
Int. J. Computational Science and Engineering, Vol. 26, No. 1, 2023 1

Copyright © 2023 Inderscience Enterprises Ltd.

An efficient algorithm for maximum cliques problem
on IoT devices

Zine El Abidine Bouneb
Department of Mathematics and Computer Science,
University of Oum El Bouaghi,
B.P. 358 route de Constantine, Oum El Bouaghi 04000, Algeria
Email: bounebzineelabidine@gmail.com

Abstract: This work describes how the maximum clique problem (MCP) algorithm can be
performed on microcontrollers in a dynamic environment. In practice, many problems can be
formalised using MCP and graphs where our problem is considered in the context of a dynamic
environment. MCP is, however, a tricky problem NP-Complete for which suitable solutions must
be designed for microcontrollers. Microcontrollers are built for specific purposes and optimised
to meet different constraints, such as timing, nested recursion depth limitation, or no recursion at
all due to recursion stack limitation, power, and RAM limitation. On another side, graph
representation and all the algorithms mentioned in the literature to solve the MCP problem,
which is recursive, consumes memory and is designed specifically for computers rather than a
microcontroller.

Keywords: maximal clique enumeration; MCE; maximum clique problem; MCP;
microcontrollers; internet of things; IoT; agent coalition; symbolic computation; n queens
completion problem; MicroPython.

Reference to this paper should be made as follows: Bouneb, Z.E.A. (2023) ‘An efficient
algorithm for maximum cliques problem on IoT devices’, Int. J. Computational Science and
Engineering, Vol. 26, No. 1, pp.1–11.

Biographical notes: Zine El Abidine Bouneb received his PhD in Computer Science from
Constantine University, Algeria in 2011 with the collaboration of the International Institute of
Software Engineering IIST in Macau, SAR of China. His thesis projects focused on developing
symbolic distributed algorithms for model checking based on maximality semantics. His primary
interest is formal methods and distributed systems. He is working on the application of formal
methods to the internet of things.

1 Introduction
Engineers and scientists always build mathematical models
with particular abstraction for solving real problems or
harnessing specific physical laws for building new genius
products. Where nowadays, our science is a stack of
abstractions. For example, we can go from Maxwell
equations to Ohms law to digital gates to software via many
abstractions. We produce a specific genius product going
the reverse way by refinement. Refinement is the dual word
of abstraction. At a certain level of abstraction, sometimes a
problem can be seen from a different angle where scientists
can have multiple-choice to use many mathematical models.
For example, resource allocation problems can be modelled
and solved using integer programming, linear programming,
or graph theory. In this paper, we address the issue of the
maximum clique on a dynamic graph. By definition, a
clique is a complete subgraph, and a maximal clique is the
set of all cliques in a given graph.

In contrast, the maximum clique is the largest in the
graph, i.e., the maximum cardinality set in the maximal
clique. The problem considered here is a variant of the
maximum clique problem (MCP) that arises from a dynamic

environment. In this paper, we compute the maximum
clique that includes specific vertices in the graph. This last
can be a particular case of the MCP. To better explain this
fact, let us consider the problem of eight queens. This
problem was first posed by a German chess player in 1848.
The n-queens problem is a generalisation of the above
problem: placing n non-attacking queens on n × n
chessboard
Figure 1.

Figure 1 Eight queens problem

2 Z.E.A. Bouneb

If we consider the complement of queen graph (Bell and
Stevens, 2009), the problem can be solved by enumerating
all maximal cliques with n cells or vertices, i.e., MCE of an
n-clique problem, an NP-complete problem even in the
approximate case (Khot, 2001).

If we assume that m queens are already positioned on
the chessboard, what are the possible solutions for the (n-m)
remaining queens? What is the maximum number of queens
we can add to the chessboard if there is no solution? This is
what has been considered as n queen completion problem
(Gent et al., 2017). The complexity of this problem was first
studied in Gent et al. (2017). By analogy to the n queens’
problem, this paper tries to solve the maximal clique
completion problem MCCP for short, a particular case of
the MCP. For that reason, we propose a symbolic graph
representation suitable for microcontrollers to overcome
RAM limitation and a new iterative algorithm for
overcoming the stack limitation of recursively calls of
functions or no stack at all. For example, the PIC
microcontroller 16F877A does not support recursive calls.
Programming languages designed for microcontrollers like
the MicroPython impose specific maximum recursive
depths. For instance, according to our programming
experience, MicroPython on the Chinese IoT
microcontroller esp8266 has 19 nested recursive calls as a
limit. For solving the eight queen problem, formalised as a
maximum clique, we cannot use any of the algorithms in the
literature due to recursion and the complexity of the
problem. The author will review the entire algorithms
mentioned in the literature for solving the MCP problem in
the next section. Furthermore, we will explain why
microcontrollers are unable to support the literature
algorithms for solving the problem considered in this paper.
After that, the author proposes a new representation of
graphs suitable for microcontrollers and a new algorithm
dedicated to solving the MCP on this representation. The
last sections are an assessment of the algorithm on the
queen’s problem using python language. Moreover,
accurate implementation of the algorithm using
MicroPython on the NodeMCU with MAX7219 8 × 8 LED
display can be realised.

2 Background
Today microcontrollers are used heavily in IoT systems. IoT
devices, in general, have limited memory and computing
power, where challenges are raised to the research
community in this field (Nikoui et al., 2021). For that
reason, efficiency is a pertinent concern for IoT systems.
Many are the suggested propositions in the literature to
fulfil this goal. Researchers started looking for a lightweight
protocol with good performance to use it as the base
protocol for the broker where the IBM protocol MQTT used

in the petroleum rigs fits this subject (Kanakaris and
Papakostas, 2020).

Furthermore, the growing number of IoT devices and
the tremendous volume of daily data make security another
crucial objective to consider in IoT systems. Efficiency is
the essential criterion, i.e., without efficiency, any proposed
solution for a given problem in IoT systems cannot work
(Ramu et al., 2020; Xiao et al., 2021). For example, in Zhao
et al. (2021), the authors suggest an edge streaming data
processing framework for reducing bandwidth resources
and transmission delay during data transmission.

Moreover, the environment in IoT is more dynamic
(Yang et al., 2021). An IoT device can join the environment
as it can leave. For example, in the joining, specific
resources are requested, or connection links are established.
For instance, in Hu et al. (2021), the authors suggest a
probabilistic graph for community detection in a social
network where the jargon community is similar to a clique
in our context. In contrast, the solution proposed in this
paper is an exact solution versus the approximative solution
of Hu et al. (2021). We recall that the NP-complete problem
can be solved by distribution for parallelisation; for
example, if one hundred people want to cut their hair, we
have one barber. If the barber takes 20 minutes for each
client, the operation needs two days. But if we hire 100
barber, the process spends 20 minutes only. The second
approach used approximative techniques based on machine
learning. For example, for the graph colouring problem
VCP the authors Kashani et al. (2020) use fuzzy irregular
cellular automaton (FICA) for finding a near-optimal
solution. As we have explained before, the mathematical
models used in engineering are related. For example, the
VCP is related to the maximal clique’s dual problem, the
maximum independent set. We draw attention to that the
issue presented here can be formalised using other
mathematical models used in scheduling. Either for
decreasing waiting time by increasing concurrency or
reducing energy consumption, we can cite Daid et al.
(2021), where the authors use machine learning for
facilitating the execution time to reduce energy
consumption. The motivation for computing the exact
solution in our approach is that mutual exclusion is a critical
property. In general, for critical systems, engineers use
formal methods. For example, in Ahamad et al. (2021) the
authors use formal verification to warranty that the
proposed protocol of authentification complies with security
properties since security is critical.

IoT infrastructure can add intelligence to our systems.
For example, a cell phone takes excellent pictures that are
physically impossible with its cheap and tiny camera sensor,
but coupling this sensor with the suitable algorithms for
image processing can take wonderful quality photos. For
example, in Dong et al. (2021), the authors present an
excellent solution for on-the-fly electricity bill generation,
which is impossible without the internet of things (IoT).

 An efficient algorithm for maximum cliques problem on IoT devices 3

Table 1 PIC MCU Family

 Base line Mid-range Enhanced mid-range PIC18

No. of pins 6–40 8–64 8–64 18–100
Program memory Up to 3 KB Up to 14 KB Up to 28 KB Up to 128 KB
Data memory Up to 134 bytes Up to 368 bytes Up to 1.5 KB Up to 4 KB
Instruction length 12-bit 14-bit 14-bit 16-bit
No. of instruction set 33 35 49 83
Speed 5 MIPS* 5 MIPS 8 MIPS Up to 16 MIPS
Feature • Comparator

• 8-bit ADC

• Data memory

• Internal oscillator

• In addition of baseline
• SPI
• I2C
• UART
• PWM
• 10-bit ADC
• OP-Amps

• In addition of mid-range

• High performance

• Multiple communication
peripherals

• In addition of enhanced
mid-range

• CAN

• LIN

• USB

• Ethernet

• 12-bit ADC
Deep stack call 0–2 level 2–8 level 2–8 level Up to 31 level
Families PIC10, PIC12,

PIC16
PIC12, PIC16 PIC12F1XXX,

PIC16F1XXX
PIC18

Similarly, in Bouneb and Saidouni (2021), the authors
explain the importance of IoT technology in plumbing
systems, where the plumbing system will be intelligent due
to the software infrastructure behind IoT technology. The
authors suggest a house plumbing system with fault
tolerance and only one hot and cold water pipe. The paper
showed that the concept of scenario alone could not ensure
the integrity of the group mutual exclusion property. The
idea of a group was first introduced by Joung (2000), where
the resource considered is unbound, or we can say a
state-based resource.

Despite all of this IoT enhancement, technology cannot
handle resource sharing with maximal concurrency.
Moreover, the underlying IoT infrastructure cannot handle
resource management automatically (Sangaiah et al., 2020).
This fact motivated the research community to develop a
novel blockchain for automatisation; for example, in Zhang
et al. (2021), the authors suggest a novel blockchain for
social networks to preserve privacy where social IoT is a
particular case of a social network.

Similarly, the algorithms mentioned in the literature for
solving group mutual exclusion algorithms, to name a few
Luo et al. (2013), Park et al. (2017) and Bashiri et al.
(2018), miss automatisation for IoT systems because they
need to compute a graph and give the groups manually.
After all, the resources considered in those algorithms are
unbound.

In Bouneb (2021), the author considers the concept of
the group on bound resources. Each resource has one
instance. In this context, IoT devices participate in
computing IoT groups to increase concurrency, as in the
case of resources or computing groups based on sustained
connection. Group formation is an essential issue in the IoT
environment. Many features can be used to assess the

correct notion of a group in a given setting. How is the
quality of a group configuration measured so that one can
say that a grouping of IoT devices in coalitions is better for
this IoT device or the whole system than another? In this
situation, the author shows that if we use graphs as a
mathematical model for computing groups, the problem will
be seen as a maximal or MCP. The distributed algorithm
presented in Bouneb (2021) computes maximal clique
distributively without recursion. All the algorithms
presented in the literature, like Das et al. (2020) and
Blanuša et al. (2020), use recursion and shared memory.
The cloud as shared memory works fine, but those
algorithms do not work speciously for critical systems
without the internet. In Bouneb (2021), the graph of
resources is already coded. Furthermore, for any non-
resources graph, the distributed algorithm cannot be applied.
In addition, the algorithm cannot be used on standalone IoT
devices.

Other approximate approaches have been proposed for
the MCP using heuristics (Smith et al., 2019; Babkin et al.,
2018). We recall that the distributed algorithms are
generally used for the exact solution.

The algorithm presented in this paper can efficiently
solve the MCP and its variant maximum clique completion
problem. We draw attention that all the algorithms
presented in the literature are recursive. IoT devices are, in
general, microcontrollers, which are a single on-chip
computer or a system on chip (soc) that includes a processor
core, data and code memory, Gpio, many on-chip
peripherals, and communication interfaces. But in general, it
cannot deal well with recursion. Recursion is curried out
using the stack data structure. The stack is implemented on
the SRAM memory. Hence the stack size will vary during
runtime. To store the current fill level of the Stack, the CPU

4 Z.E.A. Bouneb

contains a special register called the stack pointer (SP) in
most microcontrollers is 16 bits, which points to the top of
the stack. Stacks typically grow ‘down’, from the higher
memory addresses to the lower addresses. So the SP
generally starts at the end of the data memory. SP
decremented with every push and incremented with every
pop. Data space in some implementations of
microcontrollers is so tiny that only the stack pointer lows
register 8 bits are needed. Hence each function call takes 2
bytes on the stack to store the caller’s address and the
number and size of local variables, including passed
arguments that are also stored on the stack. This fact can
determine the number of recursive call depth limits for each
microcontroller. For some microcontrollers, recursion is not
allowed at all. For that reason, the application helps in the
selection of a suitable micro-controller. For example, in the
table below, the PIC MCU Family characteristics are
divided into four categories: base line, mid-range, enhanced
mid-range, PIC18.

3 Maximal clique enumeration problem (MCE)
This section describes the main algorithms proposed in the
literature for computing Maximal cliques in a graph.

1 The algorithm from the article by Bron and Kerbosh
(1973) is the first algorithm created to find all the
maximal cliques of a graph. It works with three sets:
a A set C which contains the partial clique built at

time t.
b A set T which contains the candidate nodes to

enlarge the partial clique.
c A set D, which contains the nodes that have

already been visited to construct a clique.

Algorithm 1
Procedure MCE (C, T, D)
 if T ∪ D = ∅ Then
 report C as a maximal clique
 end if
 choose a pivot vertex p in T ∪ D
 for each vertex v in T * N(p) Do
 T: = T – v
 C: = v
Procedure MCE (C, T ∪ N(v) , D ∪ N(v))
 C: = C – v
 D: = v
 end for

The algorithm, therefore, initialises T with all the nodes
V of the graph while C and D are empty. Then, the
algorithm performs several iterations. During each
iteration, a pivot is selected. This fact facilitates the
choice of the nodes that can be added to the current

clique. The selection of the pivot is random. Therefore,
the experiments do not always take the same time nor
return the cliques in the same order. The procedure is
written below in algorithm 1.

2 Tomita: Tomita et al. (2004) Tomita’s algorithm is now
the algorithm of reference. Its complexity is of the
order of O(3n/3). It differs from Bron and Kerbosh’s
algorithm by choosing the pivot, which generally
allows pruning more efficiently. He also uses three sets:
• A set Q which contains the partial clique which is

constructed at a time t.
• A SUBG set and a CAND set allow you to select

the best possible pivot, then the best candidate, to
expand the clique.

The algorithm initialises the set Q empty while SUBG
and CAND are initialised with the whole nodes V.
Pruning is done by choosing the pivot. This choice
allows a faster search because it maximises the size of
the entire CAND. Moreover, if the CAND set is empty,
but SUBG is not empty, we backtrack and return C
because the current generated clique C can be a subset
of the maximal clique. The procedure is depicted in
Algorithm 2.

Algorithm 2
Procedure Tomita (Q, SUBG, CAND)
 if SUBG = ∅ Then
 report Q as a maximal clique
 end if
 choose a pivot vertex u ∈ SUBG which maximise |CAND ∩

N(u)|
 while CAND – N(u) ≠ ∅ Do
 choose q ∈ CAND – N(u)
 Q: = Q + q
Procedure Tomita (Q, SUBG ∩ N(v), CAND ∩ N(v))
 Q: = Q – v
 CAND: = CAND – q
 end while

3 Eppstein: Eppstein and Strash (2011) proposed an
improvement of Tomita’s algorithm. Before executing
Tomita, they suggest using the degeneracy of the graph.

• Definition 1.1 The degeneracy of a graph G is the
smallest number k such that each sub-graph S ∈ G
contains a vertex of degree at most k. For each graph
G, we can calculate its order of degeneracy, which is
a linear order of vertices such that each vertex has at
most d neighbours later in order. The degeneracy of a
graph and its order can be calculated in linear time.
The algorithm uses the same sets as Tomita;
however, they are not initialised in the same way
(see Algorithm 3).

 An efficient algorithm for maximum cliques problem on IoT devices 5

Algorithm 3
Procedure Tomita (Q, SUBG, CAND)
 for each vertex vi in a degeneracy ordering v0, v1, … of G do
 SUBG: = N(vi) ∩ {vi + 1, …, vn–1}
 CAND: = N(vi) ∩ {v0, …, vi–1}
Procedure Tomita (vi, SUBG, CAND)
 end FOR

4 MCP
We present in this part a list of algorithms proposed in the
literature to solve the MCP in a graph.

1 MC and derivatives: MC is an exact algorithm that
finds the clique maximum in a simple graph. This
algorithm has several extensions (see Prosser, 2012). In
the following, we present the basic principle of MC as
well as its main variants.

The first algorithm, MC, uses two sets:
• A set C of nodes, initially empty, which contains

the partial clique.
Constructed at time t and which contains the
maximum clique at the end of the algorithm.

• A set P, initialised with all the graph nodes,
contains the candidate nodes to enlarge the partial
clique. The algorithm also uses a max variable
which contains the size of the maximum clique
found. The detailed procedure is presented in
Algorithm 4.

Algorithm 4
Procedure-MC(C, P, max)
while P ≠ ∅ do
 if |C| + |P| < max: return
 choose v the last element of P
 C: = C + v
 if |P ∩ Γ(v)| = 0 and |C| > max
 Save C as the biggest clique
 max: = |C|
 end if
 if |P ∩ Γ(v)| ≠ 0
Procedure-MC(C, P ∩ Γ(v), max)
 end if
 C: = C – v
 P: = P – v
end while

The first modification to save a little time is the MC0
procedure. We only consider the neighbours whose
identifier is less than the selected pivot node v,
avoiding duplicates. In Prosser (2012), presenting
different versions of the MC algorithm: MCQ, MCS,
and BBMC. MCS itself is available in 2 versions MCSa

and MCSb. According to the sorting previously carried
out by a chosen colouring procedure, all these
algorithms have in common to colour the graph.

2 MCF: Pattabiraman et al.(2013) propose an exact
algorithm and a heuristic for the MCP applied to large
graphs.

The authors propose pruning methods during the
algorithm. This pruning makes it possible to avoid
exploring specific routes which would not provide
better solutions. The heuristic proposed by the authors
differs from the standard algorithm since it does not test
each node of the set U but takes the one with the
maximum degree. The algorithm, however, consists of
exploring the nodes whose degree is greater than the
size of the maximum clique found (see details in
Algorithm 5.1, and its sub-function 5.2)

Algorithm 5.1
MCF()
max: = 0 for each v ∈ |E| do
 if deg(v) ≥ max then = > pruning 1
 U: = ∅
 for each n ∈ Γ(v)
 if id(v) > id(n) = > pruning 2
 if deg(n) ≥ max then = > pruning 3
 U: = U + n
 end if
 end if
 end for
 CLIQUE(U, 1, max)
 end if
end for

Algorithm 5.2
CLIQUE(U, size, max)
if U = ∅ then
 if size > max then
 max: = size
 return
 end if
 end if
while |U| > 0 do
 if (size + |U|) ≤ max: return
 randomly choose u ∈ U
 U: = U – u
 Γ’(u) = {w|w ∈ Γ(u) and deg(w) ≥ max}
 CLIQUE(U ∩ Γ’(u), size + 1, max)
end while

In the context of microcontrollers, the algorithms proposed
above cannot work as a standalone application executed on

6 Z.E.A. Bouneb

them due to their limited stack of the recursive call and little
RAM. Hence we suggest a new iterative (non-recursive)
algorithm for maximal and MCPs, which can be adapted
easily for the maximum clique completion problem. The
algorithm is based on partition refinement of the graph.
Where the representation of this graph is a subset of natural
numbers only, furthermore, this representation is a symbolic
representation that is compact and hides the graph’s
structure inside it.

There are different ways to optimally represent a graph,
depending on the density of its edges, type of operations to
be performed, and ease of use. Here are the most commonly
used representations to represent a graph.

1 Adjacency matrix: Adjacency matrix is a sequential
representation. It is used to represent which nodes are
adjacent to each other, i.e., is there any edge connecting
nodes to a graph? In this representation, we have to
construct a square matrix A of n2 element. If there is an
edge from a vertex i to vertex j, the corresponding
element of A, aij = 1, otherwise aij = 0. If there is any
weighted graph, then instead of 1s and 0s, we can store
the weight of the edge.

2 Representation and modelling by the incidence matrix:
In incidence matrix representation, a graph can be,
represented using a matrix A of n rows and m columns
such that:
• A(p; k) = 0 if and only if p is not adjacent to the

edge j
• A(j; k) = 1 if and only if j is the end of edge k
• A(i; k) = –1 if and only if i is the origin of the edge

k

This matrix is the most intensive in memory space.

3 Adjacency list: is generally the most used
representation, where we have the most efficient
algorithms. A graph can be, represented using a
dictionary: it is a simple table entry where each line
corresponds to a vertex and includes the linked list of
successors (or predecessors) of this vertex.

5 Contribution
5.1 Basic definitions

5.1.1 Definition 1
Let V = V = {b1, b2, …, bm} an ordered finite set of m
elements, the set P(V) is the set of all subset of V denoted
by V and ranged over by {v1, v2, …, vk}. Geometrically, we
define a graph as a set of points (vertices) in space
interconnected by a set of lines (edges). For graph G, we
denote the vertex-set by V and the edge-set by E and write
G = (V, E). An edge ek = (vi, vj) ∈ E iff vi ∩ vj = ∅ We
make the notation vi ∼ vj. Furthermore vi, vj ∈ V s.t i ≠ j = >
vi ≠ vj. if we consider each bi as a binary digit, it means
bi ∈ B = {0, 1}. We have bj ∈ vi = > bj = 1 else bj = 0. Each

vertex vi will be coded that can be mapped to a number in
N, hence m should be greater or equal to n.

Our proposed symbolic representation is based on
Kneser graph (Kneser, 1955). Kneser’s graph K(m, k), is the
graph whose vertices correspond to the k element subsets of
a set of m elements, and where two vertices are adjacent if
and only if the two corresponding sets are disjoint. In this
paper, we use a particular case of Kneser’s graph as defined
in definition 1, where the definition of the graph will be just
a subset of natural numbers.

We draw attention to the problem of finding a
representation for a given graph is a 2-SAT problem with
many linear algorithms in the literature Even et al. (1976).
But for our context here of microcontroller, we draw
attention that most of the algorithm in the literature for
solving a 2-SAT or SAT problem is based on recursive
backtracking. To overcome this problem, another approach
is proposed. If we have a graph with n vertices, instead of
coding a vertex on n bits, we will code it at most on 2n bits
for avoiding recursive calls see Algorithm 6. The
disadvantage of this approach is that it is not efficient in
memory space. We recall that the problem considered here
is more challenging due to a dynamic environment like the
IoT. An advantage of our representation is that it concealed
the structure of the graph inside the coding.

Example 1

Figure 2 Petersen graph (see online version for colours)

The Petersen graph in Figure 2 can be represented by:
G = {773, 138, 52, 73, 178, 42, 113, 193, 900, 524}

Algorithm 6
Data: G = (V, E), |V| = N
Result: V = {n1, n2, …, nN}
Begin
 Co: = N
 for each vi ∈ V: /* initialisation*/
 ni: = 2i–1 /* i start from 1 */
 for each e = (vi, vj) not in E i < j:
 co: = co + 1
 ni: = ni + 2co
 nj: = nj + 2co
end

 An efficient algorithm for maximum cliques problem on IoT devices 7

Example 2 Let’s consider the graph G in Figure 3,
G = (V, E), V = {1, 2, 3, 4, 5, 6}, E = {(1, 2),
(1, 3), (2, 3), (3, 4), (4, 5), (5, 6)}

Figure 3 Graph G (see online version for colours)

In the initialisation we have V = {n1 = 1, n2 = 2, n3 = 4,
n4 = 8, n5 = 16, n6 = 32}, co = 6

For example
(1, 4) ∉ E = > co = 7, n1 = n1 + 64, n4 = n4 + 64. After

termination we will get the coding:
1 2 3

4 5 6

897, 7,170, 24,580,
33,928, 10,512, 53,792

V V V
V

V V V
= = = 

=  = = = 

Figure 4 Coding for G (see online version for colours)

This coding can be optimised using permutations. A
possible optimised coding using Microsoft z3 sat solver is:
v = {v5 = 19, v1 = 33, v3 = 20, v6 = 44, v2 = 10, v4 = 40}.
The problem with our algorithm is that when the graph is
large, the natural number used for the coding gets larger.
Natural numbers on microcontrollers are limited using
unsigned integers; to overcome this problem, we use tuples
for a large number. Python has no limitation on the internal
representation of integers. As you can see, the graph is just
simple natural numbers that can be loaded easily in the
microcontroller RAM, flash memory, or microSD card.
Moreover, the algorithm presented here has linear
complexity.

We draw attention to that our representation is called
symbolic representation. There is a lot of symbolic
representation in the literature like binary decision diagram
(BDD) and its variant ZDD (zero suppressed BDD)…, etc.
(Knuth, 2009). The main goal of BDD is fighting the state
space explosion problem, .i.e., reducing spatial complexity.

In our context, the objective of the symbolic representation
is to avoid recursion and, it does not assume that the number
of vertices in the graph is known. In BDD, authors suppose
that the number of vertices in a dynamic graph is known
beforehand for educational purposes only (Saidouni and
Labbani, 2003; Chaki and Gurfinkel, 2018). But in practice,
they use the algebra of BDD. Since the problem of knowing
the number of vertices beforehand is uncomputable (Catt
and Norrish, 2021). In addition, our representation is not
concurrent to BDD but can be combined with ZDD
(Minato, 1993) for better performance. The problem with
the packages for BDDs and its variant in the literature is
recursion, which is not convenient in our application.
Because the actual tendency is to avoid recursion where the
work of Sølvsten et al. (2021) can be used in our context,
we let this for future research. Moreover, the symbolic
representation presented here is very close to the spatial
complexity of BDD.

5.1.2 Algorithm for MCE, MCP and MCCP
Algorithm 7 is similar to Hopcroft (1971) for minimisation
of automata, i.e., based on partitions refinement. The
algorithm is optimised for a microcontroller, where the
refvec represents the coding of the vertices, and the cliques
are represented with binary coding. For example, the clique
c = {897, 7,170, 24,580} is represented symbolically as
c = 111,000 regarding the refvec, i.e., if bit i is set to 1, the
vertex refvec[i] is included in the cliques, 0 if not included.
The algorithm is a real implementation using python three,
where the function symboliclique carries out the coding of
the cliques as in San Segundo et al. (2018). The function
ensclique carries out the inverse operation, transforming the
coded clique to a standard set. The function splitt2:

(1, 1) 2(. (), , 1, 1,)z o splitt refvec index mi c z o treated=

Split a given coded clique into two parts regarding the
vertex mi:

Z1 The vertices i in c where mi&I = 0; means
adjacent to mi.

O1 The vertices i in c where mi&I ≠ 0 means not
adjacent to mi.

Treated represent the set of the vertices already treated,
and splitting has been carried out for the existing
cliques relatively to them.

Algorithm 7 at the first partition π0 = [c0] starts by the whole
set of vertices as a clique c0 and chooses one vertex v1 and
splits c0 into two cliques c11 and c12. After this splitting the
set treated will contain v1, i.e., the partition will be π1 = [c11,
c12], treated = {v1}. The second iteration continues the
operation of splitting for c11 and c12 regarding v2. c11 will be
c21 and c22, c12 will be c23 and c24. We will get the partition:
π1 = [c21, c22, c23, c24], treated = {v1, v2}. We draw attention
that for all cij and ckl in πi cij and ckl ≠ cij this property
represents the notion of maximality in maximal clique
problem. We call it in mathematics the anti-chain property

8 Z.E.A. Bouneb

(Clements, 1974). This property needs an anti-chain
function not included in our program here for simplicity.
The algorithm terminates when he visits all the vertices in
the graph.

Algorithm 7
Input: a coded graph V = {n1, n2, …, nN}
 ID = [vi] ⊂ V
 Output: all maximum cliques

completed ID /* of course we can
list only one*/

 refvec = l
 n = len(refvec)
 M = [symboliclique(set(refvec))]
 mi = refvec[0]
 ens = set([]) #[vi, vj]
 idvec = Bitset(settovector(ens,

refvec))
 i = 0
 treated = set([])
while (len(treated) ! = n):
 if (mi not in treated):
 treated.add(mi)
 temp = []
 for c in M:
 r = ensclique(c)
 if mi in r:
 z1 = []
 o1 = []
 (z1, o1) = splitt2(refvec.index(mi), c, z1, o1,

treated)
 if idvec and z1 = = idvec:
 if z1 not in temp:
 if CountSetBits(z1) > = n:
 temp.append(z1)
 if idvec and o1 == idvec:
 if o1 not in temp:
 if CountSetBits(o1)> = n:
 temp.append(o1)
 else:
 if idvec and c == idvec:
 if c not in temp:
 temp.append(c)
 else:
 i = i + 1
 mi = refvec[i]
 M = temp #antichain(temp)
print(i)
Mi = list(set(M))
co = 0
for e in range(len(Mi)):

 co = co + 1
 print(ensclique(Mi[e]))
 print(co)

If we want to compute maximal cliques MCE, we start with
an empty set and delete the green lines in the algorithm
above. countSetBits is a function that counts the cardinality
of a given clique since cliques are represented symbolically;
hence this function counts the bits set to one. If the green
lines are not deleted, the algorithm solves MCP. If a
non-empty list starts the Blue line, the algorithm computes
MCCP. We can speed up this algorithm using the same
approach as BronKerbosch and its variant by degeneracy
ordering and pivoting. The main advantages of the
algorithm presented here for this context versus the
algorithms in the literature are:

1 the algorithm in this paper is incremental where the
algorithms in the literature are not

2 iterative

3 it can be applied in a dynamic environment

4 it can be parallelised by the map and reduce without
sharing anything

5 it can be executed on microcontrollers

6 solve the MCCP problem on IoT devices where the
algorithms in the literature cannot.

Example After executing the above algorithm on the
precedent graph in Figure 3 we get:

iteration N = 0 treated = {}
partition = 0 = [897, 7,170, 24,580, 33,928, 10,512, 53,792]
partition = 0 = [{53,792, 897, 7,170, 24,580, 33,928, 10,512}]
iteration N = 1 treated = {897}
partition 1 = [56, 31]
[{897, 7,170, 24,580}, {53,792, 7,170, 24,580, 33,928,
10,512}]
iteration N = 2 treated = {897, 7,170}
partition 2 = [56, 15]
[{897, 7,170, 24,580}, {33,928, 10,512, 53,792, 24,580}]
iteration N = 3 treated = {897, 7,170, 24,580}
partition 3 = [56, 12, 7]
[{897, 7170, 24580}, {33928, 24580}, {33928, 10512, 53792}]
iteration N = 4 treated = {33,928, 897, 7,170, 24,580}
partition 4 = [56, 12, 6, 3]
[{897, 7,170, 24,580}, {33,928, 24,580}, {33,928, 10,512},
{10,512, 53,792}]
iteration N = 5 treated = {897, 7,170, 24,580, 33,928, 10,512}
partition 5 = [56, 12, 6, 3]
[{897, 7,170, 24,580}, {33,928, 24,580}, {33,928, 10,512},
{10,512, 53,792}]

 An efficient algorithm for maximum cliques problem on IoT devices 9

iteration N = 6 treated = {53,792, 897, 7,170, 24,580, 33,928,
10,512}
partition 6 = [56, 12, 6, 3]
[{897, 7,170, 24,580}, {33,928, 24,580}, {33,928, 10,512},
{10,512, 53,792}]

5.1.3 Dynamic environment
Let’s assume that a new agent is coming and establish links
with a few other agents. Each vertex on the graph represents
an agent with a microcontroller as its primary intelligence
computing unit. The new graph is depicted in Figure 5

Figure 5 Graph G with new links (see online version
for colours)

The new edges add to the graph are Ne = {(4, 7), (5, 7)}.
For the new coding, we simply use the algorithm of new
vertex bellow:

Algorithm new vertex

Data: V = {n1, n2, …, nN}, Ne
Result: V = {n1, n2 , …, nN, nN + 1}
Begin
 Co: = N
 nN + 1: = 2N / * i start from 1 */
 for each e = (vi, vN + 1)not in Ne:
 co: = co+1
 ni: = ni + 2co
 nN + 1: = nN + 1 + 2co
end

Hence the new coding will be V = {3,840, 61,441, 458,754,
528,644, 74,248, 1,721,360, 1,345,568}.

To compute a new set of cliques, we simply add one
more iteration to the last partitioning relative to the new
vertex V6 coded as 1,345,568. This will be done by
initialisation of the first partition M by the last one
computed in the precedent execution with the new coding of
vertices, and we will get:

Initialisation

Lp [{3840, 61441, 458754}, {458754, 528644},
{74248, 528644}, {74248, 1721360}]

Refvec [3,840, 61,441, 458,754, 528,644, 74,248,
1,721,360, 1,345,568]

M []

For each e n Lp:

. (())M append symboliclique e

Treated {3,840, 61,441, 458,754, 528,644, 74,248,
1,721,360}

Iteration N 7 treated = {3,840, 61,441, 458,754,
1,345,568, 528,644, 74,248, 1,721,360}

Partition 7 [112, 24, 13, 6] [{3,840, 61,441, 458,754},
{458,754, 528,644}, {74,248, 1,345,568,
528,644}, {74,248, 1,721,360}]

You can easily see that this algorithm is suitable for
microcontrollers in a dynamic environment. Its
characteristics are incremental, where the entire algorithms
mentioned in the literature cannot solve this problem. Few
algorithms in the literature considering the dynamicity of
the environment (Yang et al., 2021).

6 Use case
This section will apply the proposed algorithm above for
MCE on n queen’s problem to compare its speed with the
BronKerbosch algorithm endowed with degeneracy
ordering and pivoting (Eppstein and Strash, 2011). We draw
attention to that the number of iteration in our algorithm
equals the number of vertices in the graph. Moreover, our
algorithm can have many enhancements, like degeneracy
ordering and pivoting see Table 2.

Table 2 Maximal clique enumeration

N queens Paper
algorithm BronKerbosch Depth

recursive call

3 1ms 997μs 14
4 6ms 3ms 51
5 31ms 5ms 172
6 113ms 27ms 910
7 913ms 106ms 4,526
8 8s 605ms 24,891

Table 3 MCCP with degeneracy ordering but without
pivoting

|ID| 0 1 2 3 4 5 6 7 8

Time 7.95s 593ms 52ms 17ms 18ms 5ms 5ms 9ms 6ms

It is clear from Table 3 that for the maximum clique
completion problem, time decrease relative to the
cardinality of the set ID, which represents the queens
already positioned on the chessboard. This fact proves that
the time will decrease for parallelisation than what is shown
in Table 2. The parallelisation in the context of
microcontrollers will be carried out by distribution. For

10 Z.E.A. Bouneb

example, in the context of IoT systems, each vertex on the
graph can represent a microcontroller where each
microcontroller computes its group, representing a clique in
the graph. The main disadvantage for our algorithm is that
for the eight queen graph, we need 4,211 bytes for coding
the graph, which is approximately 4.1 kb. Where the
optimised coding of the graph using Microsoft z3 SAT
solver needs only 436 bytes. If the graph is not dynamic, we
can compute the coding beforehand and load it to EEPROM
or Flash memory. We let the optimisation of the algorithm
for graph coding to future research.

7 Conclusions
This paper proposes an incremental symbolic algorithm for
solving the MCP and MCCP where the last problem is a
particular case. Due to the assessment in this paper via the n
queen problem, we believe that the algorithm of the article
is the best for microcontrollers where no other algorithm in
the literature can fulfil the requirement imposed by
microcontrollers. As a perspective, we will try to enhance
the spatial complexity of the encoding algorithm using
ZDD. The algorithm presented in the paper is compatible
with MicroPython because MicroPython is a very compact
implementation of Python 3 for embedded systems, and
there is no limitation on integers. Moreover, for
parallelisation, writing the proposed algorithm in Erlang
language with a map and reduce in mind can increase the
performance of the proposed algorithm. Erlang is a
functional language with no limitation on integers and
communication sequential process (CSP) as a style of
programming

References
Ahamad, S.S. and Pathan, A-S.K. (2021) ‘A formally verified

authentication protocol in secure framework for mobile
healthcare during COVID-19-like pandemic’, Connection
Science, Vol. 33, No. 3, pp.532–554, DOI: 10.1080/
09540091.2020.1854180.

Babkin, E., Babkina, T. and Demidovskij, A. (2018) ‘Hybrid
neural network and bi-criteria tabu-machine: comparison of
new approaches to maximum clique problem’, International
Journal of Big Data Intelligence (IJBDI), Vol. 5, No. 3,
pp.143–155.

Bashiri, M. et al. (2018) ‘PAIM: platoon-based autonomous
intersection management’, in 21st International Conference
on Intelligent Transportation Systems (ITSC) Maui, Hawaii,
USA, 4–7 November.

Bell, J. and Stevens, B. (2009) ‘A survey of known results and
research areas for n-queens, Discrete Mathematics, Vol. 309,
No. 2009, pp.1–31.

Blanuša, J., Stoica, R., Ienne, P. and Atasu, K. (2020) Manycore
clique enumeration with fast set intersections, pp.2676–2690.
DOI: https://doi.org/10.14778/3407790.3407853.

Bouneb, Z.E.A (2021) ‘A distributed algorithm for computing
groups in IoT systems’, International Journal of Software
Science and Computational Intelligence (IJSSCI), Vol. 14,
No. 1.

Bouneb, Z.E.A. and Saidouni, D.E. (2021) ‘Toward an IoT-based
software-defined plumbing network system with fault
tolerance’, International Journal of Hyperconnectivity and
the Internet of Things (IJHIoT), Vol. 6, No. 1, pp.1–18,
DOI: 10.4018/IJHIoT.285587.

Bron, C. and Kerbosch, J. (1973) ‘Algorithm 457: finding all
cliques of an undirected graph’, CACM, Vol. 16, No. 9,
pp.575–577.

Catt, E. and Norrish, M. (2021) ‘On the formalisation of
Kolmogorov complexity’, in Proceedings of the 10th ACM
SIGPLAN International Conference on Certified Programs
and proofs (CPP 2021), Association for Computing
Machinery, New York, NY, USA, pp.291–299,
https://doi.org/10.1145/3437992.3439921.

Chaki, S. and Gurfinkel, A. (2018) ‘BDD-based symbolic model
checking’, in Clarke, E., Henzinger, T., Veith, H. and
Bloem, R. (Eds.): Handbook of Model Checking, Springer,
Cham, https://doi.org/10.1007/978-3-319-10575-8_8.

Clements, G.F. (1974) ‘Sperner’s theorem with constraints’,
Discrete Math, Vol. 10, pp.235–255, https://doi.org/10.1016/
0012-365X(74)90120-4, DOI: 10.1016/0012-365X(74)90120-
4.

Daid, R., Kumar, Y., Hu, Y-C. and Chen, W-L. (2021) ‘An
effective scheduling in data centres for efficient CPU usage
and service level agreement fulfilment using machine
learning, Connection Science, Vol. 33, No. 4, pp.954–974,
DOI: 10.1080/09540091.2021.1926929.

Das, A., Sanei-Mehri, S-V. and Tirthapura, S. (2020) ‘Shared-
memory parallel maximal clique enumeration’, ACM Trans.
Parallel Comput., Article 5, Vol. 7, No. 1,
https://doi.org/10.1145/3380936 (accessed 28 March 2020).

Dong, Y., Shen, J., Ji, S., Qi, R. and Liu, S. (2021) ‘A novel
appliance-based secure data aggregation scheme for bill
generation and demand management in smart grids’,
Connection Science, Vol. 33, No. 4, pp.1116–1137,
DOI: 10.1080/09540091.2021.1882389.

Eppstein, D. and Strash, D. (2011) Listing All Maximal Cliques in
Large Sparse Real-World Graphs, DOI: 10.1007/978-3-642-
20662-7_31.

Even, S., Itai, A. and Shamir, A. (1976) ‘On the complexity of
timetable and multicommodity flow problems’, SIAM Journal
on Computing, Vol. 5, No. 4, pp.691–703.

Gent, I.P., Jefferson, C. and Nightingale, P. (2017) ‘Complexity of
n-queens completion’, Journal of Artificial Intelligence
Research, Vol. 59, No. 2017, pp.815–848.

Hopcroft, J. (1971) ‘An n log n algorithm for minimizing states in
a finite automaton, theory of machines and computations’,
Proc. Internat. Sympos., Technion, Haifa, pp.189–196.

Hu, J., Wang, Z., Chen, J. and Dai, Y. (2021) ‘A community
partitioning algorithm based on network enhancement’,
Connection Science, Vol. 33, No. 1, pp.42–61, DOI: 10.1080/
09540091.2020.1753172.

Joung, Y-J. (2000) ‘Asynchronous group mutual exclusion’,
Distributed Computing. Vol. 13, pp.189–206, DOI: 10.1007/
PL00008918.

Kanakaris, V. and Papakostas, G.A. (2020) ‘Internet of things
protocols – a survey’, International Journal of Humanitarian
Technology, Vol. 1, No. 2, pp.101–117, https://doi.org/
10.1504/IJHT.2020.112449.

Kashani, M., Gorgin, S. and Shojaedini, S.V. (2020) ‘A fuzzy
irregular cellular automata-based method for the vertex
colouring problem’, Connection Science, Vol. 32, No. 1,
pp.37–52, DOI: 10.1080/09540091.2019.1650329.

 An efficient algorithm for maximum cliques problem on IoT devices 11

Khot, S. (2001) ‘Improved inapproximability results for max
clique, chromatic number, and approximate graph coloring’,
pp.600–609, DOI: 10.1109/SFCS.2001.959936.

Kneser, M. (1955) ‘Aufgabe 360’, Jahresbericht der Deutschen
Mathematiker-Vereinigung, Vol. 58, No. 2, p.27.

Knuth, D.E. (2009) ‘The art of computer programming’, Bitwise
Tricks & Techniques Binary Decision Diagrams, 12th ed.,
Fascicle 1, Vol. 4, Addison-Wesley Professional, Stanford
University.

Luo, A., Wu, W., Cao, J. and Raynal, M. (2013) ‘A generalized
mutual exclusion problem and its algorithm’, 42nd
International Conference on Parallel Processing, pp.300–
309, DOI: 10.1109/ICPP.2013.39.

Minato, S-I. (1993) ‘Zero-suppressed BDDs for set manipulation
in combinatorial problems’, in Proceedings of the 30th
international Design Automation Conference (DAC ‘93),
Association for Computing Machinery, New York, NY, USA,
pp.272–277, https://doi.org/10.1145/157485.164890.

Nikoui, T.S., Rahmani, A.M., Balador, A. and Javadi, H.H.S.
(2021) ‘Internet of things architecture challenges: a
systematic review’, Int. J. Commun. Syst.; Vol. 34, p.e4678.
https://doi.org/10.1002/dac.4678.

Park, S.H., Young, B. and Kim, Y.K. (2017) ‘Group mutual
exclusion algorithm for intersection traffic control of
autonomous vehicle’, in International Conference Grid,
Cloud & Cluster Computing GCC’17, pp.55–58.

Pattabiraman, B., Patwary, M.M.A., Gebremedhin, A.H., Liao, W.
and Choudhary A. (2013) ‘Fast algorithms for the maximum
clique problem on massive sparse graphs’, in Bonato, A.,
Mitzenmacher, M. and Prałat, P. (Eds.): Algorithms and
Models for the Web Graph. WAW 2013. Lecture Notes in
Computer Science, Vol. 8305, Springer, Cham, https://doi.
org/10.1007/978-3-319-03536-9_13

Prosser, P. (2012) ‘Exact algorithms for maximum clique: a
computational study’, Algorithms, Vol. 5, No. 4, pp.545–587.

Ramu, G., Mishra, Z., Singh, P. and Acharya, B. (2020)
Performance optimized architectures of piccolo block cipher
for low resource IoT applications’, International Journal of
High-Performance Systems Architecture, Vol. 9, No. 1,
pp.49–57, https://doi.org/10.1504/IJHPSA.2020.107175.

Saidouni, D. and Labbani, O. (2003) ‘Maximality-based symbolic
model checking’, in ACS/IEEE International Conference on
Computer Systems and Applications, Book of Abstracts, p.98,
DOI: 10.1109/AICCSA.2003.1227530.

San Segundo, P., Artieda, J. and Strash, D. (2018) ‘Efficiently
enumerating all maximal cliques with bit-parallelism’,
Computers & Operations Research, Vol. 92, pp.37–46,
DOI: 10.1016/j.cor.2017.12.006.

Sangaiah, A.K., Hosseinabadi, A.A.R., Shareh, M.B., Rad, S.Y.B.,
Zolfagharian, A. and Chilamkurti, N., (2020) ‘IoT resource
allocation and optimization based on heuristic algorithm’,
Sensors, Vol. 20. p.539, DOI: 10.3390/s20020539.

Smith, D.H., Perkins, S. and Montemanni, R. (2019) ‘Solving the
maximum clique problem with a hybrid algorithm’,
International Journal of Metaheuristics, Vol. 7, No. 2,
pp.152–175, https://doi.org/10.1504/IJMHEUR.2019.098270.

Sølvsten, S.C., van de Pol, J., Jakobsen, A.B. and Thomasen,
M.W.B. (2021) Efficient Binary Decision Diagram
Manipulation in External Memory, arXiv: 2104.12101.

Tomita, E., Tanaka, A. and Takahashi, H., (2004) ‘The worst-case
time complexity for generating all maximal cliques,
pp.161–170, DOI: 10.1007/978-3-540-27798-9_19.

Xiao, L., Xie, S. Han, D., Liang, W., Guo, J. and Chou, W-K.
(2021) ‘A lightweight authentication scheme for telecare
medical information system’, Connection Science, Vol. 33,
No. 3, pp.769–785, DOI: 10.1080/09540091.2021.1889976.

Yang, Y., Hao, F., Pang, B. et al. (2021) ‘Dynamic maximal
cliques detection and evolution management in social internet
of things: a formal concept analysis approach’, IEEE
Transactions on Network Science and Engineering,
https://doi.org/10.1109/NSE.2021.3067939.

Zhang, S., Yao, T., Sandor, V.K.A., Weng, T-H., Liang, W. and
Su, J. (2021) ‘A novel blockchain-based privacy-preserving
framework for online social networks’, Connection Science,
Vol. 33, No. 3, pp.555–575, DOI: 10.1080/
09540091.2020.1854181.

Zhao, H., Yao, L.B., Zeng, Z.X., Li, D.H., Xie, J.L., Zhu, W.L.
and Tang, J. (2021) ‘An edge streaming data processing
framework for autonomous driving’, Connection Science,
Vol. 33, No. 2, pp.173–200, DOI: 10.1080/
09540091.2020.1782840.

