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Abstract: Mashup refers to a sort of web application developed by reusing or combining web 
API services, which are very popular software components for building distributed applications. 
As the number of open web APIs increases, to find suitable web APIs for Mashup creation, 
however, becomes a challenging issue. To address this issue, a number of web API service 
recommendation methods have been proposed. Content-based methods rely on the description of 
the service candidates and the user’s request to make recommendations. Collaborative  
filtering-based methods use the invocation records of services generated by a set of users to make 
recommendations. There are also some studies employing both the description and invocation 
records of services to make recommendations. In this paper, we survey the state-of-the-art web 
API service recommendation methods, and discuss their characteristics and differences. We also 
present some possible future research directions in this paper. 
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1 Introduction 
Web application programming interface (API) services have 
become a popular technology and basic blocks for building 
distributed applications (Bouguettaya et al., 2014; 
Papazoglou et al., 2007; Yu et al., 2008). Traditionally, web 
API services (or web services for short) are mainly used for 

data sharing and business integration in an enterprise or a 
group of enterprises with cooperation relationships. In 
contrast, nowadays there are more and more enterprises 
engaging in opening their web services to the public and 
allowing customers or the third parties to access their data 
or functionalities in a programmable way. For instance, the 
IT giants like Google, Facebook, Amazon, etc. have already 
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published dozens of web services for public access. By 
doing this, the enterprises can seize more economic benefits 
and eventually build business ecosystems surrounding their 
products. These open web services with various 
functionalities such as storage, messaging, computing, 
searching and mapping, have made the web become a huge 
programmable platform. That is, common developers can 
easily search for appropriate web services and employ them 
to create new applications or value-added services in a 
prompt way. With the prevalence of cloud, mobile and IoT 
applications, it can be expected that web services will 
become more and more popular in software development 
(Tan et al., 2016). 

With the constant increase of the number of web 
services, to find suitable services for developers (i.e., 
service users) also becomes increasingly challenging 
(Cappiello et al., 2010; Yang et al., 2021). As can be 
observed from the most popular website of open web 
services, ProgramableWeb.com, most web services are 
described with plain text. Although keyword-based search 
can be used to relief the difficulty in finding web services, it 
is still a non-trivial job for users to efficiently and 
accurately identify the appropriate web APIs that meet their 
application development requirements. To address this 
issue, dozens of studies have been conducted on 
recommending web services to users based on their implicit 
or explicit requirements in the past decade. Techniques used 
for Web service recommendation can be roughly divided 
into content-based, collaborative filtering (CF)-based and 
hybrid. This paper surveys these works and compares their 
features. The paper also presents the challenges facing web 
service recommendation and suggests several future 
research directions. 

Figure 1 Categorisation of web service recommendation 
methods 
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The rest of this paper is organised as follows. Section 2 
introduces the background and problem of web service 
recommendation. Section 3 surveys the state-of-the-art web 
service recommendation methods and compares their 
features. Section 4 presents the challenges facing web API 
recommendation and possible research directions. Finally, 
Section 5 concludes this paper. 

2 Background 
2.1 From SOAP-based services to REST-based 

services 
Web services are software modules that can be remotely 
invoked using an internet-based protocol such as HTTP. A 

web service usually has a set of APIs, and each API 
represents a certain function. 

With the evolution of web service technologies, there 
are different styles for the implementation of web services, 
and among which the major two implementation styles of 
web services are simple object access protocol  
(SOAP)-based and representational state transfer  
(REST)-based (Lanthaler and Gütl, 2010). SOAP-based 
web APIs, usually referred to as ‘classical’ web services, 
emerges before REST-based web APIs. The SOAP-based 
web service architecture complies with SOA, which 
comprises three entities (as shown in Figure 2): 

• A service provider, which creates a service and 
publishes the service description in the service registry. 

• A service registry, which enables online service 
discovery. 

• A service requestor, which finds the service by 
querying the service registry. The requestor then 
retrieves the service description, uses it to bind to the 
service implementation, and begins interacting with it. 

Figure 2 Model of service oriented architecture 
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SOAP-based web APIs (services), namely classical web 
services, are characterised by a set of standard protocols 
established by World Wide Web Consortium (W3C), such 
as SOAP, web service description language (WSDL) and 
universal description, discovery and integration (UDDI). 
SOAP is a protocol for exchanging XML-based messages 
over networks, normally based on HTTP. WSDL is an 
XML-based language for describing how to use a web 
service, including description of the service methods and 
binding information. UDDI is a protocol used for Web 
service publish and discovery. 

REST-based services (or RESTful services) are 
nowadays much more prevalent than SOAP-based web 
services for its simplicity, scalability and easy to use (Hsieh 
et al., 2011). According to some statistics (Jiang et al., 
2012), REST-based web services have taken more than 80% 
ratios in the open web service market. Different from 
SOAP-based web services, REST-based web services are 
often described solely through HTML or plain text that are 
thought for human understanding purpose. Although there 
exist proposals for improving the web services’ 
understandability for machines, such as web application 
description language (WADL) and WSDL 2.0, they are 
rarely used in practice. Normally, REST-based services use 
HTTP to exchange messages in their invocations, and their 
input/output data are usually in JavaScript object notation 
(JSON) format. REST-based services also do not have any 
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UDDI-based registry supporting automatic publish/ 
discovery, and usually users have to find satisfactory web 
services manually. 

2.2 Service-Mashup ecosystem 
Mashup is a new application development pattern that 
combines different resources such as data and services 
distributed on the web to create innovative applications. The 
data or service providers usually open their data or services 
by offering an API. There have been a number of tools 
proposed for Mashup development, such as IBM Mashup 
Centre and Google Mashup Editor. Traditionally, the 
Mashup technique was mainly used for web application 
development. With the spread of mobile computing and 
internet of things (IoT), Mashup also attracts increasing 
attention in developing mobile and IoT applications (Im  
et al., 2013; Cao et al., 2019a). 

Figure 3 Mashups and web services (see online version  
for colours) 
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Figure 3 is an example illustrating the relationships between 
Mashups and web services. The Mashup ‘mileage 
calculator’, which can be used to calculate travel mileage 
for any number of trips, is created by combining the Google 
Calendar services and the Google Maps services. Actually, 
with the prevalence of web services and mashups,  
service-Mashup ecosystems have emerged (Salminen and 
Mikkonen, 2012). As a sort of software ecosystem (Bosch, 
2009), a service-Mashup ecosystem cannot only improve 
the efficiency of application development, but also promote 
the reuse of software components around the world 
(Mikkonen and Taivalsaari, 2010; Taivalsaari, 2009). 

ProgrammableWeb.com as the largest web service 
portal has contributed a lot to raise the service-Mashup 
ecosystem. It offers the functions that users can freely 
publish web services or Mashups, search web services or 
Mashups, or comment them. To character 
ProgrammableWeb, we crawled all web services and 
Mashup from it, and conduct a statistical analysis. Table 1 
presents the statistics of the data of ProgrammableWeb.com. 
To the access date, the number of available web services is 
about 21,900 and the number of available Mashups is about 
6,435. All web services fall into 425 primary categories like 

mapping, search, social, eCommerce, photos, etc. Most 
Mashups use only one or two APIs，though there exist a 
few Mashups that comprise dozens of web services. The 
average number of services used by a Mashup is about 2, as 
shown in the table. The web services and Mashups collected 
by ProgrammableWeb are likely to be only a small 
proportion of all web services and applications on the 
internet. There could be millions of applications that are 
developed by reusing or combining open web services. 
However, how to obtain those API usage data is a 
challenging problem. 

Table 1 Statistics of the service-Mashup ecosystem of 
programmableweb 

Property Value 

Number of web services 21,900 
Number of Mashups 6,435 
Number of service categories 425 
Average number of services per Mashup 2.07 
Length of service description (#words) 44 
Length of Mashup description (#words) 27 

2.3 The web service recommendation problem 
This survey focuses on web service recommendation for 
Mashup creation. We focus on REST-based web services 
that are normally described in HTML or plain text. We do 
not assume that web services are described in structured 
languages like WSDL, for they are not the mainstream 
implementation of REST-based services. The service 
providers or developers may use a short text to describe 
their services or Mashups when publishing them in web 
service portals. Figure 4 is an example showing the 
description of web services (API) in ProgrammableWeb. 
The problem of web service recommendation is formally 
defined as follows. 

Suppose that we have a set of web services, a set of 
Mashups and a set of historical invocation records occurred 
between them. If a Mashup has invoked a web service, there 
is an invocation record for them. Such relationships between 
services and Mashups can be represented by using a graph 
or matrix. Figure 5 shows the graph or matrix 
representations of the example from Figure 1. In the graph, 
each link is used to represent the invocation relationship 
between a Mashup and a service; while in the matrix, each 
item with value 1 represents an invocation relationship. 
Under this setting, the web service recommendation 
problem can be defined as: given a web service set, a 
Mashup set, and their invocation relationships, for a new 
Mashup with requirement description, to recommend a list 
of web services that best match the requirement of the new 
Mashup application. 
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Figure 4 Description of web services (APIs) in programmableweb (see online version for colours) 

 

 
Figure 5  Representation of the relationships between web APIs 

and Mashups, (a) graph representation, (b) matrix 
representation 
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3 The state-of-the-art methods 
The state-of-the-art methods on web service 
recommendation can roughly be categorised into:  
content-based, CF-based and hybrid methods, as shown in 
Figure 1. In the following, we discuss and analyse the web 
service recommendation methods fallen in each category. 

3.1 Content-based methods 
Content-based service recommendation methods usually 
exploit only the description of users’ requirements and web 
services’ functionalities to measure their matching degrees, 
and recommend the most matched web services to the users. 
Content-based methods have been widely used for classical 
web service recommendation or discovery, which are 
typically described in WSDL. Some of them can also be 
applied to web services with unstructured description such 
as REST-based services. Generally, there are two categories 
of content-based web service recommendation methods: 
syntactic matching and semantic matching. 

3.1.1 Syntactic matching 
This kind of method usually employs classic text retrieval 
methods to find suitable web services. For example, Halevy 
et al. (2004) used TF/IDF to extract keywords from the 
description documents of web services. The extracted 
keywords as well as input/output parameters are both used 
to make matching’s between web services to recommend 
similar web services. Tang et al. (2014) also employed the 
TF/IDF model to represent web services, and then measure 
its similarity with the user query. The most similar web 
services are finally recommended to the user. Wu (2012) 
introduced term tokenisation to relieve the syntactic 
inconsistency between the description of Web services and 
user queries, so as to improve the accuracy of syntactic 
matching. Liu et al. (2010) employed an external 
knowledge, e.g., lexical databases, to improve syntactic 
matching of web services. 

3.1.2 Semantic matching 
Semantic matching was introduced to overcome the 
inaccuracy of syntactic matching in web service 
recommendation or discovery. Semantic matching is usually 
based on the assumption that both web services and user 
requests are described in a machine understandable 
language. Several ontology languages have been proposed 
for web services, such as SAWSDL (Kopecký et al., 2007) 
and OWL-S (Martin et al., 2007). Most studies in this field 
assumed that web services and user requests are described 
using the same ontology language, which, however, is 
impractical. Junghans et al. (2010) focused on the semantic 
web service discovery scenario where web services and user 
requests are with different semantic descriptions. Sangers et 
al. (2013) proposed a method that enables users using 
natural language-based keywords to find semantic web 
services. 

Although the above semantic matching methods 
normally perform better than syntactic ones in the accuracy 
of web service discovery or recommendation, their  
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practicality is limited, for real web services are rarely 
described semantically. Lin et al. (2018) propose a neural-
based method named NL2API, which also relies solely on 
service descriptions for recommending services. Different 
from the above methods, it uses a neural network model to 
generate embeddings for web services and Mashups based 
on their descriptions, and recommends services by 
computing their similarities based on the representations. 
Shi et al. (2019) also employ a neural work model to 
generate service and Mashup embeddings for service 
recommendation. To obtain richer semantics, they use the 
Attention mechanism and take into account both description 
and tags of services and Mashups. 

3.2 CF-based methods 
CF is one of the most popular recommendation techniques, 
and has also been widely applied to web service 
recommendation or service quality prediction (Zheng et al., 
2020; Chen et al., 2019). Different from the content-based 
methods which focus on matching the contents of a user and 
a service, CF-based methods exploit in whole or in part the 
historical invocation records of other users and services for 
service recommendation. Among all CF-based web service 
recommendation methods, matrix factorisation (MF), 
factorisation machine (FM) and link prediction (LP) are the 
most widely used techniques. Therefore, this section focuses 
on the CF-based web service recommendation methods 
based on the three prevailing techniques, and discusses their 
features and differences. 

3.2.1 Matrix factorisation 
MF can be used to discover the latent factors from the 
service-Mashup matrix and to map all services and Mashups 
into the same space constructed by the latent factors. 
Consider a service-Mashup matrix R with invocation 
records by m Mashups for n services. The matrix R with m 
rows and n columns can be decomposed into two thin 
matrices M’ and S’. M’ will have m × l dimensions and S’ 
will have n × l dimensions where l is the number of latent 
factors. The matrix R can be decomposed in such a way that 
the dot product of the matrix M’ and transposed S’ will yield 
a matrix with m × n dimensions that closely approximates 
the original ratings matrix, i.e., R ≈ M’ • S’. Therefore, the 
key to the MF-based web service recommendation is 
finding the optimal M’ and S’, so that the results of their dot 
product can be used to accurately predict the missing values 
in R, which determines whether a service should be 
recommended to the new Mashup or not. 

A number of MF-based web service recommendation 
methods have been proposed for Mashup creation. Xu et al. 
(2013) used a combination of MFs to predict 
recommendation scores of each service for a new Mashup, 
in which the Mashup-creator matrix, the Mashup-topic 
matric, the service-tag matrix and the service-topic matrix 
are incorporated. Yao et al. (2018) divided the correlation of 
services as an additional regularisation term into the 
probability matrix factorisation (PMF) to support more 

accurate service recommendation. Fletcher (2019a) 
introduced the user’s implicit preferences into MF to enrich 
the web service invocation record so as to improve the 
accuracy and diversity of recommendations. 

There are some studies that integrate other factors with 
MF to improve the prediction of service recommendation 
scores. In Liu and Fulia (2015), Jain et al. (2015) and 
Samanta and Liu (2017), the popularity of services was 
integrated with MF to rank the services in the 
recommendation list. In Tang et al. (2016), Liu et al. (2016) 
and Botangen et al. (2019, 2020), the geographic correlation 
and functional correlation were integrated with MF infer the 
priority of implicit Mashup-service invocations, so as to 
improve the accuracy of service recommendations. In 
Fletcher (2019b), the service quality indicators such as 
reliability and usability were integrated with MF to 
recommend top-k services. 

3.2.2 Factorisation machine 
FMs are generic supervised learning models that map 
arbitrary real-valued features into a low-dimensional latent 
factor space and can be applied naturally to a wide variety 
of prediction tasks including regression, classification, and 
ranking (Rendle, 2010). More specifically, the prediction 
task for a FM model is to estimate a function ŷ from a 
feature set x to a target domain. The advantages of this 
model majorly lie in the way it uses a factorised 
parametrisation to capture the pairwise feature interactions. 
It can be represented mathematically as follows: 

0ˆ + + ,i i i j i j
i i j i

y w w x v v x x
>

= < >   

The three terms in this equation correspond respectively to 
the three components of the model: 

• w0 represents the global bias. 

• wi models the strength of the ith variable. 

• <vi, vj> models the pairwise interaction between the ith 
and jth variable. 

Several studies have employed FMs to recommend services 
for Mashup creation. Li et al. (2017) proposed a FM-based 
service recommendation method which exploits  
multi-dimensional data such as tags, topics, service  
co-occurrences and popularity factors. The tags and topics 
of Mashup and web services were employed to calculate the 
similarity between web services and the similarity between 
Mashups. Finally, similar Mashups, similar web services, 
co-occurrence and popular factors of web services are 
combined by FMs to predict the recommendation scores of 
web services. Cao et al. (2019a) improved (Cao et al., 2013) 
by using the relational topic model (RTM) to extract more 
accurate topic vectors of Mashups and services, and based 
on which to compute their similarities. To improve the 
representations of Mashups and services, Zhang et al. 
(2018) employed word2Vec to extract the functional 
information of Mashups and services, and use a FM-based 
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neural network to integrate various features to compute the 
recommendation score services. The aforementioned work 
assumes that all features are with the same or equal 
importance. However, different features may have different 
levels of impacts. Some unnecessary features may even 
raise negative impacts in the recommendation performance 
for their data noise. Cao et al. (2019b) introduced an 
attention mechanism to distinguish the importance of each 
factor in the training data, so as to improve the 
recommendation performance. Tang et al. (2021) proposed 
a deep FM-based method and took into consideration the 
composition patterns of services to recommend suitable 
services for Mashup creation. 

3.2.3 Link prediction 
This class of service recommendation methods model the 
relationships between Mashups, web services and other 
related objects as a graph, and recommend services by 
predicting new links. Based on the graph structure, previous 
LP-based service recommendation methods can further be 
divided into homogeneous graph-based and heterogeneous 
graph-based. The former class of methods considers 
homogeneous service graphs consisting of only web 
services and their relationships. The latter class of methods 
considers heterogeneous service graphs which consist of 
different types of nodes such as web services, 
Mashups/apps, tags, and service providers. 

Zhao et al. (2010) and Mokarizadeh et al. (2012) 
focused on mining the dependency relationship between the 
input/output data of two web services, and proposed service 
navigation and recommendation methods via the links 
generated. Tang et al. (2019) mined both the cooperation 
and similarity relationships between web services. The 
cooperation relationship between two web services was 
inferred by identifying whether they have been co-invoked 
by one or more Mashups. Then, according to a series of 
heuristic rules based on the cooperation and similarity 
relationships, potentially cooperative web services were 
recommended for a given service via LP. Huang et al. 
(2014) built a service-service homogeneous network based 
on the concurrence of web services in Mashups, and 
proposed a network model to mimic the evolution of the 
service network, through which potential service 
compositions are predicted. 

The service-Mashup ecosystem (including services, 
Mashups, developers and providers) can be viewed as a 
heterogeneous information network (HIN) (Lian and Tang, 
2021). A number of studies have explored the 
heterogeneous service networks to recommend services for 
Mashup creation. Liang et al. (2016) took into account the 
relationships between services, Mashups, tags, and service 
providers to build a heterogeneous service network, and 
calculated the similarities between different objects based 
on meta-paths in the network. Then, they predicted the 
possible links between a new Mashup and all services using 
a CF technique. Xie et al. (2019) proposed a Bayesian 
personalised ranking algorithm by sampling meta-paths in a 
heterogeneous service network and base on Mashup group 

preference to recommend services. Wang et al. (2019b) 
proposed a link-based service recommendation method 
based on the knowledge graph constructed by extracting the 
various relationships between services, Mashups, tags and 
service providers. They employed a random walk method 
with restart to estimate the relevance of API candidates for a 
Mashup. 

3.3 Hybrid methods 
Hybrid service recommendation methods combines both 
contents and relationships to recommend services according 
to the requirement description of the new Mashup 
development, which is typically expressed using keywords 
or natural language sentences. 

Some studies use keywords to describe the users’ 
functional requirements. He et al. (2017) proposed a service 
search/recommendation method, i.e., keyword search for 
service-based systems (KS3), which searches web API by 
entering keywords. They also assumed that the 
functionalities of services are also represented by keywords, 
and a service graph was built based on the invocation 
relationships between services. The goal is to find a subset 
of nodes (services) of the service graph, so that the 
keywords of the services will cover those keywords entered. 
In a similar manner, Qi et al. (2019) used a set of keywords 
to describe API functions and the user’s request, and built a 
service graph based on the concurrence relationships 
between services. Then, they transformed the service 
search/recommendation problem into an optimal Steiner 
tree finding problem, and developed a dynamic 
programming (DP)-based method to solve the problem. 

The keyword-based methods may have limitations such 
as poor recommendation performance and heavy 
dependence on correct keywords from users. In practice, the 
Mashup development requirements are likely to be specified 
by users with natural language-based sentences. It would be 
desirable for a system to recommend web services to users 
with natural language-based requests. Yao et al. (2014) 
proposed a service recommendation method that unifies CF 
and content-based recommendations. It considered 
simultaneously both rating data (e.g., QoS) and semantic 
content data (e.g., functionalities) of web services using a 
probabilistic generative model. Cao et al. (2016) proposed 
an integrated content and network-based service clustering 
and web service recommendation method for Mashup 
development. The method used a two-level topic model to 
mine the latent topics from the description of Mashups and 
the user’s request, and mapped the user’s request to similar 
Mashups. Then, it adopted a CF method which exploits the 
concurrence of web services in Mashups to recommend web 
APIs for the requirements of the new Mashup. 

To further improve the effect of combining contents and 
relationships for service recommendation, some recent work 
proposed neural-based service recommendation methods by 
using the techniques such as convolutional neural networks 
(CNN), recurrent neural networks (RNN) and hierarchical 
attention networks (HAN). Xue et al. (2017) employed 
CNN and long short-term memory (LSTM) to integrate both 
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contents and relationships of services to obtain better 
service classification effects for service discovery/ 
recommendation. Xiong et al. (2018) converted the natural 
language-based description of services and Mashup 
developments into semantic relationship triples (X, α, Y), 
and employ deep learning to learn semantic representation 
of relationships for service recommendation. Bai et al. 
(2020) used stacked denoising autoencoders (SDAE) to 
train services description text and exploit the service usage 
records as a regularisation of the encoding output of SDAE, 
to enhance the robustness of embeddings. Ma et al. (2020) 
proposed a multiplex interaction-based service 
recommendation approach named MISR, which 
incorporates three types of interactions between services 
and mashups into a deep neural network. 

4 Challenges and future research possibilities 
Although the above-mentioned works are valuable in 
addressing the service recommendation problem, they still 
have limitations in terms of recommendation performance. 
Besides, the service recommendation problem also faces 
some new challenges. Below, we present some challenges 
and future research possibilities. 

Web service recommendation algorithms with higher 
accuracy. Although recent methods have improved the 
recommendation performance to some extent, there are still 
much room for further improvement. Emerging deep 
learning and neural model-based technologies are 
continuously introduced to various recommender systems, 
and have demonstrated their significant advantages over the 
other methods in many cases. For example, graph neural 
network (GNN), as a novel technology, has recently been 
applied to recommendation systems (Wang et al., 2019a) 
and achieved high performance. It can effectively solve the 
data sparseness and cold start problems, and is good at 
building a more robust and reliable recommendation 
system. In addition to the interactions between users and 
items, GNN can effectively use and integrate the relevant 
information from multiple sources that has explicit or 
implicit influence on the recommendation. How to design 
algorithms based on GNN or other neural models to 
improve web service recommendation for Mashup creation 
is a possible research direction. 

Industrial applications of web service recommendation. 
web service recommendation is playing an increasingly 
important role in the development of service-based systems 
like Mashups. However, there is still a lack of research on 
the industrial implementation of web service 
recommendations. On the one hand, although there could be 
millions of services providing various functions on the web, 
most of them are not well maintained and the sustainability 
of those services cannot be guaranteed. Therefore, 
recommending with such a large-scale, highly unreliable 
services to meet the needs of developers is a difficult task. 
On the other hand, due to the privacy concerns, industrial 
companies (including both service providers and 
consumers) may be reluctant to disclose information about 

service usage. However, abundant service usage records are 
very important for service recommendations. Studies of 
industrial applications of web service recommendation may 
provide a promising direction which requires urgent 
attention. 

Automated web service composition for Mashup 
creation. Web service composition is undoubtedly the most 
promising way to integrate business-to-business 
applications. However, the current solutions from industry 
and the academia often focus on either SOAP-based web 
services or semantic web services. As a lightweight and 
cost-effective alternative to SOAP-based services, RESTful 
services recently have shown their potential to compose 
reliable and visible web-scale applications based on the  
so-called Mashups. Previous studies on RESTful service 
composition are mostly manual or semi-automated. The 
manual composition requires the user manually complete 
the whole service composition process from service 
discovery to service binding, which is impractical when the 
service number is very large. As a contrast, the  
semi-automated composition techniques make suggestions 
to the user for service selection during the composition 
process. Nevertheless, the user still needs to select services 
and bind them in an appropriate order. At present, fully 
automated composition for RESTful services is still a 
challenging issue, for the RESTful services suffer from 
shortcomings on semantically describing, finding and 
composing services as well as the absence of a holistic 
framework covering the entire service lifecycle. Therefore, 
how to automate RESTful service composition is also a 
promising research direction. 

5 Conclusions 
Web service recommendation for Mashup creation has 
become a hot research topic in the service computing field. 
In this survey, we conducted a comprehensive review of the 
state-of-the-art methods in this topic, which are divided into 
three categories: content-based, CF-based and hybrid 
methods. The content-based methods primarily rely on the 
description text of services and user requirements to make 
service recommendations. The CF-based methods exploit 
the relationships between services and Mashups to make 
service recommendations. And the hybrid methods combine 
contents and relationships of services to make service 
recommendations. We also summarised the challenges 
faced by web service recommendation and suggested some 
future research directions. 
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