
78 Int. J. Computational Science and Engineering, Vol. 26, No. 1, 2023

Copyright © 2023 Inderscience Enterprises Ltd.

A new resource sharing protocol in the light of
token-based strategy for distributed system

Ashish Singh Parihar*
Department of Computer Science and Engineering,
National Institute of Technology (NIT),
Arunachal Pradesh, India
and
Department of Computer Science,
KIET Group of Institutions,
Delhi-NCR, Ghaziabad, Uttar Pradesh, India
Email: ashish.phd20@nitap.ac.in
Email: ashish.parihar@kiet.edu
*Corresponding author

Swarnendu Kumar Chakraborty
Department of Computer Science and Engineering,
National Institute of Technology (NIT),
Arunachal Pradesh, India
Email: swarnendu@nitap.ac.in

Abstract: One of the highly researched areas in distributed system is mutual exclusion. To avoid
any inconsistent state of system, more than one processes executing on different processors are
not allowed to invoke their critical sections simultaneously for the purpose of resource sharing.
As a solution to such resource allocation issues, token-based strategy for distributed mutual
exclusion algorithms as a prime classification of solutions is one of the most popular and
significant ways to handle mutual exclusion in this field. Through this research article, we
propose a novel token-based distributed mutual exclusion algorithm. The proposed solution is
scalable and has better results in terms of message complexity compared to existing solutions. In
this proposed art of work, the numbers of messages exchange per critical section invocation are
3(⌈log N⌉ – 1), 3⌈(⌈log (N + 1) ⌉ – 1)/2⌉ and 6[⌈log (N + 1)⌉ + 2(2(–⌈log (N+1)⌉) – 1)] in case of light
load, medium load and high load situations respectively.

Keywords: distributed system; mutual exclusion; critical section; token-based; resource
allocation.

Reference to this paper should be made as follows: Parihar, A.S. and Chakraborty, S.K. (2023)
‘A new resource sharing protocol in the light of token-based strategy for distributed system’,
Int. J. Computational Science and Engineering, Vol. 26, No. 1, pp.78–89.

Biographical notes: Ashish Singh Parihar received his Bachelor of Engineering in Computer
Science from Oriental Institute of Science and Technology (Madhya Pradesh, India) and also
completed his MTech in Computer Science and Engineering from the National Institute of
Technology, Arunachal Pradesh, India. He served more than five years in the industry as a Senior
Developer. Currently, he is an Assistant Professor in the KIET Group of Institutions, Delhi-NCR,
Ghaziabad (UP), India and also pursuing his PhD under the supervision of Dr. Swarnendu Kumar
Chakraborty. His research areas are distributed systems, machine learning, blockchain and big
data.

Swarnendu Kumar Chakraborty is working as an Assistant Professor in the Department of
Computer Science and Engineering at the National Institute of Technology Arunachal Pradesh,
Govt. of India. He has more than ten years of teaching experience. His research areas
are advanced error control, cryptography and Information Security. He is the author of
25 peer-reviewed publications.

 A new resource sharing protocol in the light of token-based strategy for distributed system 79

1 Introduction
Distributed system (Tanenbaum and Steen, 2016) is a kind
of architecture in which components are on different
networked computers and communication between them
can be done through message passing from one to another in
order to achieve a common goal. Processes within the
systems in such a network can only communicate by
passing messages and message transmission delay cannot be
ignored in such an environment. Accessing shared resources
simultaneously by the different processes belonging to
different systems is a common scenario in this distributed
architecture. Process synchronisation is a kind of
mechanism that ensures to use of shared resources
effectively in case of a single processor system but such
access in a distributed system needs extra attention such that
no more than one processes executing on different
processors are allowed to invoke their critical sections
simultaneously. This is required to avoid such painful
scenarios like a race condition, deadlock, starvation and
inconsistency in data.

Critical section (CS) is a code segment that is available
at the process by which the process can access the shared
resources in order to complete its certain operation. For
providing access to the shared resource, the process can
only execute its CS after ensuring that none of the other
processes are executing their CS parallelly. Implementing
such a mutual exclusion (Kordestani et al., 2020) to invoke
CS for shared resource access in distributed systems by a
process, various distributed mutual exclusion (DME)
algorithms have been presented and broadly classified into –
token-based DME (Parihar and Chakraborty, 2021) and
non-token-based DME (Saxena and Rai, 2003). The
performance evaluation of these algorithms are measured in
terms of the number of messages exchanged per CS
invocation by any process, delay in synchronisation
between two consecutive execution of CS invocation by the
same process, response time and system throughput. Out of
many distributed mutual exclusive algorithms available in
existence, token-based algorithms are the popular one
among all in terms of their significance. In token-based
algorithms, a unique token travels in network architecture
based on a specific approach (either through token-asking or
perceptual movement of token) and the process is
permissioned to invoke its corresponding CS once it
possesses that token. DME plays a vital role in various
real-time applications, such as aircraft operations,
unmanned aerial vehicle control, handling of central
repositories, live video streaming, etc. Integration of some
latest trending technologies, such as machine learning
(Gupta and Gupta, 2019; Dai and Wang, 2021; Liu et al.,
2021; Daid et al., 2021), artificial intelligence (Soto-
Morettini, 2017; Tan, 2020) and blockchain (Parihar et al.,
2021) are also an exciting work to be imposed on DME
solutions. Hence through this research article, we propose a
novel token-based distributed mutual exclusion algorithm.
The proposed solution is scalable and has better results in
terms of message complexity compared to existing
solutions. In this proposed art of work, the total numbers of

messages exchanged per critical section invocation are
3(⌈log N⌉ – 1) in case of light load situation, 3⌈log (N + 1)⌉
– 1/2] in medium load situation and 6[⌈log (N + 1)⌉ + 2(2–⌈log(N+1)⌉ – 1] in case of high load situation. Overall, the
major contributions of this research article are as follows:

• proposing a novel token-based DME algorithm

• verification of presented solution through a
mathematical model.

• message complexity analysis and its comparison with
the existing model.

The remaining part of this research work is organised like:
in Section 2, we present the background study. Section 3
provides the overall system model for this proposed
algorithm. Section 4 defines the proposed algorithm for
distributed mutual exclusion along with a scenario to
explain the working of the algorithm and also, the number
of message exchanges per CS invocation by a process has
been discussed in this section. In Section 5, the distributed
mutual algorithm’s properties have been validated on our
proposed solution and then we provide a comparative study
among various distributed mutual algorithms with this
proposed algorithm in Section 6. Lastly, we conclude our
discussion with future scope in Section 7.

2 Literature survey
Dijkstra (1965) thoroughly studied the problem of mutual
exclusion and associated solutions were provided
consequently. Later in time, various popular algorithms had
been proposed in order to handle mutual exclusion problems
in distributed systems based on the logical clock concept by
Lamport (1978), token-based (Parihar and Chakraborty,
2021) and non-token-based (Saxena and Rai, 2003). Apart
from these solutions, many other algorithms had been
proposed to avoid concurrent access of shared resource by
the processes in a distributed network which are discussed
in this section.

Nishio et al. (1990) proposed an algorithm to solve
distributed mutual exclusion which is basically an extended
version of Suzuki-Kasami (1985) in terms of handling the
case where token lost in network during the transaction of
messages. To implement this scenario, they classified the
failure in terms of processor, communication controller and
communication link and also introduced a time out
associated with these. In case of failure, the algorithm
identifies it and regenerates the token in the network.

Helary et al. (1994) provided their token-based solution
based on a tree topology for taking care of mutual
exclusion. In this, a logical rooted tree is proposed for the
distributed architecture in which there are various nodes that
exist (represents processes). Every node in the logical
rooted tree has native variables that describe the behaviour
and state of the node in the logical rooted tree. CS asking
node transferred its request to the neighbour’s parent and
waited. Finally, the parent node takes responsibility and
sends the token towards its corresponding successor.

80 A.S. Parihar and S.K. Chakraborty

Wu and Joung (2000) introduce the concept of group
mutual exclusion (GME) in distributed architecture in an
asynchronous manner. To handle GME, their research
works assume the network to be implemented through ring
topology. Their approach is based on a model named as
congenial talking philosopher in which there are a number
of philosophers in a thinking mode initially, then they wait
for their turn and finally talk. For the same approach as
above, they introduce a variable more likely similar to
Lamport (1978) solution to maintain the sequence numbers.
This sequence number is getting increases as per the
increasing number of CS demanding processes. Once this
sequence number is at maximum size, then all processes are
allowed to enter in CS asynchronously.

Lodha and Kshemkalyani (2000) present their research
work on the underlying network of Ricart-Agrawala (1981).
Instead of accepting the CS demanding request
asynchronously in the request queue, the proposed solution
takes the requests based on the priorities which are defined
at the time of demanding for CS by any process. CS
requests are granted to processes by the solution based on
their decreasing order of priorities.

Keane and Moir (2001) identified a few drawbacks in
Wu and Joung (2000) and tried to overcome them by
proposing a GME algorithm by spin locally through cache
coherent and non-uniform memory access systems. In their
solution, the transfer of control switches from session to
session. It uses a few variables which are basically
consisting of the number of processes in CS and the current
session holder. This overcomes the drawback wherein the
process continuously reads the other process’s flag variable
which reduces the performance of the system.

Cao and Singhal (2001) present a delay quorum-based
mutual exclusion solution with an optimal delay where they
consider the delay in synchronisation to be minimal and the
message exchange complexity is in logarithmic form. In
this, each site is associated with some quorum and enters
into its CS after blocking all other sites by sending request
messages in the same quorum set. The intersection property
in between two quorums also ensures that no process will
enter into their CS simultaneously.

Cantarell (2005) introduces a GME algorithm in the
token ring architecture. It proposes several algorithms in
that research work to obtain the same. According to their
algorithms, they provided the solution for GME with the
help of the bounded size of messages during
communication. As per their one of the algorithms, they do
not maintain any request queue instead of that they provided
the dependency of processes space requirement on the
number of actually shared resources as m that incorporates
the message size is 2⌈log m + 1⌉. This algorithm maintains a
relationship between the number of processes and shared
resources with each other.

Zheng et al. (2007) designed their research work for the
ad hoc network (Liu et al., 2019; Mondal et al., 2021). Their
proposed algorithm concept is based on token asking. In
their model, there are N number of processes and during the
message transmission, these nodes behave like a router to

network to support a multi-hop path. Point to point protocol
occurs between two successive nodes. Under the
assumption of no shared clock and memory, with the
defined diameter of the network, they calculate the message
complexity.

Atreya et al. (2007) suggest a group mutual algorithm
based on quorum. As per their algorithm, they allowed
processes of a similar type to enter their CS simultaneously
and provided a mutual exclusion in the case of different
types of processes. In their approach, a set of processes
demands for CS execution then they lock their respective
quorums and the algorithm chooses leader among them. In
order to allow a leader into its CS, all the other processes as
followers left the quorum by communicating to the leader.

Czyzowicz et al. (2011) targeted mutual exclusion and
consensus properties in the distributed environment. In their
proposed architecture, processes can communicate with
each other through multiple access channels and there is a
chance of collision during this kind of communication. They
showed that their system is feasible in any of the collision
detection, global clock information consisting of a number
of rounds by any process and number of processes are
available in the system.

Wu et al. (2015) proposed an algorithm to implement
the concept of mutual exclusion on handling the traffic
control at their intersection points. As per their proposal,
they introduce a conflict graph based on the traffic
information and try to find the corresponding intersection
points in that. They showed that the behaviour of this traffic
handling is the same as the scenario in distributed mutual
exclusion where no two vehicles are allowed to enter the
intersection point of lanes.

Neamatollahi et al. (2017) presented their mutual
exclusion solution with N number of processes arranged in a
torus logical architecture with each row having √N
processes. Their solution is based on token perceptual
movement in the network that took place through the
columns of the underlying network topology. Any CS
asking request generated by any node travelled through
rows of the torus and once it met with a token, the token
started to move towards the asking node in order to serve its
CS invocation. The average message complexity of their
algorithm lies in the range of 2√N + 1 to 3√N + 1.

3 System model
This current study proposes an algorithm to solve the
mutual exclusion problem in a distributed architecture. In
this solution, N processes have been considered on an
almost complete tree logically and a token has been placed
at the root node of this tree. Whenever any process demands
for CS then the token travels towards that CS demanding
process and when the token is at the process, then it is
allowed to invoke its corresponding CS. In between, if any
other process asks for its CS to execute then that process
sends its request towards the root of the tree and enqueue
the request in a queue available at the root node. Once the
process which is in its CS releases the token, the token

 A new resource sharing protocol in the light of token-based strategy for distributed system 81

again travels towards root node and before serving to the
next CS request for a process, a swapping occurs in the root
node and another node in the tree based on the node’s
availability to avoid the centralisation in the system. Once
swapping is done, again token moves towards the next CS
demanding process in order to serve.

In order to define various data structures in the system,
this algorithm uses two single-valued attributes for the
token as the source index and destination index. Then a
queue has been defined at the root node in order to keep
track of CS demanding processes with a table where the
exact path in between two nodes has been stored in the form
of link list implementation.

4 Proposed algorithm
In our study, the proposed algorithm has N nodes that
represent the processes. These processes are organised like
P0, P1, P2, …, PN–1. Then it takes an array as
Processes_Array of size N and starts inserting the processes
into this array.

Figure 1 LACBT as T (N = 10)

Then our model creates a logical almost complete binary
tree (LACBT) from Processes_Array. Corresponding
indexes of various nodes in LACBT can be obtained from
Processes_Array as per equations (1)–(3). Based on the
above information gathered, corresponding LACBT as T
(where N = 10) is shown in Figure 1.

() (1) 2 , if 0− = ≠Pare int i i (1)

 () (2 1), if (2 1)= + + <Left i i i n (2)

 () (2 2), if (2 2)= + + <Right i i i n (3)

After the creation of LACBT, the proposed solution finds
and stores the exact path in between the root node index
with others. Implementation steps are shown in
Algorithm 1.

Based on Algorithm 1, a table is created as M shown in
Table 1 in which the first column represents the key as
(source node, destination node) and the second column is
the exact path in between the source node and destination
node.

Algorithm 1 Path finding
(Steps)
1 START

2 int j, k // j = index of root node, i.e., k ∈ {0, 1, 2, …,
n – 1

3 Linklist path
4 Table M[n + 1][2]
5 FOR j = 0, k = 0 to (n – 1)

6 Run DFS from j to k and push the traversed
node’s index into the stack

7 Backtracking occurs, POP the element from the
stack and add to path

8 M[0][0]=(j,k) and M[0][1]=path
9 k=k+1
10 END FOR
11 END

Table 1 A path between root node to others

Key (j,k) Path
(0, 0) -
(0, 1) 0 → 1
(0, 2) 0 → 2
(0, 3) 0 → 1 → 3
…
(0, n – 1) 0 → 2 → 6 → 14 … → n – 1

Table M is placed at the root node and along with that, a
queue is created as request_queue (RQ) at the root node
which is initially empty. Then the token is generated at the
root node consisting of two attributes, source_index
represents as S and destination_index as D, respectively.
Token S is initialised with 0, i.e., root node index. This is
explained in Algorithm 2 and the overall visualisation of
LACBT is like Figure 2.

Algorithm 2 Data initialisation
(Steps)
1 START
2 FOR i = 0 to size(Processes_Array) – 1
3 boolean req_flg = FALSE
4 boolean exec_flag = FALSE
5 END FOR
6 int x = 0, y = size(Processes_Array) – 1
7 Place M to root node of T
8 Create queue request_queue as RQ
9 Move RQ to root node of T
10 Create_Token()
11 int token.source_index, token.destination_index
12 token.S ← T’s root index, i.e., 0
13 token.D ← NULL
14 END Create_Token()
15 END

82 A.S. Parihar and S.K. Chakraborty

Figure 2 Visualisation of LACBT (see online version
for colours)

Preliminary steps for this proposed work have been done at
this point. Now we proceed towards the CS request and
release an implementation of this model done by a process
in the distributed system. Algorithm 3 explains this
implementation in detail.

Algorithm 3 Proposed algorithm
(Steps)
1 START
2 CS_Request(Pi) // i = index of corresponding

process in T not the process sequence no.
3 Pi.req_flag = TRUE
4 Pi.exec_flag = FALSE
5 int enqueue_element ← i
6 int temp ← i
7 WHILE (temp != 0)
8 temp ← Parent (temp)
9 END WHILE
10 Process at temp.RQ.enqueue (enqueue_element)
11 IF (RQ != EMPTY && token is at root)
12 token.D ← dequeue from RQ
13 END IF
14 IF (token is at root && token.S != NULL &&

token.D != NULL)
15 token searches for key (S,D) column in M and

access the exact path corresponding to key
(S, D) to reach the destination index

16 IF (current process index == token’s
destination index)

17 Pi .exec_flag= TRUE
18 Pi enters into CS
19 END IF
20 END IF
21 END CS_Request(Pi)
22 CS_Release(Pi) // i= index of corresponding process

in T

23 int temp ← token.D
24 WHILE (temp != 0)
25 temp ← Parent (temp)
26 MOVE token to tempth node in T
27 END WHILE
28 token.D ← NULL
29 SWAPPING_MODEL(x, y) //The below

condition is added due to the next CS requesting
process Pm

30 Pi.req_flag= FALSE
31 Pi.exec_flag= FALSE
32 END CS_Release(Pi)
33 SWAPPING_MODEL(x, y) // for definition of x

and y, refer Algorithm 2
34 Pi = Processes_Array[x]
35 Pj = Processes_Array[y]
36 IF (!Pi.req_flag)
37 int k
38 static int flag = 0
39 IF (y == 0)
40 y = size(Processes_Array)-1
41 END IF
42 WHILE (y != 0)
43 IF (!Pj.req_flag)
44 Copy Processes_Array[0].M into Pj
45 Copy Processes_Array[0].RQ into Pj
46 SWAP Pi and Pj
47 MOVE Pk.M & Pk.RQ to Pj
48 END IF
49 ELSE
50 y= y-1
51 Pj = Processes_Array[y]
52 continue
53 END ELSE
54 END WHILE
55 END IF
56 y = y – 1
57 END SWAPPING_MODEL(x, y)
58 END

Case 1: process Pi request for the CS

1 Pi sends its CS request towards the root node of
LACBT in the form of its node’s index.

2 When Pi request is at the root node, RQ available at
root is updated with that request.

3 Token fetch element from the RQ and update its
destination_index attribute if the token is at root and
RQ is not empty otherwise remains ideal at the root.

4 If both attributes of the token are non-empty, then the
token starts moving towards CS requesting process
index using its own attributes as source_index and
destination_index with the help of table M shown in

 A new resource sharing protocol in the light of token-based strategy for distributed system 83

Table 2 in which path between source and destination
index is stored (refer Algorithm 3, steps 2–21).

Case 2: processes Pm and Pn also request for the CS in
between

1 In such a scenario, case 1’s points 1 and 2 are repeated
for Pm and Pn.

2 Afterward, case 1’s point 3 becomes FALSE because
the token is not at the root and so for point 4.

Case 3: processes Pi executed CS and exit

1 The token starts moving towards the root node and
once the token is at root, it removes its
destination_index attribute and makes it blank by
updating NULL in it.

2 Again, on reaching the root node with respect to token,
case 1’s point 3 becomes TRUE and so as case 1’s
point 4 (refer Algorithm 3, steps 22–32).

Till this, CS request and release scenario have been
explained through this proposal. The root node process
(here P0) has key responsibilities towards this research
work. We really don’t want our system to be dependent on a
single node or our system to behave like a central
coordinator-based system. In order to handle this, our
algorithm introduces a swapping node protocol model
(SNPM) in T where after each time token reaches at root
node after CS release by any process, Swapping is done
between the root node and the last index node of LACBT.
Next time swapping is done in between root node and (last
index – 1) node and so on. By applying this SNPM, our
system keeps rotating the load and responsibilities within
the entire distributed system (refer Algorithm 3,
steps 33–57).

There are below two situations that are handled by this
swapping mode:

1 If the root node is waiting for CS to execute, then this
SNPM did not perform anything (simply skip).

2 If the swapping node other than the root is waiting for
CS to execute, then skip that node and continue with
the next node by decreasing its index by one. This
scenario repeats until SNPM does not find any suitable
node in T where the process is not involved in any of
CS operations.

4.1 Case study
Additionally, in order to explain the proposed research
work, a scenario is explained in detail with the assistance of
Figures 4–18. There are N processes in the system that are
arranged in LACBT and shown in Figure 1 (here,
N = 10). As a part of the preliminary step, token
(source_index with value 0, i.e., root node index and
destination_index with NULL), table M and request queue
RQ have been created at root note as per Algorithm 1 and
Algorithm 2 shown in Figure 3. Till this point system is
ready for handling distributed mutual exclusion.

Figure 4 Initial setup and token asking state (see online version
for colours)

Figure 5 Token travel state (see online version for colours)

Figure 6 Token at destination state (a) (see online version
for colours)

84 A.S. Parihar and S.K. Chakraborty

Figure 7 More token requests state (see online version
for colours)

Figure 8 Token release state (a) (see online version
for colours)

Figure 9 Token at root again after serving the request state
(see online version for colours)

Figure 10 Request queue transfer state (see online version
for colours)

Figure 11 Swapping model state (a) (see online version
for colours)

Figure 12 Token travel to next CS asking process state (a)
(see online version for colours)

Process P8 requests for CS to then invokes its request travels
towards the root in the form of its respective node index and
the request is updated in RQ shown in Figure 4. Now as per
the proposed algorithm, when the token at the root and RQ
is not empty, the token gets the element from RQ and
updates its destination index. Once both the attribute of the
token is filled then with the help of M, token starts
following the path (0-1-3-8) corresponding to the key (0, 8)
as shown in Figure 5. After getting a token, P8 enters into its
CS has shown in Figure 6. By the time, P4 and P6 also show
their interest in executing their CS then again they send
their request in the form of their node index towards root
node and RQ is updated with their requests shown in
Figure 7. In the time being P8 is done with its CS invocation
and sends the token towards the root node as shown in
Figure 8 and on reaching the root node, token removes its
destination_index shown in Figure 9. Before serving the
next CS request, i.e., P4’s and P6’s request, the algorithm
invoke SNPM in which two nodes are swapped with each
other in which the first node is root node and the second
node is the last indexed node of T (if last indexed node is in
waiting state then next backward node is chosen, same
continues till any suitable process finds for swapping) but
before that algorithm move table M and RQ towards the
second node chosen by SNPM. This swapping is logically
done in the process array from which T is constructed. P0
and P9 is then swapped as shown in Figures 10 and 11. After
the swapping of nodes, the token again starts moving
towards next CS requesting process, i.e., P4. After serving to
P4, again swapping occurs and then the next CS requesting
process is served, i.e., P6 which is shown in Figures 12 to 18
and so on.

 A new resource sharing protocol in the light of token-based strategy for distributed system 85

Figure 13 Token release state (b) (see online version
for colours)

Figure 14 Swapping model state (b) (see online version
for colours)

Figure 15 Token travel to next CS asking process state (b)
(see online version for colours)

Figure 16 Token at destination state (b) (see online version
for colours)

Figure 17 Token release state (c) (see online version
for colours)

Figure 18 Idle state (see online version for colours)

4.2 Messages exchanged

4.2.1 Light load situation
The present work assumes that only a single process
attempts to invoke its CS at a time for the consideration of a
light load situation. As a worst-case scenario, the leaf node
process asks for its CS to invoke transfer the request to the
parent and further till it reaches to root node. (⌈log N⌉ – 1)
messages (N = nodes in the system) are required for this.
Then token starts moving towards the CS demanding
process and again (⌈log N⌉ – 1) messages required for this.
Once the token-holder node releases its CS, the token again
starts approaching towards root node then (⌈log N⌉ – 1)
message exchanges are required. In this complete scenario
of light load, a total of 3(⌈log N⌉ – 1), N ≤ 3 message
exchanges are required by a process to access the shared
resource in the system.

4.2.2 Average load situation
The current study assumes that (⌈log N⌉ + 1) processes
attempt to invoke their CS simultaneously. In such a case,
the total number of messages exchange are 3(⌈(⌈log(N +
1)⌉(⌈log(N + 1)⌉ – 1))/2⌉) and the average number of
exchanges in terms of messages per CS invocation by a
process is 3(⌈(⌈log(N + 1)⌉ – 1))/2⌉).

During these transactions in the system, number of total
messages exchange can be seen in equation (4). The series
in equation (4) can be comprised in summation form like
equation (5) which is further be evaluated and equivalent to
(3⌈(⌈log(N + 1)⌉(⌈log(N + 1)⌉ – 1))/2⌉). The average number

86 A.S. Parihar and S.K. Chakraborty

of messages exchanged by a process to invoke CS are
(3⌈(⌈log(N + 1)⌉(⌈log(N + 1)⌉ – 1))/2⌈)/⌈log(N + 1)⌉ =
3⌈(⌈log(N + 1)⌉ – 1)/2.

4.2.3 High load situation
During high load situations where all the processes in the
logical system attempt to invoke their CS and under this
consideration that logical architecture is a fully complete
tree, the total number of messages exchange are 3⌈(N + 1)⌉
3⌈(N + 1)⌉ [⌈log(N + 1)⌉ + 2(2–⌈log(N+1)⌉ – 1] and an average
number of messages per CS invocation by any process is
6[⌈log(N + 1)⌉ + 2(2–⌈log(N+1)⌉ – 1]. This can be obtained from
equation (7) in which the total number of messages are
shown and in equation (4) where an average number of
messages exchange are discussed.

4.3 Limitation to the proposed algorithm
Let’s discuss the basic limitations of our proposed algorithm
in this section. Nowadays due to various technological
enhancements, wireless networks are the fastest-growing
architectures. Communication and collaboration among the
nodes in such a network are complex tasks as the node
movements are highly dynamic. We have targeted our
solution firstly on static network and requires essential
modifications as a part of future work for its imposement on
dynamic architectures like the wireless networks. We had
also defined probability density function f(p2, p3) on the
given sample space 1 1 2 2 3 3 n nS(P) {P , P , P , P , P , P , , P , P }′ ′ ′ ′= …

(discussed in Section 5.1) such that 2
2 3

(p)
P |P 3f p=

32 3 P 3f (p , p) | f (p), which fulfils a contradiction scenario
with our assumption of more than one processes
involvement in the CS.

5 Proof of DME properties
5.1 Safety
Theorem 5.1: The proposed algorithm achieves mutual
exclusion.

Proof: Safety is must implemented property to ensure that
no two processes in the system invoke their CS
simultaneously in order to support mutual exclusion. Our
algorithm achieves safety as an invocation of CS by any
process depends on the token. The process can invoke CS of
its own if it possesses the token. According to our solution,
the token can only be granted for a single process at a time
by fetching data from RQ and travels towards that process
for allowing that into its corresponding CS. Also at any
point of time P1 can only enter into CS, if it is Pi.exec_flag
is true and no two processes at the same time can have their
exec_flag true according to our proposal.

Proof: By contradiction to support such a statement, two or
more processes must be in their CS. We consider our whole
proposed DME as a sample space S(P) in which a set of
events are available in the form of Pi(Process allowed to
enter into CS) and iP′ (process does not allow to enter into
CS).

Hence, 1 1 2 2 3 3 n nS(P) {P , P , P , P , P , P , , P , P }.′ ′ ′ ′= …
Assuming P2 and P3 are in CS at the same time. Each

and every event in equations (9) and (10) must be true to
support our assumption that leads to equations (11), (12)
and (13) respectively. Our initial assumption fails as 2P′ and

3P′ cannot be true at the same time otherwise, both P2 and
P3 will not be allowed to enter into CS as per concluded
from equation (13). Similarly, Considering that P2 and P3
have probability density function f(p2, p3). Defining a such
of this conditional probability density of P2 such that P3 = p3
by 2

2 3 3
()

P |P 2 3 P 33f f(,) | f ().= =pp p p p This restricts f(p2, p3)
to the given value of p3 with the assumption definition of

3P 3f () 0≠p and 3 3 2 3 2() (,) .
∞

−∞

= < ∞Pf p f p p dp

Probability of even P2 to occur given that P3 has already
occurred P(P2|P3) = P(P2P3)/P(P3). Given the law of
condition on P2 is P3 ∈ (p3 – ε, p3 + ε if ε → 0. We
concluded

{ }2 3
()

P |P 2 3 3 33 0
: lim | (,)

→
= = ≤ ∈ − +k

ε
F p P P k P p ε p ε

on set 2 () 2 ()3 33 3
P |P |f

= =
′=k kp p

P PF which is consistent with our

contradiction concluding P(P3) = 0 on an event P2.
Observing a contradiction exist that proves our assumption
that more than one process can be allowed to enter into CS
simultaneously is false.

5.2 Liveness
Theorem 6.2: The proposed algorithm achieves liveness.

Proof: Liveness ensures that neither deadlock nor starvation
can occur in the system during the message transactions. To
prove that our system is deadlock/starvation-free begins
with this contradictory assumption that the system is
suffered from these, hence token has information about
more than one process at the same time which is not correct
because in our algorithm, token consists of two
single-valued attributes by which it decides the exact
process to be allowed for CS invocation. Since this is a
contradiction to our initial assumption, we can conclude that
this system is deadlock-free. Also, our proposed system
based on LACBT architecture ensures that none of the
transactions creates a circular form during the
communication.

 A new resource sharing protocol in the light of token-based strategy for distributed system 87

5.3 Fairness
Theorem 6.3: The proposed algorithm is fair.

Proof: Fairness assured the system to be starvation free, i.e.,
processes should not wait for an indefinite time for their
chance to invoke CS. The proposed algorithm is starvation-
free as processes get a fair chance to execute their CS
according to the request to be inserted in RQ as token
always gets the information from the request queue and
grant that process to invoke its CS whichever information is
currently held by a token. This ensures that processes in the
system are allowed to invoke their CS in the order they
request for the same.

() ()
()

log(1) 1 log(1) 2

log(
3

1) 3 0

+ − + + −

+ + − +

+ …

N N

N (4)

()
log(1)

1

3 log(1)
+

=

 + −

N

k

N k (5)

()

() ()

1

2 3

13 (1) log(1) 1
2

1 1log(1) 2 log(1) 3 0
2 2

+ + −
+ + − + + − + +

…

N N

N N
 (6)

()

()

log(1)

1

log(1)

13 (1) log(1)
2

6 log(1) 2 2 1

+

=

− +

 + + −

 = + + −

N

k
k

N

N N k N

N

 (7)

()2 1 3 4P P P P P′ ′ ′ ′→ ∧ ∧ ∧ ∧… n (8)

()3 1 2 4P P P P P′ ′ ′ ′→ ∧ ∧ ∧ ∧… n (9)

() ()1 3 4 1 2 4P P P P P P P P′ ′ ′ ′ ′ ′ ′ ′∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ⇔… …n n T (10)

()1 2 3 4P P P P P′ ′ ′ ′ ′∧ ∧ ∧ ∧ ∧ ⇔… n T (11)

()
i

1 2 3 4 n

P T, 1 i n
P T, P T, P T, P T, , P T

∀ ≤ ≤
′ ′ ′ ′ ′= = = = =…

 (12)

6 Comparative analysis
From the existing literature survey, we have performed a
comparative analysis in between various existing DME
algorithms with our proposed model in terms of the total
number of processes available in the system and the average
number of message exchanges during light load condition
shown in Figure 19 and high load condition shown in
Figure 20. We had modelled our solution through the given
mathematical model towards the calculation of message
complexity as per the discussion in Section 4.2. Our

solution shows better results in high load situations in which
continuous requests for CS invocation are made by the
processes available in the system. Detailed comparison in
terms of average synchronisation delay and message
complexity can be seen in Table 2 for existing algorithms to
handle mutual exclusion.

Figure 19 Message complexity in light load situation

Figure 20 Message complexity in high load situation

Notation used in Table 2.

N number of processes

Z total number of groups

S size of quorum

R number of mutually exclusive resources

Bc(Pm) ad hoc traversing cost from node Pm

Hp(Pn, Pm) number of switch count between Pm and Pn

|Q| quorum size

l maximum number of processes from where
CS request can be received by a node

m maximum size of quorum

n maximum size of request.

88 A.S. Parihar and S.K. Chakraborty

Table 2 Performance measure of various DME-based algorithms

Algorithm Approach/ structure
Average

synchronisation
delay

Message complexity

Heavy load Light load

Lamport (1978) Non-token-based O(1) 3(N – 1) 3(N – 1)
Ricart and Agrawala (1981) Non-token-based O(1) 2(N – 1) 2(N – 1)
Maekawa (1985) Quorum-based O(1) 5(1)−N 3(1)−N

Suzuki and Kasami (1985) Token-based O(1) N N
Raymond (1989) Token-based O(N) 4 O(log N)
Nishio et al. (1990) Token-based O(N) N N
Helary et al. (1994) Token-based O(log N) O(N) O(N)
Wu and Joung (2000) Ring-based - O(NZ) O(NZ)
Lodha and Kshemkalyani (2000) Priority-based - N – 1 2(N – 1)
Keane and Moir (2001) Cache coherent-based - O(N) O(N)
Cao and Singhal (2001) Quorum-based O(T) O(K) O(K)
Cantarell (2005) Token ring-based - log(min(N, R)) log(min(N, R))
Paydar et al. (2006) Logical structure-based - - 4 N

Zheng et al. (2007) Token-based 2ST + E Bc(Pm) + Hp(Pn, Pm) Bc(Pm) + Hp(Pn, Pm)
Atreya et al. (2007) Quorum-based - - O(lmn)
Kakugawa et al. (2008) Non-token-based 4 O(|Q|) O(|Q|)
Taheri et al. (2011) Logical structure-based ()O N N ()O N

Neamatollahi et al. (2017) Logical torus
structure-based

()O N 3 2(1)+N to 3(1)+N

Proposed algorithm LACBT-based O(log N) 6[⌈log(N + 1)⌉
+ 2(2–⌈log(N+1)⌉ – 1)]

3(⌈log N⌉ –1), N ≤ 3

7 Conclusions and future scope
The research work proposed through this paper is a novel
token-based distributed mutual exclusion algorithm. The
implementation of this given algorithm is based on logical
almost complete tree topology. The average number of
message exchanges per CS by a process through this
algorithm is in logarithmic which is effective in contrast to
other existed algorithms till date. The system is scalable and
satisfies all necessary properties of distributed mutual
algorithms. The movement of the token in this architecture
maintains the sequence of CS demands by processes. For
future work, the point of focus will be on the generality of
loss in terms of nodes and tokens.

References
Atreya, R., Mittal, N. and Peri, S. (2007) ‘A quorum-based group

mutual exclusion algorithm for a distributed system with
dynamic group set’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 18, No. 10, pp.1345–1360,
doi:10.1109/tpds.2007.1072.

Cantarell, S. (2005) ‘Group mutual exclusion in token rings’,
The Computer Journal, Vol. 48, No. 2, pp.239–252,
doi:10.1093/comjnl/bxh077.

Cao, G. and Singhal, M. (2001) ‘A delay-optimal
quorum-based mutual exclusion algorithm for distributed
systems’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 12, No. 12, pp.1256–1268, doi:10.1109/
71.970560.

Czyzowicz, J., Gasieniec, L., Kowalski, D.R. and Pec, A. (2011)
‘Consensus and mutual exclusion in a multiple access
channel’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 22, No. 7, pp.1092–1104. doi:10.1109/
tpds.2010.162.

Dai, Y. and Wang, T. (2021) ‘Prediction of customer engagement
behaviour response to marketing posts based on machine
learning’, Connection Science, Vol. 33, No. 4, pp.891–910,
doi: 10.1080/09540091.2021.1912710.

Daid, R., Kumar, Y., Hu, Y. and Chen, W. (2021) ‘An effective
scheduling in data centers for efficient CPU usage and service
level agreement fulfilment using machine learning’,
Connection Science, Vol. 33, No. 4, pp.954–974,
doi: 10.1080/09540091.2021.1926929.

Dijkstra, E.W. (1965) ‘Solution of a problem in concurrent
programming control’, Commun. ACM, Vol. 8, No. 9, p.569,
doi:10.1145/365559.365617.

Gupta, U. and Gupta, D. (2019) ‘An improved regularization based
Lagrangian asymmetric ν-twin support vector regression
using pinball loss function’, Appl. Intell., Vol. 49,
pp.3606–3627, doi: 10.1007/s10489-019-01465-w.

 A new resource sharing protocol in the light of token-based strategy for distributed system 89

Helary, J-M., Mostefaoui, A. and Raynal, M. (1994) ‘A general
scheme for token and tree-based distributed mutual exclusion
algorithms’, IEEE Transactions on Parallel and Distributed
Systems, Vol. 5, No. 11, pp.1185–1196, doi:10.1109/-71.329-
670.

Kakugawa, H., Kamei, S. and Masuzawa, T. (2008)
‘A token-based distributed group mutual exclusion algorithm
with quorums’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 19, No. 9, pp.1153–1166,
doi:10.1109/tpds.2008.22.

Keane, P. and Moir, M. (2001) ‘A simple local-spin group mutual
exclusion algorithm’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 12, No. 7, pp.673–685,
doi:10.1109/71.940743.

Kordestani, J.K., Meybodi, M.R. and Rahmani, A.M. (2020) ‘A
note on the exclusion operator in multi-swarm PSO
algorithms for dynamic environments’, Connection Science,
Vol. 32, No. 3, pp.239–263, doi: 10.1080/09540091.
2019.1700912.

Lamport, L. (1978) Time, clocks, and the ordering of events in a
distributed system’, Commun. ACM, Vol. 21, No. 7,
pp.558–565.

Liu, W., Hu, E., Su, B. and Wang, J. (2021) ‘Using machine
learning techniques for DSP software performance prediction
at source code level’, Connection Science, Vol. 33, No. 1,
pp.26–41, doi: 10.1080/09540091.2020.1762542.

Liu, Z., Japkowicz, N., Wang, R. and Tang, D. (2019) ‘Adaptive
learning on mobile network traffic data’, Connection Science,
Vol. 31, No. 2, pp.185–214, doi: 10.1080/09540091.
2018.1512557.

Lodha, S. and Kshemkalyani, A. (2000) ‘A fair distributed mutual
exclusion algorithm’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 11, No. 6, pp.537–549,
doi:10.1109/71.862205.

Maekawa, M. (1985) ‘A √N algorithm for mutual exclusion in
decentralized systems’, ACM Trans. Comput. Syst., May,
Vol. 3, No. 2, pp.145–159, doi: 10.1145/214438.214445.

Mondal, P.M., Sanchez, L.P.A., Benedetto, E., Shen, Y. and
Guo, M. (2021) ‘A dynamic network traffic classifier using
supervised ML for a Docker-based SDN network’,
Connection Science, Vol. 33, No. 3, pp.693–718,
DOI: 10.1080/09540091.2020.1870437.

Neamatollahi, P., Sedaghat, Y. and Naghibzadeh, M. (2017)
‘A simple token-based algorithm for the mutual exclusion
problem in distributed systems’, J. Supercomput., Vol. 73,
pp.3861–3878, doi:10.1007/s11227-017-1985-y.

Nishio, S., Li, K.F. and Manning, E.G. (1990) ‘A resilient mutual
exclusion algorithm for computer networks’, IEEE
Transactions on Parallel and Distributed Systems, Vol. 1,
No. 3, pp.344–355, doi:10.1109/71.80161.

Parihar, A.S. and Chakraborty, S.K. (2021) Token-based approach
in distributed mutual exclusion algorithms: a review and
direction to future research’, J. Supercomput.,
doi:10.1007/s11227-021-03802-8.

Parihar, A.S., Prasad, D., Gautam, A.S. and Chakraborty, S.K.
(2021) ‘Proposed end-to-end automated e-voting through
blockchain technology to increase voter’s turnout’, in
Prateek, M., Singh, T.P., Choudhury, T., Pandey, H.M. and
Nhu, N.G. (eds.): Proceedings of International Conference on
Machine Intelligence and Data Science Applications.
Algorithms for Intelligent Systems, Springer, Singapore,
doi: 10.1007/978-981-33-4087-9_5.

Paydar, S, Naghibzadeh, M. and Yavari, A. (2006) ‘A hybrid
distributed mutual exclusion algorithm’, International
Conference on Emerging Technologies 2006, ICET’06. IEEE,
pp.263–270.

Raymond, K. (1989) ‘A tree-based algorithm for distributed
mutual exclusion’, ACM Transactions on Computer Systems,
Vol. 7, No. 1, pp.61–77, doi:10.1145/58564.59295.

Ricart, G. and Agrawala, A.K. (1981) ‘An optimal algorithm for
mutual exclusion in computer networks’, Communications of
the ACM, Vol. 24, No. 1, pp.9–17, doi:10.1145/
358527.358537.

Saxena, P.C. and Rai, J. (2003) ‘A survey of permission-based
distributed mutual exclusion algorithms’, Computer
Standards & Interfaces, Vol. 25, No. 2, pp.159–181,
doi:10.1016/S0920-5489(02)00105-8.

Soto-Morettini, D. (2017) ‘Reverse engineering the human:
artificial intelligence and acting theory’, Connection Science,
Vol. 29, No. 1, pp.64–76, doi: 10.1080/09540091.2016.
1271398.

Suzuki, I. and Kasami, T. (1985) ‘A distributed mutual exclusion
algorithm’, ACM Transactions on Computer Systems, Vol. 3,
No. 4, pp.344–349, doi:10.1145/6110.214406.

Taheri, H., Neamatollahi, P. and Naghibzadeh, M. (2011)
‘A hybrid token-based distributed mutual exclusion algorithm
using wraparound two-dimensional array logical topology’,
Inf. Process Lett., Vol. 111, pp.841–847.

Tan, C. (2020) ‘Digital Confucius? Exploring the implications of
artificial intelligence in spiritual education’, Connection
Science, Vol. 32, No. 3, pp.280–291, doi: 10.1080/
09540091.2019.1709045.

Tanenbaum, A.S. and Steen, M.V. (2016) Distributed Systems:
Principles and Paradigms, 2nd ed., CreateSpace Independent
Publishing Platform, ASIN 153028175X.

Wu, K.P. and Joung, Y.J. (2000) ‘Asynchronous group mutual
exclusion in ring networks’, IEEE Proceedings – Computers
and Digital Techniques, Vol. 147, No. 1, p.1, doi:10.1049/ip-
cdt:20000162.

Wu, W., Zhang, J., Luo, A. and Cao, J. (2015) ‘Distributed mutual
exclusion algorithms for intersection traffic control’, IEEE
Transactions on Parallel and Distributed Systems, Vol. 26,
No. 1, pp.65–74, doi:10.1109/tpds.2013.2297097.

Zheng, W., Song, L.X. and Mei’an, L. (2007) ‘Ad hoc distributed
mutual exclusion algorithm based on token-asking’, Journal
of Systems Engineering and Electronics, Vol. 18, No. 2,
pp.398–406, doi:10.1016/s1004-4132(07)60104-2.

