

International Journal of Web and Grid Services

ISSN online: 1741-1114 - ISSN print: 1741-1106
https://www.inderscience.com/ijwgs

Data locality-aware and QoS-aware dynamic cloud workflow
scheduling in Hadoop for heterogeneous environment

Fan Ding, Minjin Ma

DOI: 10.1504/IJWGS.2023.10054497

Article History:
Received: 10 January 2022
Last revised: 26 November 2022
Accepted: 04 December 2022
Published online: 06 March 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2023 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijwgs
https://dx.doi.org/10.1504/IJWGS.2023.10054497
http://www.tcpdf.org

 Int. J. Web and Grid Services, Vol. 19, No. 1, 2023 113

 Copyright © 2023 Inderscience Enterprises Ltd.

Data locality-aware and QoS-aware dynamic cloud
workflow scheduling in Hadoop for heterogeneous
environment

Fan Ding*
College of Computer and Communication Engineering,
Lanzhou University of Technology,
No. 287 Langongping Road, Qilihe District,
Lanzhou City, Gansu, 730050, China
Email: dingf14@163.com
*Corresponding author

Minjin Ma
College of Atmospheric Sciences,
Lanzhou University,
No. 222 South Tianshui Road, Lanzhou 730000,
Gansu Province, 730000, China
Email: minjinma@lzu.edu.cn

Abstract: Hadoop has become a popular data-parallel computing framework
for data-intensive scientific applications in recent years. Most scientific
applications employ workflows to portray procedures and dependencies
between jobs. However, the current default scheduling policy in Hadoop does
not take data locality into account. The movement of data among virtual
machines (VMs) produces latency in workflow scheduling. In addition, the
heterogeneous and dynamics of cloud resources cannot satisfy the user’s
demand for quality of service (QoS) in static workflow scheduling. Hence, we
propose a data locality-aware and QoS-aware dynamic cloud workflow
scheduling algorithm (DQ-DCWS) based on dynamic programming. The
algorithm balances data locality and delays by grouping nodes that hold tasks
correlated with data blocks. We consider five QoS factors and normalise them
as a path optimisation issue to realise maximum QoS. DQ-DCWS is
implemented and validated by running Montage workflow on real Hadoop
clusters which are deployed on Amazon EC2.

Keywords: data locality; Hadoop MapReduce; heterogeneous; workflow
scheduling; quality of service; QoS; big data.

Reference to this paper should be made as follows: Ding, F. and Ma, M. (2023)
‘Data locality-aware and QoS-aware dynamic cloud workflow scheduling in
Hadoop for heterogeneous environment’, Int. J. Web and Grid Services,
Vol. 19, No. 1, pp.113–135.

Biographical notes: Fan Ding received her BS and PhD in Computing Science
from Lanzhou University, in 2008 and 2014, respectively. Currently, she is an
Associate Professor in the College of computer and Communication
Engineering at Lanzhou University of Technology. Her current research
interest includes cloud computing, big data parallel and distributed processing
and machine learning.

 114 F. Ding and M. Ma

Minjin Ma is an Associate Professor in the Lanzhou University. He graduated
from the Lanzhou University as a Bachelor degree in 2005. He obtained his
doctorate degree (PhD) in the College of Atmospheric Sciences, Lanzhou
University in 2011. His major research field is atmospheric boundary layer,
urban air pollution and numerical simulation. His current interesting is to
improve weather and air quality forecast by new technology such as image
recognition, machine learning and big data. He is kind at computer
programming and numerical simulation. Additionally, he has special
experience of TRIZ training and now become an Innovation Engineer and a
researcher in Gansu Innovation Methodology Research Centre.

1 Introduction

In the era of big data, data-intensive applications have attracted substantial attention from
researchers in a diverse range of fields, such as environmental science (Davis et al.,
2017), astronomy, bioinformatics (Mondelli et al., 2018) and materials science (Service,
2012). Scalability and large-scale resources provided by the cloud enable data-intensive
application efficiency. Scientists usually employ science workflow (SWf) in
data-intensive applications. SWf is a flexible tool that acquires and conducts a complex
analysis of scientific data, including sensor data, medical images, simulator outputs,
satellite images, and various observation data. SWf automatically composes and performs
a complex analysis of distributed resources for data-intensive applications in cloud
computing. There are many popular SWf systems, such as Pegasus (Deelman et al.,
2021), KNIME (Lumley et al., 2020), Galaxy (Afgan et al., 2018), Kepler (Owsiak et al.,
2017), Taverna (Kasztelnik et al., 2017), and Triana (Zhang et al., 2011). These workflow
systems aim to automate scientists’ complex work in the computing environment and
release them from the bondage of tools and computation skills.

In the cloud computing environment, data-intensive applications must cope with
many challenging and crucial issues. Users submit a data analytics job on a workflow
system, and then, the job is decomposed into many tasks that are scheduled on separate
virtual machines (VMs). Importantly, large scale data processing demands a parallel
programming framework. Hadoop (White, 2010) is an open-source framework developed
by Apache for the storage and processing of large datasets that employ MapReduce
(Dean and Ghemawat, 2004) to parallel computing jobs with the datasets. Hadoop has
been deployed in many leading companies (e.g., Facebook, Yahoo and Baidu), mainly for
big data applications such as data indexing, web analytics, document processing, etc. It
can be built quickly on hundreds of nodes and enables highly scalable big data processing
architectures.

Hadoop Mapreduce Version 2 (Hadoop Yarn) is currently Hadoop framework
including resource manager, application master and node manager. Yarn schedule
Mapreduce job on Hadoop distributed file system (HDFS) which consists of one
NameNode (NN) as master and many DataNodes (DN) as workers. MapReduce executes
a set of map and reduce tasks concurrently to improve the execution efficiency on DN.
The resource manager runs on NN that manages all nodes, including master nodes and
worker nodes, and maintains a scheduler to allocate tasks to idle nodes.

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 115

Figure 1 Hadoop MapReduce scheduling and data locality (see online version for colours)

The scheduling procedure is shown in Figure 1. While starting a job on Hadoop, the
application master schedules the tasks to worker nodes from a task queue, and the node
manager monitors the running state of the tasks by heartbeat information (represented as
red hearts in Figure 1). The NN reports the slot information, which refers to whether a
node has a place to run a new task on the VM. The Hadoop scheduler is based on the slot,
which is configured to run map/reduce tasks concurrently. The number of slots on a node
is limited by default, as two consist of one map slot and one reduced slot. Slots are
occupied by tasks one by one until no slots are available. Meanwhile, the DN periodically
sends a heartbeat, which tells the status of the current DN to the NN. Once the node has
an idle slot, the idle slot pulls a task from the job queue. Hadoop divides input files into
one or more data blocks that are configured as the default 128 MB for each block. Data
locality is an important factor in the scheduling process. Data locality indicates that a task
is scheduled on a node that places its correlated data block. Optimal scheduling ensures
data locality. The idle slot gives priority to the task which is correlated to the data blocks
placed on the node. If the slot cannot find that kind of task, then the task-correlated data
blocks will be moved to the node to be executed so that the result will be delayed, which
means that data locality at the node level is not implemented. As shown in Figure 1, the
two tasks on DN2 realise data locality. However, DN3 needs to pull the data block
correlated with task t2 from DN1. Thus, the lack of data locality leads to additional data
migration time and communication cost on cloud resources. Therefore, current
MapReduce scheduling is not optimal in heterogeneous cloud environments. Two factors
contribute to the lack of data locality in the current Hadoop implementation:

1 The default data placement policy in Hadoop is simple and random (Borthakur,
2008) and does not place correlated data blocks on different nodes. If all correlated
data are placed on the same node, then some tasks must wait for the other running
tasks to be completed when there are multiple tasks to be performed.

2 The scheduling policy in MapReduce includes FifoScheduler, FairScheduler and
CapacitySchedule (Dean and Ghemawat, 2004). Although these algorithms can
realise fair and capacity scheduling, they cannot ensure data locality. As shown in
Figure 1, when DN1 has an idle slot and sends heartbeat information to the NN, the
NN first look for a task that has a correlated data block placed on DN1. However, the
remaining two tasks in the task queue are not related to the data block in DN1. Thus,
the NN randomly selects a task and allocates it to DN1. Data locality is not realised.

 116 F. Ding and M. Ma

Cloud SWf scheduling must consider not only data locality but also other factors,
including system workload, overall fairness and the communication cost produced by
intermediate data between two related tasks. Moreover, the heterogeneity of VM
resources leads to a different quality of service (QoS) for cloud nodes. Traditional SWf
scheduling uses static scheduling approach, which can find the most optimal scheduling
solution in the homogeneous resource environment. However, it becomes no longer
applicable in heterogeneous cloud resource environments where multi-QoS requirements
are considered. According to the above mentioned arguments, the SWf scheduling of
Hadoop in a heterogeneous environment faces the following challenges.

1 How to achieve data locality in workflow scheduling and minimise the latency from
data movement?

2 How to dynamically select VM resources to achieve the optimal workflow
scheduling?

3 How to minimise the cost of cloud resources while maintaining the QoS in wrokflow
scheduling?

In our work, we propose a novel approach, data locality-aware and QoS-aware dynamic
cloud workflow scheduling (DQ-DCWS), which considers the data locality and QoS of
VMs in heterogeneous environments based on a dynamic programming method.
DQ-DCWS balances data locality and latency by grouping nodes that hold correlated data
blocks with tasks. We model the issue as a path optimisation to realise the maximum
QoS. We implement and validate a dynamic cloud scheduling algorithm by running a real
workflow on deployed Hadoop clusters over Amazon Elastic Compute Cloud (EC2)
(Amazon.com, 2022).

The rest of the paper is organised as follows. Section 2 provides the important related
works. Section 3 details problem definition for SWf and data locality in Hadoop.
Section 4 presents details for the proposed data locality-aware and QoS-aware dynamic
cloud workflow scheduling. Section 5 presents detailed algorithm comparisons and
experimental analysis. Followed by the conclusions and future directions in Section 6.
Finally, the conclusions and future work are included in Section 6.

2 Related works

A wide variety of research has addressed optimisation of Hadoop scheduling through
different aspects, including cost-effective workflow scheduling (Rashmi and Basu, 2016;
Fang and Sun, 2018; Nasr et al., 2018; Thingom et al., 2018; Javanmardi et al., 2021),
performance optimisation based on task partitioning (Tong and Wu, 2017; Zhang et al.,
2017), storage-aware workflow scheduling (Ye et al., 2018), and multi-QoS constrained
workflow scheduling (Zheng et al., 2017; Arabnejad and Barbosa, 2017; Seth and Singh,
2020; Qureshi, 2019). Other methods (Xu and Yong, 2015; Rashmi and Basu, 2017;
Alwidian and Alaa Abdallat, 2019; Dey and Gunasekhar, 2019; Gandomi et al., 2019;
Seethalakshmi et al., 2020; Kalia et al., 2022) apply existing optimisation algorithms to
improve scheduling efficiency. One of the most widely used algorithms is the particle
swarm optimisation (PSO) algorithm (Fang and Sun, 2018; Garg and Singh, 2014; Hu
et al., 2007; Li et al., 2015; Verma and Kaushal, 2014; Wu et al., 2011; Kchaou et al.,
2022), which is an evolutionary algorithm based on swarm intelligence theory. The PSO

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 117

(Kennedy, 1995) algorithm modifies the velocity and position of the particles by
acquiring the relevant memory particles. In workflow scheduling, PSO enables fast
convergence and has the advantage of being both simple and effortless.

This work focuses on the data locality and heterogeneity of the resources mentioned
in introduction. Two main aspects are considered to improve the overall performance of
SWf scheduling in cloud.

2.1 Data placement strategy

An appropriate data placement strategy can reduce the scheduling overhead. The
objective of the data placement policy is to place correlated task data on different nodes
in a heterogeneous environment. In a previous study (Wang et al., 2013); a DRAW
scheme considering data grouping semantics was developed. Data grouping refers to data
that can be accessed simultaneously. The frequency of access is proportional to the
correlation of the data. A matrix is employed to model the correlation of the data. The top
two groups of correlated data are computed by converting them into a clustering matrix.
This method maximises the even distribution of correlated data and balances the storage
loads. Another work (Wu et al., 2016) has made an improvement based on that proposed
in Wang et al. (2013), which concerns the execution frequency of jobs. However, the
authors ignore the fact that tasks need to wait for occupied slots and whether running
tasks are related to the blocks of the same grouping data in the operation peak period.
There are many idle slots waiting for another group of correlated data. Thus, the
procedure produces disuse and wastes resources. Singh et al. (2018) proposed a data
placement technique for fixed and non-fixed datasets in a cloud environment that
improves the overall makespan time for workflow execution. Kim and Kim (2018)
proposed an adaptive data placement strategy considering dynamic resource changes for
efficient data-intensive applications. Another work (Qian et al., 2017) presented an
adaptive data placement approach that dynamically adjusts to asynchronous coupling
patterns. This approach places data across a set of staging nodes with an awareness of the
application-specific data locality requirements and runtime task executions at these
staging nodes.

Most Hadoop-based systems make block-data distribution and resource allocation
independent. A scheduling scheme (DPPACS) (Reddy and Roy, 2018) exploits
knowledge of data availability at different clusters. A dynamic data placement strategy
(DDPS) has been proposed to obtain the best location for new replicas according to their
hotness (Liu et al., 2018a). The method is able to allocate data replicas dynamically and
reduce the response time in a heterogeneous environment. The strategy presented in
Vengadeswaran and Balasundaram (2019) redistributes data blocks to produce an optimal
data placement after dynamically analysing the history log and establishing the
relationship between various tasks and blocks required for each task through a block
dependency graph (BDG). An entropy-based grouping technique was investigated in
Reddy et al. (2019). The authors grouped datasets with the most similar existing clusters
based on their relative entropy. Another data placement strategy (Bae et al., 2020) in
Hadoop preserves the same degree of data locality with a small number of replicas, which
select and copy only the data blocks that is most likely to be accessed remotely.

There is also a situation in which an input split consists of many data blocks that are
distributed in different nodes. Increasing the data block replication frequency will slow

 118 F. Ding and M. Ma

down overall performance. Choi et al. (2018) classified data locality by considering the
locations of all data blocks that contain an input split and categorising tasks.

2.2 Workflow scheduling policies

Most workflow scheduling works to optimise efficiency assuming that cloud services are
homogeneous. However, in heterogeneous environments, the data blocks of the Hadoop
clusters are allocated equally to all nodes without considering the different capabilities of
individual nodes. This situation results in low performance in Hadoop scheduling. The
existing static algorithms are unable to resolve issues in heterogeneous environments.
Guo et al. (2012) proposed a static workflow scheduling algorithm, lsap-sched that
allocates all tasks on idle slots. Lsap-sched weighs each task slot according to whether it
has correlational data, and then, it computes the task slot of minimising the weight with a
transferred matrix model. At the beginning of the scheduling period, it shows high
performance due to the large number of unscheduled tasks and idle slots, so data locality
is obtained. However, the superiority of the algorithm is not obvious when heavy tasks
need to be scheduled, because few slots are idled. Therefore, it is important to balance
data locality and scheduling latency. Mon et al. (2017) presented a clustering
method-based task dependency to reduce execution overhead and improve the
computational granularity of SWf tasks. In Wylie et al. (2016), both an optimal and a
heuristic approach to satisfy the minimum makespan and a given budget constraint on the
Hadoop MapReduce platform were employed. Zhou et al. (2019) selected the node as the
optimal node with the highest matching degree, which considers the distance among
nodes, the load of nodes and the number of backup data recoveries. This strategy realises
load balancing and considers the internal bandwidth consumed during data recovery. Liu
et al. (2018b) proposed an adaptive discrete PSO algorithm based on a genetic algorithm
to decrease the number of data transmissions across data centres. Furthermore, in
Manasrah and Ali (2018), a hybrid GA-PSO algorithm to allocate tasks to resources
efficiently was proposed. The algorithm aims to reduce the makespan and cost.

Some of the most recent related studies are based on dynamic SWf scheduling
methods. In one article (Soualhia et al., 2020), the researchers presented a dynamic and
failure-aware framework that can be integrated within the Hadoop scheduler and adjust
the scheduling decisions based on collected information about the cloud environment. Hu
et al. (2018) provided a framework designed to make scheduling decisions for workflows
to meet deadlines and simultaneously optimises the performance of ad hoc jobs. Wang
et al. (2017) proposed a workflow scheduling algorithm with a dynamic priority focus on
deadlines to achieve more reasonable fairness.

As shown in Table 1, the related work have be divided into two categories, one only
taking into account data placement (Wang et al., 2013; Wu et al., 2016; Singh et al.,
2018; Kim and Kim, 2018; Qian et al., 2017; Reddy and Roy, 2018; Liu et al., 2018a;
Vengadeswaran and Balasundaram, 2019; Reddy et al., 2019; Bae et al., 2020) and the
other including workflow scheduling like (Choi et al., 2018; Guo et al., 2012; Mon et al.,
2017; Wylie et al., 2016; Manasrah and Ali, 2018; Soualhia et al., 2020; Hu et al., 2018;
Wang et al., 2017). A few literatures consider the two aspects simultaneously (Kchaou
et al., 2022; Liu et al., 2018b; Zhou et al., 2019).

Different from the existing work, we investigate the workflow scheduling procedure
rests on data placement based on data-locality in addition to QoS in heterogeneous
environments of Hadoop-based systems. Besides, in the proposed strategy, more attention

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 119

is drawn to dynamic scheduling based on dynamic programming algorithm instead of
approaches based on static scheduling, which dynamic plan the optimal path in workflow
scheduling to minimise the SWf cost and execution time.
Table 1 Research on data placement strategy and scheduling policies of Hadoop workflow

scheduling

Approach Metrics (QoS) Data
placement Dynamic Optimisation objectives

FPSO (Kchaou et al.,
2022)

Volume of data
transfer

√ × Reducing the data
transmission cost

DRAW (Wang et al.,
2013)

Storage loads √ × Achieve the maximum
parallelism per
data-group DGAD (Wu et al., 2016) Makespan time

Heuristic data placement
(Singh et al., 2018)

Overhead √ × Access data at the lowest
cost of data transfer

Adaptive data placement
(Kim and Kim, 2018;
Qian et al., 2017)

Makespan √ × Reduce data movement in
workflow

DPPACS (Reddy and
Roy, 2018)

Execution time √ × Improving computation and
data availability

DDPS (Liu et al., 2018a) Execution time √ √ Dynamically adjust replicas
location according to
hotness

CORE (Vengadeswaran
and Balasundaram,
2019)

Execution time √ × Optimise data placement
based on relationship
between tasks and blocks

Entropy-based data
placement (Reddy et al.,
2019)

Overhead √ √ Grouped datasets with the
most similar existing
clusters.

Data-placement scheme
(Bae et al., 2020)

Overhead √ × Preserves same degree of
data locality with a small
number of replicas.

Data-locality scheduling
(Choi et al., 2018)

Makespan - × Classified data locality

Lsap-sched (Guo et al.,
2012)

Execution time - × Schedules multiple tasks
simultaneously to give
optimal data locality

Clustering method (Mon
et al., 2017)

Overhead - × Clustering method-based
task dependency

Budget-constrained
scheduling (Wylie et al.,
2016)

Makespan
Budget

constraint

- × Minimise workflow
makespan while satisfying
a given budget constraint.

Backup data placement
policy (Zhou et al.,
2019)

Load balancing √ × Reduce the internal
bandwidth

Adaptive discrete PSO
algorithm (Liu et al.,
2018b)

Volume of data
transfer

√ × Decrease the number of
data transmissions across
data centres.

 120 F. Ding and M. Ma

Table 1 Research on data placement strategy and scheduling policies of Hadoop workflow
scheduling (continued)

Approach Metrics (QoS) Data
placement Dynamic Optimisation objectives

Hybrid GA-PSO
algorithm (Manasrah
and Ali, 2018)

Makespan and
cost

- × Allocate tasks to resources
efficiently

ATLAS+ (Soualhia et
al., 2020)

Failure
execution time

- √ Dynamically detect the
failures of the TaskTracker

FlowTime (Hu et al.,
2018)

Deadlines - √ Simultaneously optimises
the performance of ad hoc
jobs

FSDP(Wang et al.,
2017)

Deadlines - √ Achieve more reasonable
fairness

3 Problem definition and statement

3.1 Cloud data-intensive SWf in Hadoop

Cloud SWf can be described as direct acyclic graphs (DAGs) G = <V, E>, which consist
of a series of tasks (vertex) V = <v1, v2, …, vn> and relationships of tasks (edges)
E = <ei, j| <vi, vj> ∈ E>. Each vertex vi represents a computing task in the workflow, and
each edge ei, j indicates that vj depends on vi in the workflow. In our work, we consider
only a branch data flow in a workflow since we focus on task scheduling and data
placement, as shown in Figure 1. These tasks represent either map tasks or reduce tasks
that perform several jobs in Hadoop. The edge relationship matrix
workflowDataTransferMap[][] represents the data flow and dependencies between the
forward task and backward task (if workflowDataTransferMap[i][j] > 0, then task vi
needs to transfer intermediate data to task vj).

Figure 2 Cloud workflow in Hadoop

Each data block has several replicas placed on the other nodes to ensure reliability. In our
workflow shown in Figure 2, Di represents the task-correlated data block, which is placed
on three nodes according to the data block replica placement method in Hadoop (White,
2010).

The full set of notations employed in figures of this work is shown in Table 2.

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 121

Table 2 Notations

Symbol Notation
Jobi Job in workflow
Taski Map task or reduce task
Di Data block correlated task in Hadoop
Nodei VM node in cloud
Racki Rack of storage VM nodes
RiNj Node j on rack i
ith
stage

A stage including a group of nodes that can complete Taski and edges connected with
nodes of previous stage in workflow

Sij Node j in stage i, corresponds to RiNj

3.2 Rack-level replica placement method

In Hadoop, scheduling can be realised at the node level and rack level. Rack-level
scheduling is shown in Figure 3. Data block replica placement follows the following
steps:

1 The first block replica is placed on the node neighbouring the raw data block in the
same rack.

2 The second replica is placed on a node in the rack neighbouring the first one.

Figure 3 Rack-level scheduling and data placement based on the data block replica placement
method

3.3 Hadoop task scheduling and data locality

A task should be scheduled on a node close enough to the data block associated with the
task to reduce communication latency caused by data movement. Rack-level scheduling
is considered to place data blocks and replicas, as shown in Figure 3. Five nodes are
distributed in the three racks. We place the data blocks and replicas of six tasks according
to the replica placement method described in Section 3.2. Considering the task
dependencies in the workflow, we distribute the task-correlated data blocks and the
replicas on five nodes in turn for the maximum data locality.

 122 F. Ding and M. Ma

4 The proposed method (DQ-DCWS)

The objective of the DQ-DCWS scheduling method is to minimise communication
latency by ensuring the data locality and cost of cloud resources. Considering the
dynamics and heterogeneity of cloud resources, a dynamic workflow scheduling method
is proposed by the following steps:

Step 1 Construct a model of the optimal path for SWf.

Step 2 Establish a QoS model for the path length between two nodes in the optimal
path.

Step 3 Design a DQ-DCWS algorithm based on dynamic programming.

4.1 Optimisation path model of cloud workflow

First, the scheduling process is transformed into a problem of how to choose an optimal
path. As shown in Figure 4, RiNj, the jth VM on the ith rack, is a cloud node. To maximise
data locality, the nodes that hold correlated data blocks for the same task are divided into
a group according to Figure 3. For example, data block D1 which is correlated with
Task1 place on three nodes (R1N1, R1N2 and R2N3). All the three nodes that are
capable of performing Task1 are put into the same group. Thus, six tasks, which depend
on each other, produce six groups in the workflow. Workflow scheduling selects one
node from a group of nodes to execute the task. A start node, B, is added on the left, and
an end node, F, is added on the right, as shown in Figure 5. The workflow scheduling
problem in the work can be resolved as follows:

1 How can a node be selected from a group of nodes to execute a task?

2 Which factors determine the length of the optimal path from one node to another?

3 Which is the optimal path from B to F?

Figure 4 Optimisation path model (different colours refer to nodes from VM resources with
different performance in the cloud environment) (see online version for colours)

4.2 QoS model for the length of the path between two nodes

To answer problems 1 and 2, the QoS of nodes and the communication cost between two
nodes are considered to evaluate the path length of two neighbouring groups. Several
QoS metrics are chosen based on our objective: VM cost, resource utilisation, response
time, execution time and communication time.

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 123

The equation (1) demonstrates that the total cost of task i matching execution on a
VM. The VM cost on task i include the execution cost of task i [equation (2)] and the
data transfer cost from task i to other task [equation (3)].

[] [] +VMCost i TaskCost i TaskDataTransferCost= (1)

[] [] /TaskCost i TaskMI i vmMips vmPerCost= ∗ (2)

[][] [][] [][]TaskDataTransferCost i j workFlowDataTrans i j vmTransferCost i j= ∗ (3)

As for the equation (2), TaskMI[i] indicates runtime (mips) of task i in workflow
scheduling. vmMips is the CPU capability of VM allocated to task i. So, TaskMI[i]/
vmMips get a cost length of task i. For each VM, a parameter vmPerCost denote the
execution cost of VMware in unit time (mips/s) that set by cloud computing providers.

In addition to the execution cost of the task, on the workflow path, the data transfer
cost of the intermediate result data which transfer to the next task after the task is
completed needs to be calculated. As shown in equation (3), this value is computed by
the volume of data transfer from node i to node j (workFlowDataTrans[i][j]) and the
transfer cost between two VMs allocated to task i and task j (vmTransferCost[i][j]).

The costs mentioned in the above three equations refer to that users pay for
scheduling their workload on the cloud VM resources (Kaur et al., 2019), including
computing, storage and communication costs, computed by equation (4)

+ +Cost computing storage commuC= (4)

The second QoS metric is VM resource utilisation VMRu demonstrated in equation (5). It
defines the usage of VM resources that are provided to the users for scheduling the
workload [22], calculated from the ratio of usage time (ut) to total occupancy time (tot)
for VM in cloud.

/VMRu ut tot= (5)

The third metric VMR (VM response time) defines the time duration between the arrival
of a task and the completion of a task [27] on VM nodes. Similarly, the fourth VME (VM
execution time) defines the completion time that the task runs on VM nodes [18]. The last
one VMC (VM communication time) defines the task communication time between two
VMs. It should be noted that we consider communication time not only at the node level
but also the rack level.

The above five QoS metrics are chosen to evaluate the service quality of the VM
resources in the cloud. Various dimensions of the five metrics need to be normalised. Our
works employ a simple (0, 1) normalisation method as equation (6), where NVi is the
normalised value of the i(th) metric in above five QoS metrics of VM V, and QVi is the
QoS of the i(th) metric of VM V. Qimin is the minimum value of the i(th) metric of the
VMs in a cloud data centre, and Qimax is the maximum value. These metrics include
negative metrics and positive metrics, which are processed separately. For example, VM
cost is a negative metric, and it is expected to obtain the minimum value.

 124 F. Ding and M. Ma

max
min max

max min

min max

min
min max

max min

(when is negative metric)

1

(when is positive metric)

vii
i i

i i

vi i i

vi i
i i

i i

Q Q Q Q Vi
Q Q

N Q Q
Q Q Q Q Vi

Q Q

− ≠ −= =
 − ≠

−

 (6)

After normalising each metric described above, the comprehensive QoS value QoSV of
VM V is computed as equation (7), where Wj is the weight of the j(th) metric.

()
5

1
jV V j

j

QoS N W
=

= × (7)

4.3 DQ-DCWS algorithm

The DQ-DCWS approach is based on dynamic programming that converts complex
problems into multilevel decision issues and then recursively invokes sub problems (Fan
et al., 2010). The sub problem is calculated only once, and the result will be preserved in
‘memorisation’. The algorithm reuses the result of ‘memorisation’ so that the sacrificed
space is used to improve efficiency. DQ-DCWS adopts the forward dynamic
programming method.

4.3.1 Dynamic programming schema
The cloud SWf is described as a DAG which begins with ‘B’ and ends with ‘F’, as shown
in Figure 5, is converted from Figure 4. The DAG includes nodes and edges. For
example, in {S11, S12, …., Sij}, the nodes in same group of VMs can execute a task and
ensure data locality. Node Sij represents the j(th) VM in the i(th) group, meaning that the
i(th) task in SWf is scheduled on the j(th) VM. The edges can be represented as {(S11,
S21), …… (S(i–1)(j), S(ij))}.

Each group of VMs and the edges from the previous group are added to the current
group to be a stage, so the DAG shown in Figure 5 obtains seven stages. When choosing
a node from the next stage, the data transfer time between nodes at the rack level and the
heterogeneity of cloud VM resources should be considered. In addition, the intermediate
data are generated by the SWf, in which there are dependencies between tasks. The
migrations of intermediate data lead to different communication costs among the nodes of
the two racks.

An edge in the SWf DAG is from a VM node xn in the n(th) stage to the i(th) node
S(n–1)i in the (n – 1)th stage. The value of an edge composed of (1) ,andn n ix s nQoS Comm − is
shown in formula (8). nxQoS quantifies the QoS of xn according to formula (7), and

(1) ,n is nComm − is the communication cost between S(n–1)i and xn, which is also quantified by
formula (6).

(1) ,(1) , +n n n i nx s xn iWs QoS Comm −− = (8)

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 125

Figure 5 DQ-DCWS approach adopts the forward dynamic programming method

4.3.2 Algorithm design
DQ-DCWS considers two main aspects: minimising the SWf cost and the execution time.
First, a cost function is given by the algorithm presented in Section 4.2. The SWf DAG is
initialised, including workflow tasks and VMs as the inputs. In the workflow, we
consider the length of the tasks as workflowExecutionMI and the data transfer map
relation as workFlowDataTrans [][]. The input data of the VM resources have three
parameters: vmMips, which represents the computing capability of vm; vmExecutionCost;
and vmTransferCost[][]. Therefore, the objective of optimisation is to maximise the
length of the SWf DAG, which is formulated as (9). To schedule tasks on VMs
dynamically, DQ-DCWS looks for the length f(xn) from the initial node ‘B’ to the current
node xn, as described in formula (9).

() ()(1) (1) ,+ xn n i n i nf x f S Ws− −= (9)

where xn is a node in the nth stage, S(n–1)i is the ith node in the previous (n – 1)th stage, and
f(S(n–1)i) represents the maximum length from node ‘B’ to node S(n–1)i in the previous
stage. Additionally, the communication (1) ,xn i nWs − between xn and S(n–1)i in f(xn) is
considered.

The procedure of the DQ-DCWS algorithm based on the dynamic programming is
shown in Table 3.

The DQ-DCWS algorithm includes two steps. In the OptimalWorkflow(G) step,
using the QoS model and cost function described in Section 4.2, the length of the edge in
the DAG with the input is calculated. The VM combination with the longest path is the
VM combination that produces the maximum QoS, which refers to the efficiency of
execution and the cost of workflow scheduling. The algorithm recursively calculates f(xn)
one time for each node in the DAG. This calculation is performed by using memorisation
to preserve the value of f(xn). The second step schedules workflow tasks along the
optimal path obtained by the first step. This approach decreases the delay of scheduling
tasks on heterogeneous resources.

4.4 Flowchart of DQ-DCWS

Figure 6 shows the flowchart of the optimal workflow of the DQ-DCWS approach. The
procedure begins with B and recursively computes the length of path (n) to achieve the
maximum length in each stage until node F is reached. The longest path (n) and output
memory are employed in the workflow scheduling.

 126 F. Ding and M. Ma

Table 3 DQ-DCWS algorithm

Algorithm DQ-DCWS
1 OptimalWorkflow(G):
Input: an Workflow DAG G (n tasks, m VMs), a set of available VM nodes S, the weight of the
edge from node i to node j Wij, Beginning node B, Finish node F,
Output: VM list in the longest path from B to F vms_optimal[], the optimal path from xn to the
finish node f(xn), the previous node of xn in the (n – 1)th stage on the optimal path P(xn)
xn: one node of stage n
Sni: VMware node i in stage n
memorisation(n)(i): (the length of the optimal path from node Sni to finish node)
1: Set xn = B
2: for each stage n in G do
3: if memorisation(n)(xn) !=0 then
4: f(xn) ← memorisation(n)(xn)
5: else
6: for each S in stage (n – 1) do
7: select S(n–1)i from {S(n–1)1, S(n–1)2, … S(n–1)m}
 () ()(1) (1)(1) , (1),. : + max +x xn i nn i n n ns t f S Ws f x Wx− −− − ==

8: () ()(1) (1) ,+ xn n i n i nf x f S Ws− − ←

9: P(xn) ← S(n–1)i and memorisation(n)(xn) ← f(xn)
10: vms_optimal[n – 1]= S(n–1)i
11: end if
12: end for
13: return vms_optimal[]
2 Cloud workflow scheduling:
Input: Wij, P(xn), f(xn), task list task[], vms_optimal[]
Output: Scheduling decision SD = {(task[n]<-> bn)|bn is a node of n stage on optimal path
scheduling decision}
Snj: the vm node j on optimal path in stage n from vms_optimal[]
1: Set xn = B
2: for each stage n in G do
3: if (the VM Snj cannot execute the task) then
4: a ← P(Snj)
5: Find a vm node bn in stage n st:
6: ()[] []+ max + ()nab n akW f b W f k== (k is the node other than Snj in stage n)

7: else
8: bn ← Snj
9: Allocate available VM resource bn to task[n]
10: end if
11: end for

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 127

Figure 6 Optimal workflow flowchart

Figure 7 Scheduling flowchart

 128 F. Ding and M. Ma

The scheduling flowchart is shown in Figure 7. It is obvious that the simple method
enables a fast response to a single point of failure and obtains the second longest path (n).

5 Analysis

In this section, we analyse the performance of the proposed DQ-DCWS method for a real
Hadoop workload in a heterogeneous and scalable environment. The result of this
analysis is compared with three general workflow scheduling algorithms. Our
experiments verify the performance of the algorithm from two aspects of running time
and cost.

5.1 Application

A real-life SWf Montage (Deelman et al., 2008) is used in our experiment. Montage is a
data-intensive application for assembling flexible image transport system (FITS) images
into custom mosaics, and it was created by the NASA/IPAC Infrared Science Archive.
The Montage was chosen as a respectively workflow in our work because we focus on
reducing data-block movement in data-locality which involve the amount of time the
application spends waiting for I/O and Montage have a significant advantage for
I/O-bound. In our experiments we configured Montage workflow to contain 35 jobs (35
montage executable core modules). The size of a Montage workflow is based on the area
of the sky covered by the output mosaic (NASA, 2010). The Montage workflow
application job is created with ten tasks, which generate 1-degree mosaics of the sky
using a 1.78 MB image (portion of galactic plane) as input data.

5.2 Experimental environment

We ran experiments on Amazon EC2 which was chosen because it is a popular and
feature-rich cloud resource. Real Hadoop clusters were deployed on Amazons EC2 with
varying number of VM instances from 20 to 100. EC2 VMs adopt the most cost-effective
processor c1.medium (Lustre, 2015).
Table 4 Hadoop clusters VMs parameters

Parameter Value
Number of VMs 20–100
HOST_PEs 2
MIPS 1,000
RAM 2,048 (MB)
Storage Local
BW 10,000 (mbps)
Price of computing resources $0.20/hr
Chargers of VMs $0.15 GB/Month

A series of experiments performed the Montage workflow on the configured Hadoop
clusters using the parameters presented in Table 4. These parameters are used to identify

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 129

the capability of the VMs and the resource cost of the cloud system. The program runs on
different numbers of VMs and is applied to achieve two objectives:

1 Optimising the workflow execution time to reduce the makespan which means the
total program runtime.

2 Reducing the task execution cost.

5.3 Algorithm comparison

To evaluate the performance of the proposed algorithm, the obtained results of our
algorithm are compared with four existing scheduling algorithms: FairScheduler in
Hadoop MapReduce, PSO, IPSO and FPSO.

FairScheduler: one of the default schedulers in Hadoop that is unable to implement
data locality. FairScheduler assigns resources to jobs, and all jobs receive an equal share
of resources over time. FairScheduler organises the jobs into pools and divides resources
fairly between these pools (APACHE, 2022).

• PSO: recently, PSO has been used to optimise the cloud scheduling problem, and a
number of particles (equal to the solutions for the application problem) represent a
swarm moving around to search for the best solution in the search space. An
application has a fitness function to evaluate the fitness value by particles moving at
certain velocities. PSO can obtain fast convergence, but the whole swarm is easily
trapped in a local optimum.

• IPSO: some works have improved the traditional PSO for SWf application
scheduling in the scientific field (Rashmi and Basu, 2017), such as the previous work
(Chen and Zhang, 2012), which proposed a new PSO called IPSO that records not
only the best position but also the worst position to avoid being trapped in a local
optimum.

• FPSO: both PSO and IPSO are only scheduling optimisations and did not consider
data placement based on data locality. Hence, a recent approach is also compared:
FPSO strategy (Kchaou et al., 2022). The FPSO combine the IT2DFCM strategy for
data placement with the PSO technique for task scheduling to execute SWf. The
objective of the FPSP is to minimise the overall data movement number.

In our comparison, the swarm parameters applied in PSO, IPSO and FPSO are listed in
Table 5.
Table 5 Swarm algorithm parameters

Parameter Value
Global increment 0.9
Inertia 0.95
Number of particles 25
Partial increment 0.9
Velocity graph factor 10
Evolve 10

 130 F. Ding and M. Ma

5.4 Experimental analysis

Experiments are performed on four different numbers of VMs (20, 40, 80, and 100 VMs)
and are repeated 100 times for each different number of VMs. The average results of the
100 replicates are compared to those of the other four algorithms. To evaluate the
performance of these five approaches, two performance metrics are applied: SWf
execution time and task running cost.

Execution time represents the makespan from workflow submission to task
completion. From Figure 8, DQ-DCWS reduces the execution time well and is
significantly better than FairScheduler in Hadoop MapReduce. Since FairScheduler is
static and does not have data locality, it spends some time on data movement and
recovering a single failure. As shown in Table 6, DQ-DCWS achieves a 26.5%
improvement compared to FairScheduler. DQ-DCWS performs better than PSO, IPSO
and FPSO, improving by 11.5%, 7.1% and 6.1 %, respectively. The advantage of
DQ-DCWS is that it can dynamically schedule tasks on VMs and cannot be trapped in a
local optimum. Detailed data are provided in Table 6.

To observe the cloud cost-efficient performance, the execution cost on cloud
resources is qualified and evaluated. Figure 9 shows the experimental results of the five
approaches. The cost efficiency of DQ-DCWS is better than that of the other four
approaches. In small-scale VMs, such as 20 and 40, the DQ-DCWS cost is still close to
that of the others. However, as the number of VMs increases, the superiority of
DQ-DCWS becomes increasingly obvious. As shown in Table 6, cost reductions of
12.5%, 11.8% and 11.6% are achieved by comparing with FairScheduler, PSO and IPSO
respectively. On the recent method FPSO, our approach also obtains a 7.0% improvement
in cost. Detailed data are provided in Table 6.

Figure 8 Execution time of SWf with ten tasks executed by five algorithms on different numbers
of VMs (see online version for colours)

These reasons lead to the enhancement:

1 In the running time of the experiments, FairScheduler spend amount of time on
movement of data block which cannot satisfy data-locality when tasks are scheduled
to data nodes.

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 131

2 PSO and IPSO require plenty of time to search for the optimal practicality in the
whole swarm every time they are run. The large amount of data movement in task
execution is the main reason for the increased cost of these three strategies.

3 Although FPSO policy reduces data movement by the data placement procedure,
workflow scheduling is still static and fails to search for the best VM to perform
tasks.

The proposed DQ-DCWS always chooses the correct VMs, not fast VMs, to run tasks.
The proposed approach is devoted to obtaining data locality and cost efficiency and to
finding the optimal solution faster than other algorithms.

Figure 9 Execution cost of SWf for ten tasks executed by five algorithms on different numbers of
VMs (see online version for colours)

Table 6 Comparison of DQ-DCWS with the other approaches in terms of three metrics
([(other approaches)-DQ-DCWS]/(other approaches) × 100

Performance metrics of
improvement percentage

MR FairScheduler
(%) PSO (%) IPSO (%) FPSO (%)

Execution time 26.5 11.5 7.1 6.1
Cost improvement 12.5 11.8 11.6 7.0

6 Conclusions

As the complexity of data-intensive applications has increased, SWf has emerged as an
important technology. In our work, we propose a novel DQ-DCWS approach for SWf
scheduling. Based on data locality, the efforts to improve the execution efficiency and
cost efficiency are validated when running data-intensive SWf on heterogeneous cloud
resources.

The SWf scheduling problem is modelled as an optimisation path issue. Five metrics
of QoS are selected to evaluate the length of the SWf path. A dynamic programming
method is employed to design an algorithm to choose an optimal path. The superiority of

 132 F. Ding and M. Ma

this algorithm’s performance over that of four other workflow scheduling methods is
demonstrated through real-life experiments. The proposed approach is better than the
others, with high efficiency for makespan and the cost of VM resources. In future work,
this approach can be applied to other real-life applications in big data architectures.

References
Afgan, E., Baker, D., Batut, B., Van den Beek, M., Bouvier, D., Čech, M., Chilton, J.,

Clements, D., Coraor, N., Grüning, B., Guerler, A., Hillman-Jackson, J., Jalili, V., Rasche, H.,
Soranzo, N., Goecks, J., Taylor, J., Nekrutenko, A. and Blankenberg, D. (2018) ‘The galaxy
platform for accessible, reproducible and collaborative biomedical analyses: 2018 update’,
Nucleic Acids Research, Vol. 46, No. W1, pp.W537–W544.

Alwidian, J.A. and Alaa Abdallat, A.A. (2019) ‘Hadoop MapReduce job scheduling algorithms
survey and use cases’, Modern Applied Science, Vol. 13, No. 7, pp.38–52.

APACHE (2022) Fair Scheduler [online] https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html
(accessed 29 September 2022).

Amazon.com (2022) Elastic Compute Cloud (EC2) [online] http://aws.amazon.com/ec2 (accessed
27 October 2022).

Arabnejad, H. and Barbosa, J.G. (2017) ‘Multi-QoS constrained and profit-aware scheduling
approach for concurrent workflows on heterogeneous systems’, Future Generation Computer
Systems, Vol. 68, No. 3, pp.211–221.

Bae, M., Yeo, S., Park, G. and Oh, S. (2020) ‘Novel data-placement scheme for improving the data
locality of Hadoop in heterogeneous environments: NA’, Concurrency & Computation
Practice & Experience, Vol. 33, No. 18, p.e5752.

Borthakur, D. (2008) HDFS Architecture Guide, HADOOP APACHE PROJECT [online]
http://hadoop.apache.org/common/docs/current/hdfsdesign.pdf.

Chen, W.N. and Zhang, J. (2012) ‘A set-based discrete PSO for cloud workflow scheduling with
user-defined QoS constraints’, 2012 IEEE International Conference on Systems, Man, and
Cybernetics (SMC).

Choi, D., Jeon, M., Kim, N. and Lee, B-D. (2018) ‘An enhanced data-locality-aware task
scheduling algorithm for Hadoop applications’, IEEE Systems Journal, Vol. 12, No. 4,
pp.3346–3357.

Davis, D.A.P., Plante, J.M., Chaniotakis, E., Guok, C. and Vokkarane, V.M. (2017) ‘Enhancing
ESnet’s OSCARS path computation engine’, GLOBECOM 2017 – 2017 IEEE Global
Communications Conference.

Dean, J. and Ghemawat, S. (2004) ‘MapReduce: simplified data processing on large clusters’,
Proceedings of Sixth Symposium on Operating System Design and Implementation
(OSD2004).

Deelman, E., Ferreira Da Silva, R., Vahi, K., Rynge, M., Mayani, R., Tanaka, R., Whitcup, W. and
Livny, M. (2021) ‘The Pegasus workflow management system: translational computer science
in practice’, Journal of Computational Science, Vol. 52, in press.

Deelman, E., Singh, G., Livny, M., Berriman, B. and Good, J. (2008) ‘The cost of doing science on
the cloud: the Montage example’, ACM/IEEE Conference on High Performance Computing,
Austin, Texas, USA, 15–21 November.

Dey, N. and Gunasekhar, T. (2019) ‘A comprehensive survey of load balancing strategies using
Hadoop queue scheduling and virtual machine migration’, IEEE Access, Vol. 7, No. 13,
pp.92259–92284.

Fan, D., Zhang, R., Ruan, K., Lin, J. and Zhao, Z. (2010) ‘A QoS-based scheduling approach for
complex workflow applications’, 2010 Fifth Annual ChinaGrid Conference, IEEE,
Guangzhou, China.

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 133

Fang, B. and Sun, L. (2018) ‘Cloud workflow scheduling optimization oriented to QoS and
cost-awareness’, Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems
CIMS, Vol. 24, No. 2, pp.331–348.

Gandomi, A., Reshadi, M., Movaghar, A. and Khademzadeh, A. (2019) ‘HybSMRP: a hybrid
scheduling algorithm in Had MapReduce framework’, Journal of Big Data, Vol. 6, No. 10,
p.106.

Garg, R. and Singh, A.K. (2014) ‘Multi-objective workflow grid scheduling using ε-fuzzy
dominance sort based discrete particle swarm optimization’, Journal of Supercomputing,
Vol. 68, No. 2, pp.709–732.

Guo, Z., Fox, G. and Zhou, M. (2012) ‘Investigation of data locality in MapReduce’, IEEE/ACM
International Symposium on Cluster Cloud & Grid Computing, pp.419–426.

Hu, C., Min, W., Liu, G. and Wen, X. (2007) ‘QoS scheduling algorithm based on hybrid particle
swarm optimization strategy for grid workflow’, Sixth international Conference on Grid and
Cooperative Computing, GCC 2007.

Hu, Z., Li, B., Chen, C. and Ke, X. (2018) ‘FlowTime: dynamic scheduling of deadline-aware
workflows and ad-hoc jobs’, IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), Vienna, Austria, pp.929–938.

Javanmardi, A.K., Yaghoubyan, S.H., Bagherifard, K., Nejatian, S. and Parvin, H. (2021) ‘A
unit-based, cost-efficient scheduler for heterogeneous Hadoop systems’, Journal of
Supercomputing, Vol. 77, No. 1, pp.1–22.

Kalia, K., Dixit, S., Kumar, K., Gera, R., Epifantsev, K., John, V. and Taskaeva, N. (2022)
‘Improving MapReduce heterogeneous performance using KNN fair share scheduling’,
Robotics and Autonomous Systems, Vol. 157, No. 12, pp.22–35.

Kasztelnik, M., Coto, E., Bubak, M., Malawski, M., Nowakowski, P., Arenas, J., Saglimbeni, A.,
Testi, D. and Frangi, A.F. (2017) ‘Support for Taverna workflows in the VPH-share cloud
platform’, Computer Methods and Programs in Biomedicine, Vol. 146, No. 2, pp.37–46.

Kaur, S., Bagga, P., Hans, R. and Kaur, H. (2019) ‘Quality of service (QoS) aware workflow
scheduling (WFS) in cloud computing: a systematic review’, Arabian Journal for Science and
Engineering, Vol. 44, No. 4, pp.2867–2897.

Kchaou, H., Kechaou, Z. and Alimi, A.M. (2022) ‘A PSO task scheduling and IT2FCM fuzzy data
placement strategy for scientific cloud workflows’, Journal of Computational Science,
Vol. 64, No. 2022, pp.1–13.

Kennedy, J.R.E. (1995) ‘Particle swarm optimization’, IEEE International Conference on Neural
Networks, Proceedings of ICNN’95 1942–1948.

Kim, H. and Kim, Y. (2018) ‘An adaptive data placement strategy in scientific workflows over
cloud computing environments’, NOMS IEEE/IFIP Network Operations & Management
Symposium.

Li, X., Jia, X. and Yun, Y. (2015) ‘A chaotic particle swarm optimization-based heuristic for
market-oriented task-level scheduling in cloud workflow systems’, Computational Intelligence
& Neuroscience, Vol. 2015, No. 3, pp.1–11.

Liu, Y., Wu, C.Q., Wang, M., Hou, A. and Wang, Y. (2018a) ‘On a dynamic data placement
strategy for heterogeneous Hadoop clusters’, 2018 International Symposium on Networks,
Computers and Communications (ISNCC).

Liu, Z., Xiang, T., Lin, B., Ye, X., Wang, H., Zhang, Y. and Chen, X. (2018b) ‘A data placement
strategy for scientific workflow in hybrid cloud’, 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), pp.556–563.

Lumley, J.A., Sharman, G., Wilkin, T., Hirst, M., Cobas, C. and Goebel, M. (2020) ‘A KNIME
workflow for automated structure verification’, SLAS Discovery, Vol. 25, No. 8, pp.950–956.

Lustre, A. (2015) Running Scientific Workflow Applications on the Amazon EC2 Cloud [online]
https://irsa.ipac.caltech.edu/Montage/publications/AstroinformaticsPoster2_final.pdf (accessed
9 September 2022).

 134 F. Ding and M. Ma

Manasrah, A.M. and Ali, H.B. (2018) ‘Workflow scheduling using hybrid GA-PSO algorithm in
cloud computing’, Wireless Communications and Mobile Computing, Vol. 2018, No. 1, p.16.

Mon, E.E., Thein, M.M. and Aung, M.T. (2017) ‘Clustering based on task dependency for
data-intensive workflow scheduling optimization’, Workshop on Many-Task Computing on
Clouds.

Mondelli, M.L.B., Magalhães, T.T., Loss, G., Wilde, M. and Gadelha, L.M.R. (2018)
‘BioWorkbench: a high-performance framework for managing and analyzing bioinformatics
experiments’, Peer J., Vol. 6, No. 1, p.e5551.

NASA (2010) Applications of Montage – Image Gallery [online] http://vaoweb3.ipac.caltech.edu/
gallery.html (accessed 15 March 2022).

Nasr, A., El-Bahnasawy, N., Attiya, G. and El-Sayed, A. (2018) ‘Cost-effective algorithm for
workflow scheduling in cloud computing under deadline constraint’, Arabian Journal for
Science and Engineering, Vol. 44, No. 4, pp.3765–3780.

Owsiak, M., Plociennik, M., Palak, B., Zok, T., Reux, C., Gallo, L.D., Kalupin, D., Johnson, T. and
Schneider, M. (2017) ‘Running simultaneous Kepler sessions for the parallelization of
parametric scans and optimization studies applied to complex workflows’, Journal of
Computational Science, Vol. 20, No. 2017, pp.103–111.

Qian, S., Romanus, M., Tong, J., Yu, H., Bremer, P.T., Petruzza, S., Klasky, S. and Parashar, M.
(2017) ‘In-staging data placement for asynchronous coupling of task-based scientific
workflows’, International Workshop on Extreme Scale Programming Models & Middlewar.

Qureshi, B. (2019) ‘Profile-based power-aware workflow scheduling framework for
energy-efficient data centers’, Future Generation Computer Systems – The International
Journal of eScience, Vol. 94, No. 2019, pp.453–467.

Rashmi, S. and Basu, A. (2016) ‘A. deadline constrained cost effective workflow scheduler for
Hadoop clusters in cloud datacenter’, International Conference on Computation System &
Information Technology for Sustainable Solutions.

Rashmi, S. and Basu, A. (2017) ‘Resource optimised workflow scheduling in Hadoop using
stochastic hill climbing technique’, IET Software, Vol. 11, No. 5, pp.239–244.

Reddy, K.H.K. and Roy, D.S. (2018) ‘DPPACS: a novel data partitioning and placement aware
computation scheduling scheme for data-intensive cloud applications’, Computer Journal,
Vol. 59, No. 1, pp.64–82.

Reddy, K.H.K., Pandey, V. and Roy, D.S. (2019) ‘A novel entropy-based dynamic data placement
strategy for data intensive applications in Hadoop clusters’, International Journal of Big Data
Intelligence, Vol. 6, No. 3, pp.20–37.

Seethalakshmi, V., Govindasamy, V. and Akila, V. (2020) ‘Real-coded multi-objective genetic
algorithm with effective queuing model for efficient job scheduling in heterogeneous Hadoop
environment’, Journal of King Saud University – Computer and Information Sciences,
Vol. 34, No. 6, pp.3178–3190.

Service, F.R. (2012) ‘Materials scientists look to a data-intensive future’, Science, Vol. 335,
No. 6075, pp.1434–1435.

Seth, S. and Singh, N. (2020) ‘Multi-QoS enhanced heuristic model for scheduling of scientific
workflows’, International Journal of Entific & Technology Research, Vol. 9, No. 33,
pp.202–210.

Singh, P.V., Kaur, A. and Singh, M. (2018) ‘Heuristic data placement and replication for scientific
workflow in cloud computing’, 2017 International Conference on Intelligent Computing and
Control Systems (ICICCS).

Soualhia, M., Khomh, F. and Tahar, S. (2020) ‘A dynamic and failure-aware task scheduling
framework for Hadoop’, IEEE Transactions on Cloud Computing, Vol. 8, No. 2, pp.553–569.

Thingom, C., Ganesh, K.R. and Yeon, G. (2018) ‘Workflow scheduling using heuristic scheduling
in Hadoop’, Journal of Information & Communication Convergence Engineering, Vol. 16,
No. 4, pp.264–270.

 Data locality-aware and QoS-aware dynamic cloud workflow scheduling 135

Tong, S. and Wu, C.Q. (2017) ‘Performance optimization of Hadoop workflows in public clouds
through adaptive task partitioning’, IEEE Infocom – IEEE Conference on Computer
Communications.

Vengadeswaran, S. and Balasundaram, S.R. (2019) ‘CORE – an optimal data placement strategy in
Hadoop for data intensive applications based on cohesion relation’, International Journal of
Computer Systems Science & Engineering, Vol. 34, No. 1, pp.47–59.

Verma, A. and Kaushal, S. (2014) ‘Bi-criteria priority based particle swarm optimization workflow
scheduling algorithm for cloud’, Engineering & Computational Sciences.

Wang, J., Shang, P. and Yin, J. (2013) ‘DRAW: a new Data-gRouping-AWare data placement
scheme for data intensive applications with interest locality’, IEEE Transactions on
Magnetics, Vol. 49, No. 6, pp.2514–2520.

Wang, Y., Cao, S., Guan, W., Zhen, F. and He, G. (2017) ‘Fairness scheduling with dynamic
priority for multi workflow on heterogeneous systems’, 2017 IEEE 2nd International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA).

White, T. (2010) Hadoop: The Definitive Guide, O’Reilly Media.
Wu, J.X., Zhang, C.S., Zhang, B. and Wang, P. (2016) ‘A new data-grouping-aware dynamic data

placement method that take into account jobs execute frequency for Hadoop’,
Microprocessors & Microsystems, Vol. 47, No. 1, pp.161–169.

Wu, Z., Ni, Z., Gu, L. and Xiao, L. (2011) ‘A revised discrete particle swarm optimization for
cloud workflow scheduling’, International Conference on Computational Intelligence &
Security.

Wylie, A., Shi, W., Corriveau, J.P. and Wang, Y. (2016) ‘A scheduling algorithm for Hadoop
MapReduce workflows with budget constraints in the heterogeneous cloud’, IEEE
International Parallel & Distributed Processing Symposium Workshops.

Xu, J. and Yong, T. (2015) ‘Improved particle optimization algorithm solving Hadoop task
scheduling problem’, 2nd International Conference on Intelligent Computing and Cognitive
Informatics (ICICCI 2015).

Ye, Q., Wu, C.Q., Cao, H., Rao, N.S.V. and Hou, A. (2018) ‘Storage-aware task scheduling for
performance optimization of big data workflows’, 16th IEEE ISPA/17th IEEE IUCC/8th IEEE
BDCloud/11th IEEE SocialCom/8th IEEE SustainCom.

Zhang, J., Tan, W., Alexander, J., Foster, I. and Madduri, R. (2011) ‘Recommend-as-you-go: a
novel approach supporting services-oriented scientific workflow reuse’, 2011 IEEE
International Conference on Services Computing (SCC).

Zhang, Q., Zhani, M.F., Yang, Y., Boutaba, R. and Wong, B. (2017) ‘PRISM: fine-grained
resource-aware scheduling for MapReduce’, IEEE Transactions on Cloud Computing, Vol. 3,
No. 2, pp.182–194.

Zheng, H., Dongjin, Y.U., Zhang, L., Computer, S.O. and University, H.D. (2017) ‘Multi-QoS
cloud workflow scheduling based on firefly algorithm and dynamic priorities’, Computer
Integrated Manufacturing Systems, Vol. 23, No. 5, pp.963–971.

Zhou, C.J., Zong, P. and Computer, S.O. (2019) Improvement of Backup Data Placement Policy of
Hadoop, Nanjing University of Posts and Telecommunications, PhD.

