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As a solution to such resource allocation issues, token-based strategy for distributed mutual 
exclusion algorithms as a prime classification of solutions is one of the most popular and 
significant ways to handle mutual exclusion in this field. Through this research article, we 
propose a novel token-based distributed mutual exclusion algorithm. The proposed solution is 
scalable and has better results in terms of message complexity compared to existing solutions. In 
this proposed art of work, the numbers of messages exchange per critical section invocation are 
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1 Introduction 
Distributed system (Tanenbaum and Steen, 2016) is a kind 
of architecture in which components are on different 
networked computers and communication between them 
can be done through message passing from one to another in 
order to achieve a common goal. Processes within the 
systems in such a network can only communicate by 
passing messages and message transmission delay cannot be 
ignored in such an environment. Accessing shared resources 
simultaneously by the different processes belonging to 
different systems is a common scenario in this distributed 
architecture. Process synchronisation is a kind of 
mechanism that ensures to use of shared resources 
effectively in case of a single processor system but such 
access in a distributed system needs extra attention such that 
no more than one processes executing on different 
processors are allowed to invoke their critical sections 
simultaneously. This is required to avoid such painful 
scenarios like a race condition, deadlock, starvation and 
inconsistency in data. 

Critical section (CS) is a code segment that is available 
at the process by which the process can access the shared 
resources in order to complete its certain operation. For 
providing access to the shared resource, the process can 
only execute its CS after ensuring that none of the other 
processes are executing their CS parallelly. Implementing 
such a mutual exclusion (Kordestani et al., 2020) to invoke 
CS for shared resource access in distributed systems by a 
process, various distributed mutual exclusion (DME) 
algorithms have been presented and broadly classified into – 
token-based DME (Parihar and Chakraborty, 2021) and 
non-token-based DME (Saxena and Rai, 2003). The 
performance evaluation of these algorithms are measured in 
terms of the number of messages exchanged per CS 
invocation by any process, delay in synchronisation 
between two consecutive execution of CS invocation by the 
same process, response time and system throughput. Out of 
many distributed mutual exclusive algorithms available in 
existence, token-based algorithms are the popular one 
among all in terms of their significance. In token-based 
algorithms, a unique token travels in network architecture 
based on a specific approach (either through token-asking or 
perceptual movement of token) and the process is 
permissioned to invoke its corresponding CS once it 
possesses that token. DME plays a vital role in various  
real-time applications, such as aircraft operations, 
unmanned aerial vehicle control, handling of central 
repositories, live video streaming, etc. Integration of some 
latest trending technologies, such as machine learning 
(Gupta and Gupta, 2019; Dai and Wang, 2021; Liu et al., 
2021; Daid et al., 2021), artificial intelligence (Soto-
Morettini, 2017; Tan, 2020) and blockchain (Parihar et al., 
2021) are also an exciting work to be imposed on DME 
solutions. Hence through this research article, we propose a 
novel token-based distributed mutual exclusion algorithm. 
The proposed solution is scalable and has better results in 
terms of message complexity compared to existing 
solutions. In this proposed art of work, the total numbers of 

messages exchanged per critical section invocation are 
3(⌈log N⌉ – 1) in case of light load situation, 3⌈log (N + 1)⌉ 
– 1/2] in medium load situation and 6[⌈log (N + 1)⌉ + 2(2–⌈log(N+1)⌉ – 1] in case of high load situation. Overall, the 
major contributions of this research article are as follows: 

• proposing a novel token-based DME algorithm 

• verification of presented solution through a 
mathematical model. 

• message complexity analysis and its comparison with 
the existing model. 

The remaining part of this research work is organised like: 
in Section 2, we present the background study. Section 3 
provides the overall system model for this proposed 
algorithm. Section 4 defines the proposed algorithm for 
distributed mutual exclusion along with a scenario to 
explain the working of the algorithm and also, the number 
of message exchanges per CS invocation by a process has 
been discussed in this section. In Section 5, the distributed 
mutual algorithm’s properties have been validated on our 
proposed solution and then we provide a comparative study 
among various distributed mutual algorithms with this 
proposed algorithm in Section 6. Lastly, we conclude our 
discussion with future scope in Section 7. 

2 Literature survey 
Dijkstra (1965) thoroughly studied the problem of mutual 
exclusion and associated solutions were provided 
consequently. Later in time, various popular algorithms had 
been proposed in order to handle mutual exclusion problems 
in distributed systems based on the logical clock concept by 
Lamport (1978), token-based (Parihar and Chakraborty, 
2021) and non-token-based (Saxena and Rai, 2003). Apart 
from these solutions, many other algorithms had been 
proposed to avoid concurrent access of shared resource by 
the processes in a distributed network which are discussed 
in this section. 

Nishio et al. (1990) proposed an algorithm to solve 
distributed mutual exclusion which is basically an extended 
version of Suzuki-Kasami (1985) in terms of handling the 
case where token lost in network during the transaction of 
messages. To implement this scenario, they classified the 
failure in terms of processor, communication controller and 
communication link and also introduced a time out 
associated with these. In case of failure, the algorithm 
identifies it and regenerates the token in the network. 

Helary et al. (1994) provided their token-based solution 
based on a tree topology for taking care of mutual 
exclusion. In this, a logical rooted tree is proposed for the 
distributed architecture in which there are various nodes that 
exist (represents processes). Every node in the logical 
rooted tree has native variables that describe the behaviour 
and state of the node in the logical rooted tree. CS asking 
node transferred its request to the neighbour’s parent and 
waited. Finally, the parent node takes responsibility and 
sends the token towards its corresponding successor. 
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Wu and Joung (2000) introduce the concept of group 
mutual exclusion (GME) in distributed architecture in an 
asynchronous manner. To handle GME, their research 
works assume the network to be implemented through ring 
topology. Their approach is based on a model named as 
congenial talking philosopher in which there are a number 
of philosophers in a thinking mode initially, then they wait 
for their turn and finally talk. For the same approach as 
above, they introduce a variable more likely similar to 
Lamport (1978) solution to maintain the sequence numbers. 
This sequence number is getting increases as per the 
increasing number of CS demanding processes. Once this 
sequence number is at maximum size, then all processes are 
allowed to enter in CS asynchronously. 

Lodha and Kshemkalyani (2000) present their research 
work on the underlying network of Ricart-Agrawala (1981). 
Instead of accepting the CS demanding request 
asynchronously in the request queue, the proposed solution 
takes the requests based on the priorities which are defined 
at the time of demanding for CS by any process. CS 
requests are granted to processes by the solution based on 
their decreasing order of priorities. 

Keane and Moir (2001) identified a few drawbacks in 
Wu and Joung (2000) and tried to overcome them by 
proposing a GME algorithm by spin locally through cache 
coherent and non-uniform memory access systems. In their 
solution, the transfer of control switches from session to 
session. It uses a few variables which are basically 
consisting of the number of processes in CS and the current 
session holder. This overcomes the drawback wherein the 
process continuously reads the other process’s flag variable 
which reduces the performance of the system. 

Cao and Singhal (2001) present a delay quorum-based 
mutual exclusion solution with an optimal delay where they 
consider the delay in synchronisation to be minimal and the 
message exchange complexity is in logarithmic form. In 
this, each site is associated with some quorum and enters 
into its CS after blocking all other sites by sending request 
messages in the same quorum set. The intersection property 
in between two quorums also ensures that no process will 
enter into their CS simultaneously. 

Cantarell (2005) introduces a GME algorithm in the 
token ring architecture. It proposes several algorithms in 
that research work to obtain the same. According to their 
algorithms, they provided the solution for GME with the 
help of the bounded size of messages during 
communication. As per their one of the algorithms, they do 
not maintain any request queue instead of that they provided 
the dependency of processes space requirement on the 
number of actually shared resources as m that incorporates 
the message size is 2⌈log m + 1⌉. This algorithm maintains a 
relationship between the number of processes and shared 
resources with each other. 

Zheng et al. (2007) designed their research work for the 
ad hoc network (Liu et al., 2019; Mondal et al., 2021). Their 
proposed algorithm concept is based on token asking. In 
their model, there are N number of processes and during the 
message transmission, these nodes behave like a router to 

network to support a multi-hop path. Point to point protocol 
occurs between two successive nodes. Under the 
assumption of no shared clock and memory, with the 
defined diameter of the network, they calculate the message 
complexity. 

Atreya et al. (2007) suggest a group mutual algorithm 
based on quorum. As per their algorithm, they allowed 
processes of a similar type to enter their CS simultaneously 
and provided a mutual exclusion in the case of different 
types of processes. In their approach, a set of processes 
demands for CS execution then they lock their respective 
quorums and the algorithm chooses leader among them. In 
order to allow a leader into its CS, all the other processes as 
followers left the quorum by communicating to the leader. 

Czyzowicz et al. (2011) targeted mutual exclusion and 
consensus properties in the distributed environment. In their 
proposed architecture, processes can communicate with 
each other through multiple access channels and there is a 
chance of collision during this kind of communication. They 
showed that their system is feasible in any of the collision 
detection, global clock information consisting of a number 
of rounds by any process and number of processes are 
available in the system. 

Wu et al. (2015) proposed an algorithm to implement 
the concept of mutual exclusion on handling the traffic 
control at their intersection points. As per their proposal, 
they introduce a conflict graph based on the traffic 
information and try to find the corresponding intersection 
points in that. They showed that the behaviour of this traffic 
handling is the same as the scenario in distributed mutual 
exclusion where no two vehicles are allowed to enter the 
intersection point of lanes. 

Neamatollahi et al. (2017) presented their mutual 
exclusion solution with N number of processes arranged in a 
torus logical architecture with each row having √N 
processes. Their solution is based on token perceptual 
movement in the network that took place through the 
columns of the underlying network topology. Any CS 
asking request generated by any node travelled through 
rows of the torus and once it met with a token, the token 
started to move towards the asking node in order to serve its 
CS invocation. The average message complexity of their 
algorithm lies in the range of 2√N + 1 to 3√N + 1. 

3 System model 
This current study proposes an algorithm to solve the 
mutual exclusion problem in a distributed architecture. In 
this solution, N processes have been considered on an 
almost complete tree logically and a token has been placed 
at the root node of this tree. Whenever any process demands 
for CS then the token travels towards that CS demanding 
process and when the token is at the process, then it is 
allowed to invoke its corresponding CS. In between, if any 
other process asks for its CS to execute then that process 
sends its request towards the root of the tree and enqueue 
the request in a queue available at the root node. Once the 
process which is in its CS releases the token, the token 
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again travels towards root node and before serving to the 
next CS request for a process, a swapping occurs in the root 
node and another node in the tree based on the node’s 
availability to avoid the centralisation in the system. Once 
swapping is done, again token moves towards the next CS 
demanding process in order to serve. 

In order to define various data structures in the system, 
this algorithm uses two single-valued attributes for the 
token as the source index and destination index. Then a 
queue has been defined at the root node in order to keep 
track of CS demanding processes with a table where the 
exact path in between two nodes has been stored in the form 
of link list implementation. 

4 Proposed algorithm 
In our study, the proposed algorithm has N nodes that 
represent the processes. These processes are organised like 
P0, P1, P2, …, PN–1. Then it takes an array as 
Processes_Array of size N and starts inserting the processes 
into this array. 

Figure 1 LACBT as T (N = 10) 

 

Then our model creates a logical almost complete binary 
tree (LACBT) from Processes_Array. Corresponding 
indexes of various nodes in LACBT can be obtained from 
Processes_Array as per equations (1)–(3). Based on the 
above information gathered, corresponding LACBT as T 
(where N = 10) is shown in Figure 1. 

( ) ( 1) 2 , if 0−  = ≠Pare int i i  (1) 

 ( ) (2 1), if (2 1)= + + <Left i i i n  (2) 

 ( ) (2 2), if (2 2)= + + <Right i i i n  (3) 

After the creation of LACBT, the proposed solution finds 
and stores the exact path in between the root node index 
with others. Implementation steps are shown in  
Algorithm 1. 

Based on Algorithm 1, a table is created as M shown in 
Table 1 in which the first column represents the key as 
(source node, destination node) and the second column is 
the exact path in between the source node and destination 
node. 

 

Algorithm 1 Path finding 
(Steps)  
1 START 

2 int j, k // j = index of root node, i.e., k ∈ {0, 1, 2, …, 
n – 1 

3 Linklist path 
4 Table M[n + 1][2] 
5 FOR j = 0, k = 0 to (n – 1) 

6 Run DFS from j to k and push the traversed 
node’s index into the stack 

7 Backtracking occurs, POP the element from the 
stack and add to path 

8 M[0][0]=(j,k) and M[0][1]=path 
9 k=k+1 
10 END FOR 
11 END 

Table 1 A path between root node to others 

Key (j,k) Path 
(0, 0) - 
(0, 1) 0 → 1 
(0, 2) 0 → 2 
(0, 3) 0 → 1 → 3 
… ......... 
(0, n – 1) 0 → 2 → 6 → 14 … → n – 1 

Table M is placed at the root node and along with that, a 
queue is created as request_queue (RQ) at the root node 
which is initially empty. Then the token is generated at the 
root node consisting of two attributes, source_index 
represents as S and destination_index as D, respectively. 
Token S is initialised with 0, i.e., root node index. This is 
explained in Algorithm 2 and the overall visualisation of 
LACBT is like Figure 2. 

Algorithm 2 Data initialisation 
(Steps)  
1 START 
2 FOR i = 0 to size(Processes_Array) – 1 
3 boolean req_flg = FALSE 
4 boolean exec_flag = FALSE 
5 END FOR 
6 int x = 0, y = size(Processes_Array) – 1 
7 Place M to root node of T 
8 Create queue request_queue as RQ 
9 Move RQ to root node of T 
10 Create_Token() 
11 int token.source_index, token.destination_index 
12 token.S ← T’s root index, i.e., 0 
13 token.D ← NULL 
14 END Create_Token() 
15 END 
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Figure 2 Visualisation of LACBT (see online version  
for colours) 

 

Preliminary steps for this proposed work have been done at 
this point. Now we proceed towards the CS request and 
release an implementation of this model done by a process 
in the distributed system. Algorithm 3 explains this 
implementation in detail. 

Algorithm 3 Proposed algorithm 
(Steps)  
1 START 
2 CS_Request(Pi) // i = index of corresponding 

process in T not the process sequence no. 
3 Pi.req_flag = TRUE 
4 Pi.exec_flag = FALSE 
5 int enqueue_element ← i 
6 int temp ← i 
7 WHILE (temp != 0 ) 
8 temp ← Parent (temp) 
9 END WHILE 
10 Process at temp.RQ.enqueue (enqueue_element) 
11 IF (RQ != EMPTY && token is at root) 
12 token.D ← dequeue from RQ 
13 END IF 
14 IF (token is at root && token.S != NULL && 

token.D != NULL) 
15 token searches for key (S,D) column in M and 

access the exact path corresponding to key  
(S, D) to reach the destination index 

16 IF (current process index == token’s 
destination index) 

17 Pi .exec_flag= TRUE 
18 Pi enters into CS 
19 END IF 
20 END IF 
21 END CS_Request(Pi) 
22 CS_Release(Pi) // i= index of corresponding process 

in T 

23 int temp ← token.D 
24 WHILE ( temp != 0 ) 
25 temp ← Parent (temp) 
26 MOVE token to tempth node in T 
27 END WHILE 
28 token.D ← NULL 
29 SWAPPING_MODEL(x, y) //The below 

condition is added due to the next CS requesting 
process Pm 

30 Pi.req_flag= FALSE 
31 Pi.exec_flag= FALSE 
32 END CS_Release(Pi) 
33 SWAPPING_MODEL(x, y) // for definition of x 

and y, refer Algorithm 2 
34 Pi = Processes_Array[x] 
35 Pj = Processes_Array[y] 
36 IF (!Pi.req_flag) 
37 int k 
38 static int flag = 0 
39 IF (y == 0) 
40 y = size( Processes_Array)-1 
41 END IF 
42 WHILE (y != 0) 
43 IF (!Pj.req_flag) 
44 Copy Processes_Array[0].M into Pj 
45 Copy Processes_Array[0].RQ into Pj 
46 SWAP Pi and Pj 
47 MOVE Pk.M & Pk.RQ to Pj 
48 END IF 
49 ELSE 
50 y= y-1 
51 Pj = Processes_Array[y] 
52 continue 
53 END ELSE 
54 END WHILE 
55 END IF 
56 y = y – 1 
57 END SWAPPING_MODEL(x, y) 
58 END 

Case 1: process Pi request for the CS 

1 Pi sends its CS request towards the root node of 
LACBT in the form of its node’s index. 

2 When Pi request is at the root node, RQ available at 
root is updated with that request. 

3 Token fetch element from the RQ and update its 
destination_index attribute if the token is at root and 
RQ is not empty otherwise remains ideal at the root. 

4 If both attributes of the token are non-empty, then the 
token starts moving towards CS requesting process 
index using its own attributes as source_index and 
destination_index with the help of table M shown in 
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Table 2 in which path between source and destination 
index is stored (refer Algorithm 3, steps 2–21). 

Case 2: processes Pm and Pn also request for the CS in 
between 

1 In such a scenario, case 1’s points 1 and 2 are repeated 
for Pm and Pn. 

2 Afterward, case 1’s point 3 becomes FALSE because 
the token is not at the root and so for point 4. 

Case 3: processes Pi executed CS and exit 

1 The token starts moving towards the root node and 
once the token is at root, it removes its 
destination_index attribute and makes it blank by 
updating NULL in it. 

2 Again, on reaching the root node with respect to token, 
case 1’s point 3 becomes TRUE and so as case 1’s 
point 4 (refer Algorithm 3, steps 22–32). 

Till this, CS request and release scenario have been 
explained through this proposal. The root node process 
(here P0) has key responsibilities towards this research 
work. We really don’t want our system to be dependent on a 
single node or our system to behave like a central 
coordinator-based system. In order to handle this, our 
algorithm introduces a swapping node protocol model 
(SNPM) in T where after each time token reaches at root 
node after CS release by any process, Swapping is done 
between the root node and the last index node of LACBT. 
Next time swapping is done in between root node and (last 
index – 1) node and so on. By applying this SNPM, our 
system keeps rotating the load and responsibilities within 
the entire distributed system (refer Algorithm 3,  
steps 33–57). 

There are below two situations that are handled by this 
swapping mode: 

1 If the root node is waiting for CS to execute, then this 
SNPM did not perform anything (simply skip). 

2 If the swapping node other than the root is waiting for 
CS to execute, then skip that node and continue with 
the next node by decreasing its index by one. This 
scenario repeats until SNPM does not find any suitable 
node in T where the process is not involved in any of 
CS operations. 

4.1 Case study 
Additionally, in order to explain the proposed research 
work, a scenario is explained in detail with the assistance of 
Figures 4–18. There are N processes in the system that are 
arranged in LACBT and shown in Figure 1 (here,  
N = 10). As a part of the preliminary step, token 
(source_index with value 0, i.e., root node index and 
destination_index with NULL), table M and request queue 
RQ have been created at root note as per Algorithm 1 and 
Algorithm 2 shown in Figure 3. Till this point system is 
ready for handling distributed mutual exclusion. 

Figure 4 Initial setup and token asking state (see online version 
for colours) 

 

Figure 5 Token travel state (see online version for colours) 

 

Figure 6 Token at destination state (a) (see online version  
for colours) 
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Figure 7 More token requests state (see online version  
for colours) 

 

Figure 8 Token release state (a) (see online version  
for colours) 

 

Figure 9 Token at root again after serving the request state  
(see online version for colours) 

 

Figure 10 Request queue transfer state (see online version  
for colours) 

 

Figure 11 Swapping model state (a) (see online version  
for colours) 

 

Figure 12 Token travel to next CS asking process state (a)  
(see online version for colours) 

 

Process P8 requests for CS to then invokes its request travels 
towards the root in the form of its respective node index and 
the request is updated in RQ shown in Figure 4. Now as per 
the proposed algorithm, when the token at the root and RQ 
is not empty, the token gets the element from RQ and 
updates its destination index. Once both the attribute of the 
token is filled then with the help of M, token starts 
following the path (0-1-3-8) corresponding to the key (0, 8) 
as shown in Figure 5. After getting a token, P8 enters into its 
CS has shown in Figure 6. By the time, P4 and P6 also show 
their interest in executing their CS then again they send 
their request in the form of their node index towards root 
node and RQ is updated with their requests shown in  
Figure 7. In the time being P8 is done with its CS invocation 
and sends the token towards the root node as shown in 
Figure 8 and on reaching the root node, token removes its 
destination_index shown in Figure 9. Before serving the 
next CS request, i.e., P4’s and P6’s request, the algorithm 
invoke SNPM in which two nodes are swapped with each 
other in which the first node is root node and the second 
node is the last indexed node of T (if last indexed node is in 
waiting state then next backward node is chosen, same 
continues till any suitable process finds for swapping) but 
before that algorithm move table M and RQ towards the 
second node chosen by SNPM. This swapping is logically 
done in the process array from which T is constructed. P0 
and P9 is then swapped as shown in Figures 10 and 11. After 
the swapping of nodes, the token again starts moving 
towards next CS requesting process, i.e., P4. After serving to 
P4, again swapping occurs and then the next CS requesting 
process is served, i.e., P6 which is shown in Figures 12 to 18 
and so on. 
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Figure 13 Token release state (b) (see online version  
for colours) 

 

Figure 14 Swapping model state (b) (see online version  
for colours) 

 

Figure 15 Token travel to next CS asking process state (b)  
(see online version for colours) 

 

Figure 16 Token at destination state (b) (see online version  
for colours) 

 

Figure 17 Token release state (c) (see online version  
for colours) 

 

Figure 18 Idle state (see online version for colours) 

 

4.2 Messages exchanged 

4.2.1 Light load situation 
The present work assumes that only a single process 
attempts to invoke its CS at a time for the consideration of a 
light load situation. As a worst-case scenario, the leaf node 
process asks for its CS to invoke transfer the request to the 
parent and further till it reaches to root node. (⌈log N⌉ – 1) 
messages (N = nodes in the system) are required for this. 
Then token starts moving towards the CS demanding 
process and again (⌈log N⌉ – 1) messages required for this. 
Once the token-holder node releases its CS, the token again 
starts approaching towards root node then (⌈log N⌉ – 1) 
message exchanges are required. In this complete scenario 
of light load, a total of 3(⌈log N⌉ – 1), N ≤ 3 message 
exchanges are required by a process to access the shared 
resource in the system. 

4.2.2 Average load situation 
The current study assumes that (⌈log N⌉ + 1) processes 
attempt to invoke their CS simultaneously. In such a case, 
the total number of messages exchange are 3(⌈(⌈log(N + 
1)⌉(⌈log(N + 1)⌉ – 1))/2⌉) and the average number of 
exchanges in terms of messages per CS invocation by a 
process is 3(⌈(⌈log(N + 1)⌉ – 1))/2⌉). 

During these transactions in the system, number of total 
messages exchange can be seen in equation (4). The series 
in equation (4) can be comprised in summation form like 
equation (5) which is further be evaluated and equivalent to 
(3⌈(⌈log(N + 1)⌉(⌈log(N + 1)⌉ – 1))/2⌉). The average number 
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of messages exchanged by a process to invoke CS are 
(3⌈(⌈log(N + 1)⌉(⌈log(N + 1)⌉ – 1))/2⌈)/⌈log(N + 1)⌉ = 
3⌈(⌈log(N + 1)⌉ – 1)/2. 

4.2.3 High load situation 
During high load situations where all the processes in the 
logical system attempt to invoke their CS and under this 
consideration that logical architecture is a fully complete 
tree, the total number of messages exchange are 3⌈(N + 1)⌉ 
3⌈(N + 1)⌉ [⌈log(N + 1)⌉ + 2(2–⌈log(N+1)⌉ – 1] and an average 
number of messages per CS invocation by any process is 
6[⌈log(N + 1)⌉ + 2(2–⌈log(N+1)⌉ – 1]. This can be obtained from 
equation (7) in which the total number of messages are 
shown and in equation (4) where an average number of 
messages exchange are discussed. 

4.3 Limitation to the proposed algorithm 
Let’s discuss the basic limitations of our proposed algorithm 
in this section. Nowadays due to various technological 
enhancements, wireless networks are the fastest-growing 
architectures. Communication and collaboration among the 
nodes in such a network are complex tasks as the node 
movements are highly dynamic. We have targeted our 
solution firstly on static network and requires essential 
modifications as a part of future work for its imposement on 
dynamic architectures like the wireless networks. We had 
also defined probability density function f(p2, p3) on the 
given sample space 1 1 2 2 3 3 n nS(P) {P , P , P , P , P , P , , P , P }′ ′ ′ ′= …  

(discussed in Section 5.1) such that 2
2 3

(p )
P |P 3f p=  

32 3 P 3f (p , p ) | f (p ),  which fulfils a contradiction scenario 
with our assumption of more than one processes 
involvement in the CS. 

5 Proof of DME properties 
5.1 Safety 
Theorem 5.1: The proposed algorithm achieves mutual 
exclusion. 

Proof: Safety is must implemented property to ensure that 
no two processes in the system invoke their CS 
simultaneously in order to support mutual exclusion. Our 
algorithm achieves safety as an invocation of CS by any 
process depends on the token. The process can invoke CS of 
its own if it possesses the token. According to our solution, 
the token can only be granted for a single process at a time 
by fetching data from RQ and travels towards that process 
for allowing that into its corresponding CS. Also at any 
point of time P1 can only enter into CS, if it is Pi.exec_flag 
is true and no two processes at the same time can have their 
exec_flag true according to our proposal. 

 

 

 

Proof: By contradiction to support such a statement, two or 
more processes must be in their CS. We consider our whole 
proposed DME as a sample space S(P) in which a set of 
events are available in the form of Pi(Process allowed to 
enter into CS) and iP′  (process does not allow to enter into 
CS). 

Hence, 1 1 2 2 3 3 n nS(P) {P , P , P , P , P , P , , P , P }.′ ′ ′ ′= …  
Assuming P2 and P3 are in CS at the same time. Each 

and every event in equations (9) and (10) must be true to 
support our assumption that leads to equations (11), (12) 
and (13) respectively. Our initial assumption fails as 2P′  and 

3P′  cannot be true at the same time otherwise, both P2 and 
P3 will not be allowed to enter into CS as per concluded 
from equation (13). Similarly, Considering that P2 and P3 
have probability density function f(p2, p3). Defining a such 
of this conditional probability density of P2 such that P3 = p3 
by 2

2 3 3
( )

P |P 2 3 P 33f f( , ) | f ( ).= =pp p p p  This restricts f(p2, p3) 
to the given value of p3 with the assumption definition of 

3P 3f ( ) 0≠p  and 3 3 2 3 2( ) ( , ) .
∞

−∞

= < ∞Pf p f p p dp  

Probability of even P2 to occur given that P3 has already 
occurred P(P2|P3) = P(P2P3)/P(P3). Given the law of 
condition on P2 is P3 ∈ (p3 – ε, p3 + ε if ε → 0. We 
concluded 

{ }2 3
( )

P |P 2 3 3 33 0
: lim | ( , )

→
= = ≤ ∈ − +k

ε
F p P P k P p ε p ε  

on set 2 ( ) 2 ( )3 33 3
P |P |f

= =
′=k kp p

P PF  which is consistent with our 

contradiction concluding P(P3) = 0 on an event P2. 
Observing a contradiction exist that proves our assumption 
that more than one process can be allowed to enter into CS 
simultaneously is false. 

5.2 Liveness 
Theorem 6.2: The proposed algorithm achieves liveness. 

Proof: Liveness ensures that neither deadlock nor starvation 
can occur in the system during the message transactions. To 
prove that our system is deadlock/starvation-free begins 
with this contradictory assumption that the system is 
suffered from these, hence token has information about 
more than one process at the same time which is not correct 
because in our algorithm, token consists of two  
single-valued attributes by which it decides the exact 
process to be allowed for CS invocation. Since this is a 
contradiction to our initial assumption, we can conclude that 
this system is deadlock-free. Also, our proposed system 
based on LACBT architecture ensures that none of the 
transactions creates a circular form during the 
communication. 
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5.3 Fairness 
Theorem 6.3: The proposed algorithm is fair. 

Proof: Fairness assured the system to be starvation free, i.e., 
processes should not wait for an indefinite time for their 
chance to invoke CS. The proposed algorithm is starvation-
free as processes get a fair chance to execute their CS 
according to the request to be inserted in RQ as token 
always gets the information from the request queue and 
grant that process to invoke its CS whichever information is 
currently held by a token. This ensures that processes in the 
system are allowed to invoke their CS in the order they 
request for the same. 

( ) ( )
( )

log( 1) 1 log( 1) 2

log(
3

1) 3 0

+ − + + −  

+ + − +  
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N N
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( )2 1 3 4P P P P P′ ′ ′ ′→ ∧ ∧ ∧ ∧… n  (8) 

( )3 1 2 4P P P P P′ ′ ′ ′→ ∧ ∧ ∧ ∧… n  (9) 

( ) ( )1 3 4 1 2 4P P P P P P P P′ ′ ′ ′ ′ ′ ′ ′∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ⇔… …n n T  (10) 

( )1 2 3 4P P P P P′ ′ ′ ′ ′∧ ∧ ∧ ∧ ∧ ⇔… n T  (11) 

( )
i

1 2 3 4 n

P T, 1 i n
P T,  P T,  P T,  P T, , P T

∀  ≤ ≤
′ ′ ′ ′ ′= = = = =…

 (12) 

6 Comparative analysis 
From the existing literature survey, we have performed a 
comparative analysis in between various existing DME 
algorithms with our proposed model in terms of the total 
number of processes available in the system and the average 
number of message exchanges during light load condition 
shown in Figure 19 and high load condition shown in  
Figure 20. We had modelled our solution through the given 
mathematical model towards the calculation of message 
complexity as per the discussion in Section 4.2. Our 

solution shows better results in high load situations in which 
continuous requests for CS invocation are made by the 
processes available in the system. Detailed comparison in 
terms of average synchronisation delay and message 
complexity can be seen in Table 2 for existing algorithms to 
handle mutual exclusion. 

Figure 19 Message complexity in light load situation 

 

Figure 20 Message complexity in high load situation 

 

Notation used in Table 2. 

N number of processes 

Z total number of groups 

S size of quorum 

R number of mutually exclusive resources 

Bc(Pm) ad hoc traversing cost from node Pm 

Hp(Pn, Pm) number of switch count between Pm and Pn 

|Q| quorum size 

l maximum number of processes from where 
CS request can be received by a node 

m maximum size of quorum 

n maximum size of request. 
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Table 2 Performance measure of various DME-based algorithms 

Algorithm Approach/ structure 
Average 

synchronisation 
delay 

Message complexity 

Heavy load Light load 

Lamport (1978) Non-token-based O(1) 3(N – 1) 3(N – 1) 
Ricart and Agrawala (1981) Non-token-based O(1) 2(N – 1) 2(N – 1) 
Maekawa (1985) Quorum-based O(1) 5( 1)−N  3( 1)−N  

Suzuki and Kasami (1985) Token-based O(1) N N 
Raymond (1989) Token-based O(N) 4 O(log N) 
Nishio et al. (1990) Token-based O(N) N N 
Helary et al. (1994) Token-based O(log N) O(N) O(N) 
Wu and Joung (2000) Ring-based - O(NZ) O(NZ) 
Lodha and Kshemkalyani (2000) Priority-based - N – 1 2(N – 1) 
Keane and Moir (2001) Cache coherent-based - O(N) O(N) 
Cao and Singhal (2001) Quorum-based O(T) O(K) O(K) 
Cantarell (2005) Token ring-based - log(min(N, R)) log(min(N, R)) 
Paydar et al. (2006) Logical structure-based - - 4 N  

Zheng et al. (2007) Token-based 2ST + E Bc(Pm) + Hp(Pn, Pm) Bc(Pm) + Hp(Pn, Pm) 
Atreya et al. (2007) Quorum-based - - O(lmn) 
Kakugawa et al. (2008) Non-token-based 4 O(|Q|) O(|Q|) 
Taheri et al. (2011) Logical structure-based ( )O N  N  ( )O N  

Neamatollahi et al. (2017) Logical torus  
structure-based 

( )O N  3 2( 1)+N  to 3( 1)+N  

Proposed algorithm LACBT-based O(log N) 6[⌈log(N + 1)⌉  
+ 2(2–⌈log(N+1)⌉ – 1)] 

3(⌈log N⌉ –1), N ≤ 3 

 
7 Conclusions and future scope 
The research work proposed through this paper is a novel 
token-based distributed mutual exclusion algorithm. The 
implementation of this given algorithm is based on logical 
almost complete tree topology. The average number of 
message exchanges per CS by a process through this 
algorithm is in logarithmic which is effective in contrast to 
other existed algorithms till date. The system is scalable and 
satisfies all necessary properties of distributed mutual 
algorithms. The movement of the token in this architecture 
maintains the sequence of CS demands by processes. For 
future work, the point of focus will be on the generality of 
loss in terms of nodes and tokens. 
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