterion as the size increases (Nigrini,
2011). As a matter of fact, auditing softwares such as IDEA (https://idea.caseware.com)
only allow lists of size less than 2,500. The details of the excess power phenomenon
can be found in Nigrini’s work (Nigrini, 2011). Thus, we propose a new method that
takes into account the full information provided by the logarithmic distribution property.
We test our method on several practical datasets and show that our method no longer
suffers from sample size problem.

Figure 1 Ideal digit frequency for the first two digits according to Benford’s law

Second significant digit

0 1 2 3 4 5 6 7 8 9| =E
414 378 348 322 300 280 263 248 235 2233010
212 202 193 185 177 170 164 158 1.52 1.47(17.6]
142 138 134 130 126 122 119 116 1.13 1.10( 1249
1.07 105 102 1.00 L8 &5 93 91 90 38| 869
.86 .84 .83 .81 |0 78 .77 Je TJ4 73| 792
32 2 .69 .68 67 66 65 64 63 62| 6.69
.62 .61 .60 59 58 58 57 56 55 55| 580
.54 53 53 52 S1 51 S50 500 49 49| 512
48 47 47 46 46 45 45 45 44 44| 458
11.97 11.39 10.88 1043 10.03 9.67 9.34 9.04 876 8.50

First significant digit

Mooy b LM~

Q2

Source: The International Statistical Institute (2013)

2 Remember: real data will never conform perfectly to Benford’s law

This is what the R package, Benford Analysis (https://cran.r-project.org/web/packages/
benford.analysis/index.html) prints out each time you test a dataset for conformity to
Benford’s law. Despite what most people might think, real data does not perfectly
satisfy the digit test. In Figures 4-9, we ran several conventional Benford tests over
real datasets. Even after taking into account the size recommendations' the result shows
complete failure for one and two-digit tests. Some authors noted this phenomenon and
have proposed their own customised tests (Nigrini, 2011; Amiram et al., 2015). Nigrini
proposed mean absolute deviation (MAD) test that is not a function of the sample
size. As he himself admits, however, one cannot mathematically provide conformity
thresholds for this test. Therefore, Nigirini relied on his auditing experience and
compiled a list of thresholds for different types of datasets. For example, for taxpayer
balance if MAD test result is .0006, the conformity is acceptable, whereas for election
data same threshold is within the rejected region. We believe that the method to be
proposed in this paper that relies on the original ‘significant digit’ concept has the
potential to come up with a criterion that can work for different classes of datasets.
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Figure 2 Mean absolute deviation (MAD) test thresholds for different auditing fields

4 | B TV VRN WORRS  XPPRR TSB! Sy RSy Sy PR NN VIR | Sy Ry o ey |
1 Data# Data Description FTID »= 510 Records Notes
2| 2 Streamflow Data, Mathematical Geology 0.0001 0 457,440 Near perfect natural data
3 | 20 Seismic signals, January 2010 0.0005 0 160,090,478 Assumed perfect
4 | 16 Taxpayer, Balance Due 1983 0.0006 0 93,582 Expected to conform
5 | 18 Ledger dump, Positive amounts 0.0008 0 151,202 Assumed good
6| 3 Conglomerate, invoices in source currency 0.0009 1 706,106 No fraud or errors suspected
7 4 Conglomerate, invoices in US dollars 0.0009 1 704,390 No fraud or errors suspected
8 19 Ledger dump, Negative amounts 0.0009 o 136,987 Assumed good
9 | 23 Utility, KWH credits 0.0009 0 86,279 Surprisingly Benford
10| 8 Streamflow Data, 1998-2002 0.0011 0 37,879 expected perfection here
1| 9 Invoice, Software company 1996 0.0012 1 36,515 This is a typical financial data set
12| 13 Invoice, North Carolina 0.0012 1 247,811 No fraud or errors suspected
13| 24 Census, 2000, county populations 0.0014 0 3,141 Assumed good
14 25 Invoices, Transport company 0.0014 0 198,955 Assumed good
15 | 5 Census, 1990, county populations 0.0015 0 3,141 Assumed good
16 12 Federal Govt., purchasing cards 0.0015 1 81,842 Should be a good fit
17| 17 Congl travel reimb fits 0.0015 1 160,057 Sime issues expected
18| 11 Utility, purchasing cards 0.0019 1 44,614 Should be a good fit
19| 22 utility, KWH billed 0.0019 0 10,669,357 Clear non-Benford patterm
20| 10 Conglomerate, legal fees 0.0023 0 14,667 This is quite a weak fit
n| 1 California Accounts Payable 0.0024 1 177,763 Data seems to have much by way of fraud or errors
22| 14 Internet site, balances 0.0025 1 40,060 Clear issues in this data
23| 15 Invoices, Texas 0.0026 1 1,887,958 Some issues
24| 21 Tobacco, Sales numbers 0.0030 0 34,716 Highly questionable data
5| 7 California, Special Election Governor 0.0033 i 3,112 Still a weak fit
26 6 California, Special Election Governor 0.0101 0 6,384 Weak fit to Benford
27
28 1 =numbers less than 10 were deleted

Source: Nigrini (2011)

Figure 3 MAD test thresholds obtained thru auditing experience for different digit tests

Digits Range Conclusion

First Digits 0.000 to 0.006 Close conformity
0.006 10 0.012 Acceptable conformity
0.012t00.015 Marginally acceptable conformity
Above 0.015 Maonconformity

Second Digits 0.000 to 0.008 Close conformity
0.008 to 0.010 Acceptable conformity
0.010te0.012 Marginally acceptable confarmity
Above 0.012 MNonconformity

First-Two Digits 0.0000 to 0.0012 Close conformity
0.0012ta 0.0018 Acceptable conformity
0.0018 to 0.0022 Marginally acceptable conformity
Above 0.0022 Mancanformity

First-Three Digits 0.00000 to 0.00035 Clase conformity
0.00036 1o 0.00044 Acceptable conformity
0.00044 to 0.00050 Marginally acceptable conformity
Above 0.00050 Monconformity

Source: Nigrini (2011)
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Figure 4 First-two digit test results using R’s Benford analysis package for census data
(see online version for colours)
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Note: The data does not conform to Benford distribution based on Pearson’s chi-squared test.

Source: Available at https://www.nigrini.com/ForensicAnalytics.htm

Figure 5 First digit test results using R’s Benford analysis package for census data
(see online version for colours)
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Note: The data does not conform to Benford distribution based on Pearson’s Chi-squared test.

Source: Available at https://www.nigrini.com/ForensicAnalytics.htm
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Figure 6 First-two digit test results using R’s Benford analysis package for income data
(see online version for colours)
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Source: Available at https://www.nigrini.com/ForensicAnalytics.htm

Figure 7 First digit test results using R’s Benford analysis package for income data
(see online version for colours)
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Note: The data does not conform to Benford distribution based on Pearson’s chi-squared test.

Source: Available at https://www.nigrini.com/ForensicAnalytics.htm
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Figure 8 First-two digit test results using R’s Benford analysis package for invoice data
(see online version for colours)
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Source: Available at https://www.nigrini.com/ForensicAnalytics.htm

Figure 9 First digit test results using R’s Benford analysis package for income data
(see online version for colours)
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3 Benford test revisited

Take X as an arbitrary positively valued r.v. Let ¢ be a function that maps X to a new
r.v. defined as follows

$(X) =1log;; X mod 1 (1

where mod denotes fractional part or mantissa of a number. It is known that a
‘Benford like’ r.v. X generates a uniform ¢(X) (Hill, 1995), or

#(X) ~ Uniform[0, 1) (2)

Figure 10 Mantissa of the logarithm of Nigrini invoice dataset resembles uniform
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Imagine now, we are given a dataset to investigate its abnormality. We should calculate
¢(x) for all the records in that dataset and compare them with Uniform[0,1). If it
fits well we declare conformity to Benford’s law, and vice versa. There are several
goodness-of-fit techniques that compare a dataset with a given distribution (D’Agostino
and Stephens, 1986). Specifically, there are goodness-of-fit techniques designed to
measure a dataset’s fitness with uniform distribution. Fortunately, an R package titled
‘uniftest’ has been developed by Ruslan Pusev and Maxim Melnik of Saint Petersborg
University (https://cran.r-project.org/web/packages/uniftest/index.html) that implements
many of the famous goodness-of-fit tests for uniform distribution. For the sake of
completeness, we also added simple regression test, a.k.a quantile-quantile, as directed
by D’Agostino and Stephens (1986) to test uniformity. In what follows we briefly
explain all these goodness-of-fit techniques.

3.1 Sherman test for uniformity

The statistic behind the Sherman test (Sherman, 1950) is as follows:

1 1
By==S X — X1y — ——]|, 3
2;:1' (i) (i—1) n+1| (3)

where X =0, X1y = 1.
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3.2 Quesenberry-Miller test for uniformity

The statistic behind the Quesenberry-Miller test (Quesenberry and Miller, 1977) is as
follows:

n+1 n

By =Y (X — Xi-1)*+ Y (X5 — X-1) (X(i1) — X(0))» 4)

i=1 i=1

where X () =0, X(,11) = 1. The p-value is computed by Monte Carlo simulation.

3.3 Hegazy-Green test for uniformity

The statistic behind the Hegazy-Green test (Hegazy and Green, 1975) is as follows:

=13 |x, - [ )
P pot O |
3.4 Frosini test for uniformity
The statistic behind the Frosini test for uniformity is as follows:
1 i—0.5
B,=— Xy — . 6
=3 |x0- 52 ©

3.5 Neyman-Barton test for uniformity
The statistic behind the Neyman-Barton test (Neyman, 1937) is as follows:
k 1 2
Ny = ; (\/ﬁ Zﬂj(%)) ; (7

where 7;(x;) are Legendre polynomials orthogonal on the interval [0, 1].

3.6 Kolmogorov-Smirnov test for uniformity

The statistic behind the Kolmogorov-Smirnov test (Kolmogorov, 1933) is as follows:

DY =max (2, — —— ), D" =max [ —— —2; ), D = max(D*,D7). (8
i n-+1 i n—+1

K2

3.7 Regression test for uniformity (Q-Q)

The regression test calculates n(1 — R(z,s)) where n is the sample size, s is the
sample vector, x is the ideal distribution sample and R() is the simple correlation
operation. According to D’Agostino and Stephens (1986), for significance level of 0.05
the calculated output shall not exceed 1.774. The threshold holds for all datasets with
greater than 80 records.
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3.8 Anderson-Darling test

The Anderson-Darling test assesses whether a sample comes from a specified
distribution. It makes use of the fact that, when given a hypothesised underlying
distribution and assuming the data does arise from this distribution, the cumulative
distribution function (CDF) follows a uniform distribution. The formula for the test
statistic A to assess if data {x; < --- < z,,} comes from a CDF F is

A= -n-8, )

where

n

=3 S [In(F(z:)) +1In (1 — F(zn41-4))] - o

n
i=1

The test statistic can then be compared against the critical values of the theoretical
distribution.

4 Results

In order to run any of these tests on a dataset, one needs to first calculate the mantissa
of logarithm of the records. We performed these tests on several datasets provided
by Nigrini (https://www.nigrini.com/ForensicAnalytics.htm) the results of which can be
found in Tables 1-3.

Table 1 p-value output of several uniformity goodness-of-fit tests applied to famous datasets

Nigrini Nigrini Census Census Benford

invoice income (area) (population) set
Anderson-Darling 0.0194  3.979835e-09 1.909004e-07  0.1998424  0.6485023
Sherman 2.2e-16" 2.2e-16 2.2e-16 0.501 0.88
Quesenberry-Miller 2.2e-16 2.2e-16 2.2e-16 0.0805 0.879
Hegazy-Green 2.2e-16 2.2e-16 2.2e-16 0.171 0.2105
Frosini 2.2e-16 2.2e-16 2.2e-16 0.1555 0.208
Neyman-Barton 2.2e-16 2.2e-16 2.2e-16 0.07 0.3625
Kolmogorov-Smirnov  0.1765 0.5715 0.5925 0.3345 0.789

Note: *software’s smallest value. Actual number may be less.

Table 2 Quantile-quantile (regression) uniformity test applied to famous datasets based on
n(l — R(z, s))

Nigrini invoice  Nigrini income Census (area) Census (population) Benford set
179.8132 1,025.082 225.8024 2.17 0.7796801

Note: Except for the synthetic Benford set, all other datasets fail to show conformity
to Benford distribution in Q-Q sense.

Based on the results in Tables 1, 2 and 3, it is our suggestion to use Kolmogrov Smirnov
goodness of fit to test the uniformity of the mantissa of the logarithm. We say this
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because all reasonable datasets pass this test. This is a sign that the test is not too
powerful. Moreover, the test is not very loose. For example, small-sized samples of
Nigrini invoice and Nigrini income datasets barely pass the 0.05 threshold. One should
note, however, that the way we use Kolmogrov Smirnov goodness of fit is different
from conventional Benford tests. In conventional Benford tests, the auditor compares
goodness of fit of a discrete set of distributions with the Benford distribution, i.e., the
expected frequency of 9 or 10 digits. However, in our method we will be comparing the
set of data with a continuous distribution, i.e., the uniform distribution in the interval of
[0, 1).

Table 3 (p-value, D-statistic) output of Kolmogrov-Smirnov uniformity test applied to
different sample sizes of famous datasets

Nigrini invoice Nigrini income Census (area) Census (population)  Benford set

50 (0.096, 0.947) (0.082, 0.953) (0.807, 0.816)  (0.743, 0.831)  (0.3285, 0.901)
200 (0.129, 0.971) (0.093, 0.976) (0.38, 0.949)  (0.4575, 0.943)  (0.5595, 0.934)
2,000  (0.055, 0.994) (0.511, 0.980) (0.72, 0.974)  (0.608, 0.977)  (0.8425, 0.969)
20,000  (0.129, 0.997) (0.3235, 0.995)  N/A® N/A? (0.8275, 0.990)
150,000 (0.1765, 0.998) (0.5715, 0.997)  N/A® N/A* (0.752, 0.996)

Note: *dataset size limit reached.

5 Discussion

The proposed method has several advantages over conventional digit tests. We take
the list as a whole rather than breaking it to different bins (each bin associated with
a digit from 0 to 9). As a result, even in low sample size, we could obtain a good
precision. Remember, one needs a good precision for each bin in the conventional
method. However, because we are looking at the complete set, we do not face scarcity
even when the list is of size 100. In other words, our method works for low sample size.
Due to the same reason, we are saved from excess power phenomenon when the list is
large. This is because, we are looking at a continuous distribution rather than a discrete
one where every member of the list is a data point. When the list is large so are the
data points to be compared. This is while in the conventional digit test, the number of
data points to be compared, i.e., bins, are fixed (9 or 10 for single digits). List members
are mapped to a bin and when the list size is large the population of each bin increases
hence the excess power problem occurs.

6 Conclusions

Despite common belief, most datasets do not conform perfectly to Benford’s law; they
fail famous Benford tests in the literature, or as Nigrini puts it, these tests are too
powerful for checking the conformity. In this paper we proposed a new approach on
measuring the deviation of datasets from Benford distribution to determine possible
abnormality. We showed that the conventional digit frequency tests do not fully absorb
the ‘significant digit’ property. We discussed barriers on the way of auditors in using
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digit tests mainly when the number of samples is too small or too large. We then
proposed our method using the logarithmic basis of Benford’s law which states the
mantissa of the logarithm of all practical numbers should be uniformly distributed. We
then test several goodness-of-fit techniques that compare the sample data’s mantissa
distribution with that of the uniform distribution between zero and one. Our experiment
on sample datasets showed that Kolmogrov-Smirnov test for uniformity works best for
small, medium size and even large records.
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Notes

1 Nigrini recommends datasets of size 1,000—4,000 for good match.



