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Abstract:  Hadoop has become a popular data-parallel computing framework 
for data-intensive scientific applications in recent years. Most scientific 
applications employ workflows to portray procedures and dependencies 
between jobs. However, the current default scheduling policy in Hadoop does 
not take data locality into account. The movement of data among virtual 
machines (VMs) produces latency in workflow scheduling. In addition, the 
heterogeneous and dynamics of cloud resources cannot satisfy the user’s 
demand for quality of service (QoS) in static workflow scheduling. Hence, we 
propose a data locality-aware and QoS-aware dynamic cloud workflow 
scheduling algorithm (DQ-DCWS) based on dynamic programming. The 
algorithm balances data locality and delays by grouping nodes that hold tasks 
correlated with data blocks. We consider five QoS factors and normalise them 
as a path optimisation issue to realise maximum QoS. DQ-DCWS is 
implemented and validated by running Montage workflow on real Hadoop 
clusters which are deployed on Amazon EC2. 
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1 Introduction 

In the era of big data, data-intensive applications have attracted substantial attention from 
researchers in a diverse range of fields, such as environmental science (Davis et al., 
2017), astronomy, bioinformatics (Mondelli et al., 2018) and materials science (Service, 
2012). Scalability and large-scale resources provided by the cloud enable data-intensive 
application efficiency. Scientists usually employ science workflow (SWf) in  
data-intensive applications. SWf is a flexible tool that acquires and conducts a complex 
analysis of scientific data, including sensor data, medical images, simulator outputs, 
satellite images, and various observation data. SWf automatically composes and performs 
a complex analysis of distributed resources for data-intensive applications in cloud 
computing. There are many popular SWf systems, such as Pegasus (Deelman et al., 
2021), KNIME (Lumley et al., 2020), Galaxy (Afgan et al., 2018), Kepler (Owsiak et al., 
2017), Taverna (Kasztelnik et al., 2017), and Triana (Zhang et al., 2011). These workflow 
systems aim to automate scientists’ complex work in the computing environment and 
release them from the bondage of tools and computation skills. 

In the cloud computing environment, data-intensive applications must cope with 
many challenging and crucial issues. Users submit a data analytics job on a workflow 
system, and then, the job is decomposed into many tasks that are scheduled on separate 
virtual machines (VMs). Importantly, large scale data processing demands a parallel 
programming framework. Hadoop (White, 2010) is an open-source framework developed 
by Apache for the storage and processing of large datasets that employ MapReduce 
(Dean and Ghemawat, 2004) to parallel computing jobs with the datasets. Hadoop has 
been deployed in many leading companies (e.g., Facebook, Yahoo and Baidu), mainly for 
big data applications such as data indexing, web analytics, document processing, etc. It 
can be built quickly on hundreds of nodes and enables highly scalable big data processing 
architectures. 

Hadoop Mapreduce Version 2 (Hadoop Yarn) is currently Hadoop framework 
including resource manager, application master and node manager. Yarn schedule 
Mapreduce job on Hadoop distributed file system (HDFS) which consists of one 
NameNode (NN) as master and many DataNodes (DN) as workers. MapReduce executes 
a set of map and reduce tasks concurrently to improve the execution efficiency on DN. 
The resource manager runs on NN that manages all nodes, including master nodes and 
worker nodes, and maintains a scheduler to allocate tasks to idle nodes. 
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Figure 1 Hadoop MapReduce scheduling and data locality (see online version for colours) 

 

The scheduling procedure is shown in Figure 1. While starting a job on Hadoop, the 
application master schedules the tasks to worker nodes from a task queue, and the node 
manager monitors the running state of the tasks by heartbeat information (represented as 
red hearts in Figure 1). The NN reports the slot information, which refers to whether a 
node has a place to run a new task on the VM. The Hadoop scheduler is based on the slot, 
which is configured to run map/reduce tasks concurrently. The number of slots on a node 
is limited by default, as two consist of one map slot and one reduced slot. Slots are 
occupied by tasks one by one until no slots are available. Meanwhile, the DN periodically 
sends a heartbeat, which tells the status of the current DN to the NN. Once the node has 
an idle slot, the idle slot pulls a task from the job queue. Hadoop divides input files into 
one or more data blocks that are configured as the default 128 MB for each block. Data 
locality is an important factor in the scheduling process. Data locality indicates that a task 
is scheduled on a node that places its correlated data block. Optimal scheduling ensures 
data locality. The idle slot gives priority to the task which is correlated to the data blocks 
placed on the node. If the slot cannot find that kind of task, then the task-correlated data 
blocks will be moved to the node to be executed so that the result will be delayed, which 
means that data locality at the node level is not implemented. As shown in Figure 1, the 
two tasks on DN2 realise data locality. However, DN3 needs to pull the data block 
correlated with task t2 from DN1. Thus, the lack of data locality leads to additional data 
migration time and communication cost on cloud resources. Therefore, current 
MapReduce scheduling is not optimal in heterogeneous cloud environments. Two factors 
contribute to the lack of data locality in the current Hadoop implementation: 

1 The default data placement policy in Hadoop is simple and random (Borthakur, 
2008) and does not place correlated data blocks on different nodes. If all correlated 
data are placed on the same node, then some tasks must wait for the other running 
tasks to be completed when there are multiple tasks to be performed. 

2 The scheduling policy in MapReduce includes FifoScheduler, FairScheduler and 
CapacitySchedule (Dean and Ghemawat, 2004). Although these algorithms can 
realise fair and capacity scheduling, they cannot ensure data locality. As shown in 
Figure 1, when DN1 has an idle slot and sends heartbeat information to the NN, the 
NN first look for a task that has a correlated data block placed on DN1. However, the 
remaining two tasks in the task queue are not related to the data block in DN1. Thus, 
the NN randomly selects a task and allocates it to DN1. Data locality is not realised. 
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Cloud SWf scheduling must consider not only data locality but also other factors, 
including system workload, overall fairness and the communication cost produced by 
intermediate data between two related tasks. Moreover, the heterogeneity of VM 
resources leads to a different quality of service (QoS) for cloud nodes. Traditional SWf 
scheduling uses static scheduling approach, which can find the most optimal scheduling 
solution in the homogeneous resource environment. However, it becomes no longer 
applicable in heterogeneous cloud resource environments where multi-QoS requirements 
are considered. According to the above mentioned arguments, the SWf scheduling of 
Hadoop in a heterogeneous environment faces the following challenges. 

1 How to achieve data locality in workflow scheduling and minimise the latency from 
data movement? 

2 How to dynamically select VM resources to achieve the optimal workflow 
scheduling? 

3 How to minimise the cost of cloud resources while maintaining the QoS in wrokflow 
scheduling? 

In our work, we propose a novel approach, data locality-aware and QoS-aware dynamic 
cloud workflow scheduling (DQ-DCWS), which considers the data locality and QoS of 
VMs in heterogeneous environments based on a dynamic programming method.  
DQ-DCWS balances data locality and latency by grouping nodes that hold correlated data 
blocks with tasks. We model the issue as a path optimisation to realise the maximum 
QoS. We implement and validate a dynamic cloud scheduling algorithm by running a real 
workflow on deployed Hadoop clusters over Amazon Elastic Compute Cloud (EC2) 
(Amazon.com, 2022). 

The rest of the paper is organised as follows. Section 2 provides the important related 
works. Section 3 details problem definition for SWf and data locality in Hadoop.  
Section 4 presents details for the proposed data locality-aware and QoS-aware dynamic 
cloud workflow scheduling. Section 5 presents detailed algorithm comparisons and 
experimental analysis. Followed by the conclusions and future directions in Section 6. 
Finally, the conclusions and future work are included in Section 6. 

2 Related works 

A wide variety of research has addressed optimisation of Hadoop scheduling through 
different aspects, including cost-effective workflow scheduling (Rashmi and Basu, 2016; 
Fang and Sun, 2018; Nasr et al., 2018; Thingom et al., 2018; Javanmardi et al., 2021), 
performance optimisation based on task partitioning (Tong and Wu, 2017; Zhang et al., 
2017), storage-aware workflow scheduling (Ye et al., 2018), and multi-QoS constrained 
workflow scheduling (Zheng et al., 2017; Arabnejad and Barbosa, 2017; Seth and Singh, 
2020; Qureshi, 2019). Other methods (Xu and Yong, 2015; Rashmi and Basu, 2017; 
Alwidian and Alaa Abdallat, 2019; Dey and Gunasekhar, 2019; Gandomi et al., 2019; 
Seethalakshmi et al., 2020; Kalia et al., 2022) apply existing optimisation algorithms to 
improve scheduling efficiency. One of the most widely used algorithms is the particle 
swarm optimisation (PSO) algorithm (Fang and Sun, 2018; Garg and Singh, 2014; Hu  
et al., 2007; Li et al., 2015; Verma and Kaushal, 2014; Wu et al., 2011; Kchaou et al., 
2022), which is an evolutionary algorithm based on swarm intelligence theory. The PSO 
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(Kennedy, 1995) algorithm modifies the velocity and position of the particles by 
acquiring the relevant memory particles. In workflow scheduling, PSO enables fast 
convergence and has the advantage of being both simple and effortless. 

This work focuses on the data locality and heterogeneity of the resources mentioned 
in introduction. Two main aspects are considered to improve the overall performance of 
SWf scheduling in cloud. 

2.1 Data placement strategy 

An appropriate data placement strategy can reduce the scheduling overhead. The 
objective of the data placement policy is to place correlated task data on different nodes 
in a heterogeneous environment. In a previous study (Wang et al., 2013); a DRAW 
scheme considering data grouping semantics was developed. Data grouping refers to data 
that can be accessed simultaneously. The frequency of access is proportional to the 
correlation of the data. A matrix is employed to model the correlation of the data. The top 
two groups of correlated data are computed by converting them into a clustering matrix. 
This method maximises the even distribution of correlated data and balances the storage 
loads. Another work (Wu et al., 2016) has made an improvement based on that proposed 
in Wang et al. (2013), which concerns the execution frequency of jobs. However, the 
authors ignore the fact that tasks need to wait for occupied slots and whether running 
tasks are related to the blocks of the same grouping data in the operation peak period. 
There are many idle slots waiting for another group of correlated data. Thus, the 
procedure produces disuse and wastes resources. Singh et al. (2018) proposed a data 
placement technique for fixed and non-fixed datasets in a cloud environment that 
improves the overall makespan time for workflow execution. Kim and Kim (2018) 
proposed an adaptive data placement strategy considering dynamic resource changes for 
efficient data-intensive applications. Another work (Qian et al., 2017) presented an 
adaptive data placement approach that dynamically adjusts to asynchronous coupling 
patterns. This approach places data across a set of staging nodes with an awareness of the 
application-specific data locality requirements and runtime task executions at these 
staging nodes. 

Most Hadoop-based systems make block-data distribution and resource allocation 
independent. A scheduling scheme (DPPACS) (Reddy and Roy, 2018) exploits 
knowledge of data availability at different clusters. A dynamic data placement strategy 
(DDPS) has been proposed to obtain the best location for new replicas according to their 
hotness (Liu et al., 2018a). The method is able to allocate data replicas dynamically and 
reduce the response time in a heterogeneous environment. The strategy presented in 
Vengadeswaran and Balasundaram (2019) redistributes data blocks to produce an optimal 
data placement after dynamically analysing the history log and establishing the 
relationship between various tasks and blocks required for each task through a block 
dependency graph (BDG). An entropy-based grouping technique was investigated in 
Reddy et al. (2019). The authors grouped datasets with the most similar existing clusters 
based on their relative entropy. Another data placement strategy (Bae et al., 2020) in 
Hadoop preserves the same degree of data locality with a small number of replicas, which 
select and copy only the data blocks that is most likely to be accessed remotely. 

There is also a situation in which an input split consists of many data blocks that are 
distributed in different nodes. Increasing the data block replication frequency will slow 
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down overall performance. Choi et al. (2018) classified data locality by considering the 
locations of all data blocks that contain an input split and categorising tasks. 

2.2 Workflow scheduling policies 

Most workflow scheduling works to optimise efficiency assuming that cloud services are 
homogeneous. However, in heterogeneous environments, the data blocks of the Hadoop 
clusters are allocated equally to all nodes without considering the different capabilities of 
individual nodes. This situation results in low performance in Hadoop scheduling. The 
existing static algorithms are unable to resolve issues in heterogeneous environments. 
Guo et al. (2012) proposed a static workflow scheduling algorithm, lsap-sched that 
allocates all tasks on idle slots. Lsap-sched weighs each task slot according to whether it 
has correlational data, and then, it computes the task slot of minimising the weight with a 
transferred matrix model. At the beginning of the scheduling period, it shows high 
performance due to the large number of unscheduled tasks and idle slots, so data locality 
is obtained. However, the superiority of the algorithm is not obvious when heavy tasks 
need to be scheduled, because few slots are idled. Therefore, it is important to balance 
data locality and scheduling latency. Mon et al. (2017) presented a clustering  
method-based task dependency to reduce execution overhead and improve the 
computational granularity of SWf tasks. In Wylie et al. (2016), both an optimal and a 
heuristic approach to satisfy the minimum makespan and a given budget constraint on the 
Hadoop MapReduce platform were employed. Zhou et al. (2019) selected the node as the 
optimal node with the highest matching degree, which considers the distance among 
nodes, the load of nodes and the number of backup data recoveries. This strategy realises 
load balancing and considers the internal bandwidth consumed during data recovery. Liu 
et al. (2018b) proposed an adaptive discrete PSO algorithm based on a genetic algorithm 
to decrease the number of data transmissions across data centres. Furthermore, in 
Manasrah and Ali (2018), a hybrid GA-PSO algorithm to allocate tasks to resources 
efficiently was proposed. The algorithm aims to reduce the makespan and cost. 

Some of the most recent related studies are based on dynamic SWf scheduling 
methods. In one article (Soualhia et al., 2020), the researchers presented a dynamic and 
failure-aware framework that can be integrated within the Hadoop scheduler and adjust 
the scheduling decisions based on collected information about the cloud environment. Hu 
et al. (2018) provided a framework designed to make scheduling decisions for workflows 
to meet deadlines and simultaneously optimises the performance of ad hoc jobs. Wang  
et al. (2017) proposed a workflow scheduling algorithm with a dynamic priority focus on 
deadlines to achieve more reasonable fairness. 

As shown in Table 1, the related work have be divided into two categories, one only 
taking into account data placement (Wang et al., 2013; Wu et al., 2016; Singh et al., 
2018; Kim and Kim, 2018; Qian et al., 2017; Reddy and Roy, 2018; Liu et al., 2018a; 
Vengadeswaran and Balasundaram, 2019; Reddy et al., 2019; Bae et al., 2020) and the 
other including workflow scheduling like (Choi et al., 2018; Guo et al., 2012; Mon et al., 
2017; Wylie et al., 2016; Manasrah and Ali, 2018; Soualhia et al., 2020; Hu et al., 2018; 
Wang et al., 2017). A few literatures consider the two aspects simultaneously (Kchaou  
et al., 2022; Liu et al., 2018b; Zhou et al., 2019). 

Different from the existing work, we investigate the workflow scheduling procedure 
rests on data placement based on data-locality in addition to QoS in heterogeneous 
environments of Hadoop-based systems. Besides, in the proposed strategy, more attention 
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is drawn to dynamic scheduling based on dynamic programming algorithm instead of 
approaches based on static scheduling, which dynamic plan the optimal path in workflow 
scheduling to minimise the SWf cost and execution time. 
Table 1 Research on data placement strategy and scheduling policies of Hadoop workflow 

scheduling 

Approach Metrics (QoS) Data 
placement Dynamic Optimisation objectives 

FPSO (Kchaou et al., 
2022) 

Volume of data 
transfer 

√ × Reducing the data 
transmission cost 

DRAW (Wang et al., 
2013) 

Storage loads √ × Achieve the maximum 
parallelism per  
data-group DGAD (Wu et al., 2016) Makespan time 

Heuristic data placement 
(Singh et al., 2018) 

Overhead √ × Access data at the lowest 
cost of data transfer 

Adaptive data placement 
(Kim and Kim, 2018; 
Qian et al., 2017) 

Makespan √ × Reduce data movement in 
workflow 

DPPACS (Reddy and 
Roy, 2018) 

Execution time √ × Improving computation and 
data availability 

DDPS (Liu et al., 2018a) Execution time √ √ Dynamically adjust replicas 
location according to 
hotness 

CORE (Vengadeswaran 
and Balasundaram, 
2019) 

Execution time √ × Optimise data placement 
based on relationship 
between tasks and blocks 

Entropy-based data 
placement (Reddy et al., 
2019) 

Overhead √ √ Grouped datasets with the 
most similar existing 
clusters. 

Data-placement scheme 
(Bae et al., 2020) 

Overhead √ × Preserves same degree of 
data locality with a small 
number of replicas. 

Data-locality scheduling 
(Choi et al., 2018) 

Makespan - × Classified data locality 

Lsap-sched (Guo et al., 
2012) 

Execution time - × Schedules multiple tasks 
simultaneously to give 
optimal data locality 

Clustering method (Mon 
et al., 2017) 

Overhead - × Clustering method-based 
task dependency 

Budget-constrained 
scheduling (Wylie et al., 
2016) 

Makespan 
Budget 

constraint 

- × Minimise workflow 
makespan while satisfying 
a given budget constraint. 

Backup data placement 
policy (Zhou et al., 
2019) 

Load balancing √ × Reduce the internal 
bandwidth 

Adaptive discrete PSO 
algorithm (Liu et al., 
2018b) 

Volume of data 
transfer 

√ × Decrease the number of 
data transmissions across 
data centres. 
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Table 1 Research on data placement strategy and scheduling policies of Hadoop workflow 
scheduling (continued) 

Approach Metrics (QoS) Data 
placement Dynamic Optimisation objectives 

Hybrid GA-PSO 
algorithm (Manasrah 
and Ali, 2018) 

Makespan and 
cost 

- × Allocate tasks to resources 
efficiently 

ATLAS+ (Soualhia et 
al., 2020) 

Failure 
execution time 

- √ Dynamically detect the 
failures of the TaskTracker 

FlowTime (Hu et al., 
2018) 

Deadlines - √ Simultaneously optimises 
the performance of ad hoc 
jobs 

FSDP(Wang et al., 
2017) 

Deadlines - √ Achieve more reasonable 
fairness 

3 Problem definition and statement 

3.1 Cloud data-intensive SWf in Hadoop 

Cloud SWf can be described as direct acyclic graphs (DAGs) G = <V, E>, which consist 
of a series of tasks (vertex) V = <v1, v2, …, vn> and relationships of tasks (edges)  
E = <ei, j| <vi, vj> ∈ E>. Each vertex vi represents a computing task in the workflow, and 
each edge ei, j indicates that vj depends on vi in the workflow. In our work, we consider 
only a branch data flow in a workflow since we focus on task scheduling and data 
placement, as shown in Figure 1. These tasks represent either map tasks or reduce tasks 
that perform several jobs in Hadoop. The edge relationship matrix 
workflowDataTransferMap[][] represents the data flow and dependencies between the 
forward task and backward task (if workflowDataTransferMap[i][j] > 0, then task vi 
needs to transfer intermediate data to task vj). 

Figure 2 Cloud workflow in Hadoop 

 

Each data block has several replicas placed on the other nodes to ensure reliability. In our 
workflow shown in Figure 2, Di represents the task-correlated data block, which is placed 
on three nodes according to the data block replica placement method in Hadoop (White, 
2010). 

The full set of notations employed in figures of this work is shown in Table 2. 
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Table 2 Notations 

Symbol Notation 
Jobi Job in workflow 
Taski Map task or reduce task 
Di Data block correlated task in Hadoop 
Nodei VM node in cloud 
Racki Rack of storage VM nodes 
RiNj Node j on rack i 
ith 
stage 

A stage including a group of nodes that can complete Taski and edges connected with 
nodes of previous stage in workflow 

Sij Node j in stage i, corresponds to RiNj 

3.2 Rack-level replica placement method 

In Hadoop, scheduling can be realised at the node level and rack level. Rack-level 
scheduling is shown in Figure 3. Data block replica placement follows the following 
steps: 

1 The first block replica is placed on the node neighbouring the raw data block in the 
same rack. 

2 The second replica is placed on a node in the rack neighbouring the first one. 

Figure 3 Rack-level scheduling and data placement based on the data block replica placement 
method 

 

3.3 Hadoop task scheduling and data locality 

A task should be scheduled on a node close enough to the data block associated with the 
task to reduce communication latency caused by data movement. Rack-level scheduling 
is considered to place data blocks and replicas, as shown in Figure 3. Five nodes are 
distributed in the three racks. We place the data blocks and replicas of six tasks according 
to the replica placement method described in Section 3.2. Considering the task 
dependencies in the workflow, we distribute the task-correlated data blocks and the 
replicas on five nodes in turn for the maximum data locality. 
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4 The proposed method (DQ-DCWS) 

The objective of the DQ-DCWS scheduling method is to minimise communication 
latency by ensuring the data locality and cost of cloud resources. Considering the 
dynamics and heterogeneity of cloud resources, a dynamic workflow scheduling method 
is proposed by the following steps: 

Step 1 Construct a model of the optimal path for SWf. 

Step 2 Establish a QoS model for the path length between two nodes in the optimal 
path. 

Step 3 Design a DQ-DCWS algorithm based on dynamic programming. 

4.1 Optimisation path model of cloud workflow 

First, the scheduling process is transformed into a problem of how to choose an optimal 
path. As shown in Figure 4, RiNj, the jth VM on the ith rack, is a cloud node. To maximise 
data locality, the nodes that hold correlated data blocks for the same task are divided into 
a group according to Figure 3. For example, data block D1 which is correlated with 
Task1 place on three nodes (R1N1, R1N2 and R2N3). All the three nodes that are 
capable of performing Task1 are put into the same group. Thus, six tasks, which depend 
on each other, produce six groups in the workflow. Workflow scheduling selects one 
node from a group of nodes to execute the task. A start node, B, is added on the left, and 
an end node, F, is added on the right, as shown in Figure 5. The workflow scheduling 
problem in the work can be resolved as follows: 

1 How can a node be selected from a group of nodes to execute a task? 

2 Which factors determine the length of the optimal path from one node to another? 

3 Which is the optimal path from B to F? 

Figure 4 Optimisation path model (different colours refer to nodes from VM resources with 
different performance in the cloud environment) (see online version for colours) 

 

4.2 QoS model for the length of the path between two nodes 

To answer problems 1 and 2, the QoS of nodes and the communication cost between two 
nodes are considered to evaluate the path length of two neighbouring groups. Several 
QoS metrics are chosen based on our objective: VM cost, resource utilisation, response 
time, execution time and communication time. 
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The equation (1) demonstrates that the total cost of task i matching execution on a 
VM. The VM cost on task i include the execution cost of task i [equation (2)] and the 
data transfer cost from task i to other task [equation (3)]. 

[ ] [ ] +VMCost i TaskCost i TaskDataTransferCost=  (1) 

[ ] [ ] /TaskCost i TaskMI i vmMips vmPerCost= ∗  (2) 

[ ][ ] [ ][ ] [ ][ ]TaskDataTransferCost i j workFlowDataTrans i j vmTransferCost i j= ∗  (3) 

As for the equation (2), TaskMI[i] indicates runtime (mips) of task i in workflow 
scheduling. vmMips is the CPU capability of VM allocated to task i. So, TaskMI[i]/ 
vmMips get a cost length of task i. For each VM, a parameter vmPerCost denote the 
execution cost of VMware in unit time (mips/s) that set by cloud computing providers. 

In addition to the execution cost of the task, on the workflow path, the data transfer 
cost of the intermediate result data which transfer to the next task after the task is 
completed needs to be calculated. As shown in equation (3), this value is computed by 
the volume of data transfer from node i to node j (workFlowDataTrans[i][j]) and the 
transfer cost between two VMs allocated to task i and task j (vmTransferCost[i][j]). 

The costs mentioned in the above three equations refer to that users pay for 
scheduling their workload on the cloud VM resources (Kaur et al., 2019), including 
computing, storage and communication costs, computed by equation (4) 

+ +Cost computing storage commuC=  (4) 

The second QoS metric is VM resource utilisation VMRu demonstrated in equation (5). It 
defines the usage of VM resources that are provided to the users for scheduling the 
workload [22], calculated from the ratio of usage time (ut) to total occupancy time (tot) 
for VM in cloud. 

/VMRu ut tot=  (5) 

The third metric VMR (VM response time) defines the time duration between the arrival 
of a task and the completion of a task [27] on VM nodes. Similarly, the fourth VME (VM 
execution time) defines the completion time that the task runs on VM nodes [18]. The last 
one VMC (VM communication time) defines the task communication time between two 
VMs. It should be noted that we consider communication time not only at the node level 
but also the rack level. 

The above five QoS metrics are chosen to evaluate the service quality of the VM 
resources in the cloud. Various dimensions of the five metrics need to be normalised. Our 
works employ a simple (0, 1) normalisation method as equation (6), where NVi is the 
normalised value of the i(th) metric in above five QoS metrics of VM V, and QVi is the 
QoS of the i(th) metric of VM V. Qimin is the minimum value of the i(th) metric of the 
VMs in a cloud data centre, and Qimax is the maximum value. These metrics include 
negative metrics and positive metrics, which are processed separately. For example, VM 
cost is a negative metric, and it is expected to obtain the minimum value. 
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After normalising each metric described above, the comprehensive QoS value QoSV of 
VM V is computed as equation (7), where Wj is the weight of the j(th) metric. 

( )
5

1
jV V j

j

QoS N W
=

= ×  (7) 

4.3 DQ-DCWS algorithm 

The DQ-DCWS approach is based on dynamic programming that converts complex 
problems into multilevel decision issues and then recursively invokes sub problems (Fan 
et al., 2010). The sub problem is calculated only once, and the result will be preserved in 
‘memorisation’. The algorithm reuses the result of ‘memorisation’ so that the sacrificed 
space is used to improve efficiency. DQ-DCWS adopts the forward dynamic 
programming method. 

4.3.1 Dynamic programming schema 
The cloud SWf is described as a DAG which begins with ‘B’ and ends with ‘F’, as shown 
in Figure 5, is converted from Figure 4. The DAG includes nodes and edges. For 
example, in {S11, S12, …., Sij}, the nodes in same group of VMs can execute a task and 
ensure data locality. Node Sij represents the j(th) VM in the i(th) group, meaning that the 
i(th) task in SWf is scheduled on the j(th) VM. The edges can be represented as {(S11, 
S21), …… (S(i–1)(j), S(ij))}. 

Each group of VMs and the edges from the previous group are added to the current 
group to be a stage, so the DAG shown in Figure 5 obtains seven stages. When choosing 
a node from the next stage, the data transfer time between nodes at the rack level and the 
heterogeneity of cloud VM resources should be considered. In addition, the intermediate 
data are generated by the SWf, in which there are dependencies between tasks. The 
migrations of intermediate data lead to different communication costs among the nodes of 
the two racks. 

An edge in the SWf DAG is from a VM node xn in the n(th) stage to the i(th) node  
S(n–1)i in the (n – 1)th stage. The value of an edge composed of ( 1) ,andn n ix s nQoS Comm −  is 
shown in formula (8). nxQoS  quantifies the QoS of xn according to formula (7), and 

( 1) ,n is nComm −  is the communication cost between S(n–1)i and xn, which is also quantified by 
formula (6). 

( 1) ,( 1) , +n n n i nx s xn iWs QoS Comm −− =  (8) 
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Figure 5 DQ-DCWS approach adopts the forward dynamic programming method 

 

4.3.2 Algorithm design 
DQ-DCWS considers two main aspects: minimising the SWf cost and the execution time. 
First, a cost function is given by the algorithm presented in Section 4.2. The SWf DAG is 
initialised, including workflow tasks and VMs as the inputs. In the workflow, we 
consider the length of the tasks as workflowExecutionMI and the data transfer map 
relation as workFlowDataTrans [][]. The input data of the VM resources have three 
parameters: vmMips, which represents the computing capability of vm; vmExecutionCost; 
and vmTransferCost[][]. Therefore, the objective of optimisation is to maximise the 
length of the SWf DAG, which is formulated as (9). To schedule tasks on VMs 
dynamically, DQ-DCWS looks for the length f(xn) from the initial node ‘B’ to the current 
node xn, as described in formula (9). 

( ) ( )( 1) ( 1) ,+ xn n i n i nf x f S Ws− −=     (9) 

where xn is a node in the nth stage, S(n–1)i is the ith node in the previous (n – 1)th stage, and 
f(S(n–1)i) represents the maximum length from node ‘B’ to node S(n–1)i in the previous 
stage. Additionally, the communication ( 1) ,xn i nWs −  between xn and S(n–1)i in f(xn) is 
considered. 

The procedure of the DQ-DCWS algorithm based on the dynamic programming is 
shown in Table 3. 

The DQ-DCWS algorithm includes two steps. In the OptimalWorkflow(G) step, 
using the QoS model and cost function described in Section 4.2, the length of the edge in 
the DAG with the input is calculated. The VM combination with the longest path is the 
VM combination that produces the maximum QoS, which refers to the efficiency of 
execution and the cost of workflow scheduling. The algorithm recursively calculates f(xn) 
one time for each node in the DAG. This calculation is performed by using memorisation 
to preserve the value of f(xn). The second step schedules workflow tasks along the 
optimal path obtained by the first step. This approach decreases the delay of scheduling 
tasks on heterogeneous resources. 

4.4 Flowchart of DQ-DCWS 

Figure 6 shows the flowchart of the optimal workflow of the DQ-DCWS approach. The 
procedure begins with B and recursively computes the length of path (n) to achieve the 
maximum length in each stage until node F is reached. The longest path (n) and output 
memory are employed in the workflow scheduling. 



   

 

   

   
 

   

   

 

   

   126 F. Ding and M. Ma    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 3 DQ-DCWS algorithm 

Algorithm DQ-DCWS 
1 OptimalWorkflow(G): 
Input: an Workflow DAG G (n tasks, m VMs), a set of available VM nodes S, the weight of the 
edge from node i to node j Wij, Beginning node B, Finish node F, 
Output: VM list in the longest path from B to F vms_optimal[], the optimal path from xn to the 
finish node f(xn), the previous node of xn in the (n – 1)th stage on the optimal path P(xn) 
xn: one node of stage n 
Sni: VMware node i in stage n 
memorisation(n)(i): (the length of the optimal path from node Sni to finish node) 
1: Set xn = B 
2: for each stage n in G do 
3:  if memorisation(n)(xn) !=0 then 
4:   f(xn) ← memorisation(n)(xn) 
5:  else 
6:   for each S in stage (n – 1) do 
7:    select S(n–1)i from {S(n–1)1, S(n–1)2, … S(n–1)m} 
    ( ) ( )( 1) ( 1)( 1) , ( 1),. : + max +x xn i nn i n n ns t f S Ws f x Wx− −− −   ==     

8:    ( ) ( )( 1) ( 1) ,+ xn n i n i nf x f S Ws− − ←    

9:    P(xn) ← S(n–1)i and memorisation(n)(xn) ← f(xn) 
10:   vms_optimal[n – 1]= S(n–1)i 
11:  end if 
12: end for 
13: return vms_optimal[] 
2 Cloud workflow scheduling: 
Input: Wij, P(xn), f(xn), task list task[], vms_optimal[] 
Output: Scheduling decision SD = {(task[n]<-> bn)|bn is a node of n stage on optimal path 
scheduling decision} 
Snj: the vm node j on optimal path in stage n from vms_optimal[] 
1: Set xn = B 
2: for each stage n in G do 
3:  if (the VM Snj cannot execute the task) then 
4:   a ← P(Snj) 
5:   Find a vm node bn in stage n st: 
6:   ( )[ ] [ ]+ max + ( )nab n akW f b W f k==  (k is the node other than Snj in stage n) 

7:  else 
8:   bn ← Snj 
9:   Allocate available VM resource bn to task[n] 
10:  end if 
11: end for 
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Figure 6 Optimal workflow flowchart 

 

Figure 7 Scheduling flowchart 
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The scheduling flowchart is shown in Figure 7. It is obvious that the simple method 
enables a fast response to a single point of failure and obtains the second longest path (n). 

5 Analysis 

In this section, we analyse the performance of the proposed DQ-DCWS method for a real 
Hadoop workload in a heterogeneous and scalable environment. The result of this 
analysis is compared with three general workflow scheduling algorithms. Our 
experiments verify the performance of the algorithm from two aspects of running time 
and cost. 

5.1 Application 

A real-life SWf Montage (Deelman et al., 2008) is used in our experiment. Montage is a 
data-intensive application for assembling flexible image transport system (FITS) images 
into custom mosaics, and it was created by the NASA/IPAC Infrared Science Archive. 
The Montage was chosen as a respectively workflow in our work because we focus on 
reducing data-block movement in data-locality which involve the amount of time the 
application spends waiting for I/O and Montage have a significant advantage for  
I/O-bound. In our experiments we configured Montage workflow to contain 35 jobs (35 
montage executable core modules). The size of a Montage workflow is based on the area 
of the sky covered by the output mosaic (NASA, 2010). The Montage workflow 
application job is created with ten tasks, which generate 1-degree mosaics of the sky 
using a 1.78 MB image (portion of galactic plane) as input data. 

5.2 Experimental environment 

We ran experiments on Amazon EC2 which was chosen because it is a popular and 
feature-rich cloud resource. Real Hadoop clusters were deployed on Amazons EC2 with 
varying number of VM instances from 20 to 100. EC2 VMs adopt the most cost-effective 
processor c1.medium (Lustre, 2015). 
Table 4 Hadoop clusters VMs parameters 

Parameter Value 
Number of VMs 20–100 
HOST_PEs 2 
MIPS 1,000 
RAM 2,048 (MB) 
Storage Local 
BW 10,000 (mbps) 
Price of computing resources $0.20/hr 
Chargers of VMs $0.15 GB/Month 

A series of experiments performed the Montage workflow on the configured Hadoop 
clusters using the parameters presented in Table 4. These parameters are used to identify 
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the capability of the VMs and the resource cost of the cloud system. The program runs on 
different numbers of VMs and is applied to achieve two objectives: 

1 Optimising the workflow execution time to reduce the makespan which means the 
total program runtime. 

2 Reducing the task execution cost. 

5.3 Algorithm comparison 

To evaluate the performance of the proposed algorithm, the obtained results of our 
algorithm are compared with four existing scheduling algorithms: FairScheduler in 
Hadoop MapReduce, PSO, IPSO and FPSO. 

FairScheduler: one of the default schedulers in Hadoop that is unable to implement 
data locality. FairScheduler assigns resources to jobs, and all jobs receive an equal share 
of resources over time. FairScheduler organises the jobs into pools and divides resources 
fairly between these pools (APACHE, 2022). 

• PSO: recently, PSO has been used to optimise the cloud scheduling problem, and a 
number of particles (equal to the solutions for the application problem) represent a 
swarm moving around to search for the best solution in the search space. An 
application has a fitness function to evaluate the fitness value by particles moving at 
certain velocities. PSO can obtain fast convergence, but the whole swarm is easily 
trapped in a local optimum. 

• IPSO: some works have improved the traditional PSO for SWf application 
scheduling in the scientific field (Rashmi and Basu, 2017), such as the previous work 
(Chen and Zhang, 2012), which proposed a new PSO called IPSO that records not 
only the best position but also the worst position to avoid being trapped in a local 
optimum. 

• FPSO: both PSO and IPSO are only scheduling optimisations and did not consider 
data placement based on data locality. Hence, a recent approach is also compared: 
FPSO strategy (Kchaou et al., 2022). The FPSO combine the IT2DFCM strategy for 
data placement with the PSO technique for task scheduling to execute SWf. The 
objective of the FPSP is to minimise the overall data movement number. 

In our comparison, the swarm parameters applied in PSO, IPSO and FPSO are listed in 
Table 5. 
Table 5 Swarm algorithm parameters 

Parameter Value 
Global increment 0.9 
Inertia 0.95 
Number of particles 25 
Partial increment 0.9 
Velocity graph factor 10 
Evolve 10 
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5.4 Experimental analysis 

Experiments are performed on four different numbers of VMs (20, 40, 80, and 100 VMs) 
and are repeated 100 times for each different number of VMs. The average results of the 
100 replicates are compared to those of the other four algorithms. To evaluate the 
performance of these five approaches, two performance metrics are applied: SWf 
execution time and task running cost. 

Execution time represents the makespan from workflow submission to task 
completion. From Figure 8, DQ-DCWS reduces the execution time well and is 
significantly better than FairScheduler in Hadoop MapReduce. Since FairScheduler is 
static and does not have data locality, it spends some time on data movement and 
recovering a single failure. As shown in Table 6, DQ-DCWS achieves a 26.5% 
improvement compared to FairScheduler. DQ-DCWS performs better than PSO, IPSO 
and FPSO, improving by 11.5%, 7.1% and 6.1 %, respectively. The advantage of  
DQ-DCWS is that it can dynamically schedule tasks on VMs and cannot be trapped in a 
local optimum. Detailed data are provided in Table 6. 

To observe the cloud cost-efficient performance, the execution cost on cloud 
resources is qualified and evaluated. Figure 9 shows the experimental results of the five 
approaches. The cost efficiency of DQ-DCWS is better than that of the other four 
approaches. In small-scale VMs, such as 20 and 40, the DQ-DCWS cost is still close to 
that of the others. However, as the number of VMs increases, the superiority of  
DQ-DCWS becomes increasingly obvious. As shown in Table 6, cost reductions of 
12.5%, 11.8% and 11.6% are achieved by comparing with FairScheduler, PSO and IPSO 
respectively. On the recent method FPSO, our approach also obtains a 7.0% improvement 
in cost. Detailed data are provided in Table 6. 

Figure 8 Execution time of SWf with ten tasks executed by five algorithms on different numbers 
of VMs (see online version for colours) 

 

These reasons lead to the enhancement: 

1 In the running time of the experiments, FairScheduler spend amount of time on 
movement of data block which cannot satisfy data-locality when tasks are scheduled 
to data nodes. 
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2 PSO and IPSO require plenty of time to search for the optimal practicality in the 
whole swarm every time they are run. The large amount of data movement in task 
execution is the main reason for the increased cost of these three strategies. 

3 Although FPSO policy reduces data movement by the data placement procedure, 
workflow scheduling is still static and fails to search for the best VM to perform 
tasks. 

The proposed DQ-DCWS always chooses the correct VMs, not fast VMs, to run tasks. 
The proposed approach is devoted to obtaining data locality and cost efficiency and to 
finding the optimal solution faster than other algorithms. 

Figure 9 Execution cost of SWf for ten tasks executed by five algorithms on different numbers of 
VMs (see online version for colours) 

 

Table 6 Comparison of DQ-DCWS with the other approaches in terms of three metrics 
([(other approaches)-DQ-DCWS]/(other approaches) × 100 

Performance metrics of 
improvement percentage 

MR FairScheduler 
(%) PSO (%) IPSO (%) FPSO (%) 

Execution time 26.5 11.5 7.1 6.1 
Cost improvement 12.5 11.8 11.6 7.0 

6 Conclusions 

As the complexity of data-intensive applications has increased, SWf has emerged as an 
important technology. In our work, we propose a novel DQ-DCWS approach for SWf 
scheduling. Based on data locality, the efforts to improve the execution efficiency and 
cost efficiency are validated when running data-intensive SWf on heterogeneous cloud 
resources. 

The SWf scheduling problem is modelled as an optimisation path issue. Five metrics 
of QoS are selected to evaluate the length of the SWf path. A dynamic programming 
method is employed to design an algorithm to choose an optimal path. The superiority of 
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this algorithm’s performance over that of four other workflow scheduling methods is 
demonstrated through real-life experiments. The proposed approach is better than the 
others, with high efficiency for makespan and the cost of VM resources. In future work, 
this approach can be applied to other real-life applications in big data architectures. 
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