
Int. J. Computational Science and Engineering, Vol. 26, No. 1, 2023 45

Copyright © 2023 Inderscience Enterprises Ltd.

Web API service recommendation for Mashup
creation

Gejing Xu
School of Software,
Quanzhou University of Information Engineering,
Quanzhou 362000, China
Email: xugejing2021@163.com

Sixian Lian and Mingdong Tang*
School of Information Science and Technology,
Guangdong University of Foreign Studies,
Guangzhou, 510000, China
Email: 20191010003@gdufs.edu.cn
Email: mdtang@126.com
*Corresponding author

Abstract: Mashup refers to a sort of web application developed by reusing or combining web
API services, which are very popular software components for building distributed applications.
As the number of open web APIs increases, to find suitable web APIs for Mashup creation,
however, becomes a challenging issue. To address this issue, a number of web API service
recommendation methods have been proposed. Content-based methods rely on the description of
the service candidates and the user’s request to make recommendations. Collaborative
filtering-based methods use the invocation records of services generated by a set of users to make
recommendations. There are also some studies employing both the description and invocation
records of services to make recommendations. In this paper, we survey the state-of-the-art web
API service recommendation methods, and discuss their characteristics and differences. We also
present some possible future research directions in this paper.

Keywords: web service; recommendation; collaborative filtering; Mashup creation.

Reference to this paper should be made as follows: Xu, G., Lian, S. and Tang, M. (2023)
‘Web API service recommendation for Mashup creation’, Int. J. Computational Science and
Engineering, Vol. 26, No. 1, pp.45–53.

Biographical notes: Gejing Xu received her Bachelor degree in 2004 and Master degree in 2014
from the Huaqiao University. She is now working as a Lecturer at the Quanzhou University of
Information Engineering. Her current research interests include software engineering and big
data analytics.

Sixian Lian is currently pursuing his Masters degree with the School of Information Science and
Technology, Guangdong University of Foreign Studies, Guangzhou, China. His research interests
include services computing and data analytics.

Mingdong Tang is a Professor in the School of Information Science and Technology at
Guangdong University of Foreign Studies, Guangzhou, China. He received his PhD in Computer
Science from the Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
China, in 2010. He has published more than 100 peer-reviewed research papers in various
academic journals and conferences. His current research interests include software engineering
and data mining.

1 Introduction
Web application programming interface (API) services have
become a popular technology and basic blocks for building
distributed applications (Bouguettaya et al., 2014;
Papazoglou et al., 2007; Yu et al., 2008). Traditionally, web
API services (or web services for short) are mainly used for

data sharing and business integration in an enterprise or a
group of enterprises with cooperation relationships. In
contrast, nowadays there are more and more enterprises
engaging in opening their web services to the public and
allowing customers or the third parties to access their data
or functionalities in a programmable way. For instance, the
IT giants like Google, Facebook, Amazon, etc. have already

46 G. Xu et al.

published dozens of web services for public access. By
doing this, the enterprises can seize more economic benefits
and eventually build business ecosystems surrounding their
products. These open web services with various
functionalities such as storage, messaging, computing,
searching and mapping, have made the web become a huge
programmable platform. That is, common developers can
easily search for appropriate web services and employ them
to create new applications or value-added services in a
prompt way. With the prevalence of cloud, mobile and IoT
applications, it can be expected that web services will
become more and more popular in software development
(Tan et al., 2016).

With the constant increase of the number of web
services, to find suitable services for developers (i.e.,
service users) also becomes increasingly challenging
(Cappiello et al., 2010; Yang et al., 2021). As can be
observed from the most popular website of open web
services, ProgramableWeb.com, most web services are
described with plain text. Although keyword-based search
can be used to relief the difficulty in finding web services, it
is still a non-trivial job for users to efficiently and
accurately identify the appropriate web APIs that meet their
application development requirements. To address this
issue, dozens of studies have been conducted on
recommending web services to users based on their implicit
or explicit requirements in the past decade. Techniques used
for Web service recommendation can be roughly divided
into content-based, collaborative filtering (CF)-based and
hybrid. This paper surveys these works and compares their
features. The paper also presents the challenges facing web
service recommendation and suggests several future
research directions.

Figure 1 Categorisation of web service recommendation
methods

Web service
recommendation
methods

Content-based
methods

Collaborative
filtering-based
methods

Hybrid methods

The rest of this paper is organised as follows. Section 2
introduces the background and problem of web service
recommendation. Section 3 surveys the state-of-the-art web
service recommendation methods and compares their
features. Section 4 presents the challenges facing web API
recommendation and possible research directions. Finally,
Section 5 concludes this paper.

2 Background
2.1 From SOAP-based services to REST-based

services
Web services are software modules that can be remotely
invoked using an internet-based protocol such as HTTP. A

web service usually has a set of APIs, and each API
represents a certain function.

With the evolution of web service technologies, there
are different styles for the implementation of web services,
and among which the major two implementation styles of
web services are simple object access protocol
(SOAP)-based and representational state transfer
(REST)-based (Lanthaler and Gütl, 2010). SOAP-based
web APIs, usually referred to as ‘classical’ web services,
emerges before REST-based web APIs. The SOAP-based
web service architecture complies with SOA, which
comprises three entities (as shown in Figure 2):

• A service provider, which creates a service and
publishes the service description in the service registry.

• A service registry, which enables online service
discovery.

• A service requestor, which finds the service by
querying the service registry. The requestor then
retrieves the service description, uses it to bind to the
service implementation, and begins interacting with it.

Figure 2 Model of service oriented architecture

 Find

Publish Bind

SOAP-based web APIs (services), namely classical web
services, are characterised by a set of standard protocols
established by World Wide Web Consortium (W3C), such
as SOAP, web service description language (WSDL) and
universal description, discovery and integration (UDDI).
SOAP is a protocol for exchanging XML-based messages
over networks, normally based on HTTP. WSDL is an
XML-based language for describing how to use a web
service, including description of the service methods and
binding information. UDDI is a protocol used for Web
service publish and discovery.

REST-based services (or RESTful services) are
nowadays much more prevalent than SOAP-based web
services for its simplicity, scalability and easy to use (Hsieh
et al., 2011). According to some statistics (Jiang et al.,
2012), REST-based web services have taken more than 80%
ratios in the open web service market. Different from
SOAP-based web services, REST-based web services are
often described solely through HTML or plain text that are
thought for human understanding purpose. Although there
exist proposals for improving the web services’
understandability for machines, such as web application
description language (WADL) and WSDL 2.0, they are
rarely used in practice. Normally, REST-based services use
HTTP to exchange messages in their invocations, and their
input/output data are usually in JavaScript object notation
(JSON) format. REST-based services also do not have any

 Web API service recommendation for Mashup creation 47

UDDI-based registry supporting automatic publish/
discovery, and usually users have to find satisfactory web
services manually.

2.2 Service-Mashup ecosystem
Mashup is a new application development pattern that
combines different resources such as data and services
distributed on the web to create innovative applications. The
data or service providers usually open their data or services
by offering an API. There have been a number of tools
proposed for Mashup development, such as IBM Mashup
Centre and Google Mashup Editor. Traditionally, the
Mashup technique was mainly used for web application
development. With the spread of mobile computing and
internet of things (IoT), Mashup also attracts increasing
attention in developing mobile and IoT applications (Im
et al., 2013; Cao et al., 2019a).

Figure 3 Mashups and web services (see online version
for colours)

100 Most Powerful
Celebrities

Mileage
Calculator

Google Calendar Google Maps Yahoo Geocoding YouTube

Figure 3 is an example illustrating the relationships between
Mashups and web services. The Mashup ‘mileage
calculator’, which can be used to calculate travel mileage
for any number of trips, is created by combining the Google
Calendar services and the Google Maps services. Actually,
with the prevalence of web services and mashups,
service-Mashup ecosystems have emerged (Salminen and
Mikkonen, 2012). As a sort of software ecosystem (Bosch,
2009), a service-Mashup ecosystem cannot only improve
the efficiency of application development, but also promote
the reuse of software components around the world
(Mikkonen and Taivalsaari, 2010; Taivalsaari, 2009).

ProgrammableWeb.com as the largest web service
portal has contributed a lot to raise the service-Mashup
ecosystem. It offers the functions that users can freely
publish web services or Mashups, search web services or
Mashups, or comment them. To character
ProgrammableWeb, we crawled all web services and
Mashup from it, and conduct a statistical analysis. Table 1
presents the statistics of the data of ProgrammableWeb.com.
To the access date, the number of available web services is
about 21,900 and the number of available Mashups is about
6,435. All web services fall into 425 primary categories like

mapping, search, social, eCommerce, photos, etc. Most
Mashups use only one or two APIs，though there exist a
few Mashups that comprise dozens of web services. The
average number of services used by a Mashup is about 2, as
shown in the table. The web services and Mashups collected
by ProgrammableWeb are likely to be only a small
proportion of all web services and applications on the
internet. There could be millions of applications that are
developed by reusing or combining open web services.
However, how to obtain those API usage data is a
challenging problem.

Table 1 Statistics of the service-Mashup ecosystem of
programmableweb

Property Value

Number of web services 21,900
Number of Mashups 6,435
Number of service categories 425
Average number of services per Mashup 2.07
Length of service description (#words) 44
Length of Mashup description (#words) 27

2.3 The web service recommendation problem
This survey focuses on web service recommendation for
Mashup creation. We focus on REST-based web services
that are normally described in HTML or plain text. We do
not assume that web services are described in structured
languages like WSDL, for they are not the mainstream
implementation of REST-based services. The service
providers or developers may use a short text to describe
their services or Mashups when publishing them in web
service portals. Figure 4 is an example showing the
description of web services (API) in ProgrammableWeb.
The problem of web service recommendation is formally
defined as follows.

Suppose that we have a set of web services, a set of
Mashups and a set of historical invocation records occurred
between them. If a Mashup has invoked a web service, there
is an invocation record for them. Such relationships between
services and Mashups can be represented by using a graph
or matrix. Figure 5 shows the graph or matrix
representations of the example from Figure 1. In the graph,
each link is used to represent the invocation relationship
between a Mashup and a service; while in the matrix, each
item with value 1 represents an invocation relationship.
Under this setting, the web service recommendation
problem can be defined as: given a web service set, a
Mashup set, and their invocation relationships, for a new
Mashup with requirement description, to recommend a list
of web services that best match the requirement of the new
Mashup application.

48 G. Xu et al.

Figure 4 Description of web services (APIs) in programmableweb (see online version for colours)

Figure 5 Representation of the relationships between web APIs

and Mashups, (a) graph representation, (b) matrix
representation

m1 m2

s1 s2 s3 s4

(a)

1 1 0 0

0 1 1 1

s1 s2 s3 s4

m1
m2

(b)

3 The state-of-the-art methods
The state-of-the-art methods on web service
recommendation can roughly be categorised into:
content-based, CF-based and hybrid methods, as shown in
Figure 1. In the following, we discuss and analyse the web
service recommendation methods fallen in each category.

3.1 Content-based methods
Content-based service recommendation methods usually
exploit only the description of users’ requirements and web
services’ functionalities to measure their matching degrees,
and recommend the most matched web services to the users.
Content-based methods have been widely used for classical
web service recommendation or discovery, which are
typically described in WSDL. Some of them can also be
applied to web services with unstructured description such
as REST-based services. Generally, there are two categories
of content-based web service recommendation methods:
syntactic matching and semantic matching.

3.1.1 Syntactic matching
This kind of method usually employs classic text retrieval
methods to find suitable web services. For example, Halevy
et al. (2004) used TF/IDF to extract keywords from the
description documents of web services. The extracted
keywords as well as input/output parameters are both used
to make matching’s between web services to recommend
similar web services. Tang et al. (2014) also employed the
TF/IDF model to represent web services, and then measure
its similarity with the user query. The most similar web
services are finally recommended to the user. Wu (2012)
introduced term tokenisation to relieve the syntactic
inconsistency between the description of Web services and
user queries, so as to improve the accuracy of syntactic
matching. Liu et al. (2010) employed an external
knowledge, e.g., lexical databases, to improve syntactic
matching of web services.

3.1.2 Semantic matching
Semantic matching was introduced to overcome the
inaccuracy of syntactic matching in web service
recommendation or discovery. Semantic matching is usually
based on the assumption that both web services and user
requests are described in a machine understandable
language. Several ontology languages have been proposed
for web services, such as SAWSDL (Kopecký et al., 2007)
and OWL-S (Martin et al., 2007). Most studies in this field
assumed that web services and user requests are described
using the same ontology language, which, however, is
impractical. Junghans et al. (2010) focused on the semantic
web service discovery scenario where web services and user
requests are with different semantic descriptions. Sangers et
al. (2013) proposed a method that enables users using
natural language-based keywords to find semantic web
services.

Although the above semantic matching methods
normally perform better than syntactic ones in the accuracy
of web service discovery or recommendation, their

 Web API service recommendation for Mashup creation 49

practicality is limited, for real web services are rarely
described semantically. Lin et al. (2018) propose a neural-
based method named NL2API, which also relies solely on
service descriptions for recommending services. Different
from the above methods, it uses a neural network model to
generate embeddings for web services and Mashups based
on their descriptions, and recommends services by
computing their similarities based on the representations.
Shi et al. (2019) also employ a neural work model to
generate service and Mashup embeddings for service
recommendation. To obtain richer semantics, they use the
Attention mechanism and take into account both description
and tags of services and Mashups.

3.2 CF-based methods
CF is one of the most popular recommendation techniques,
and has also been widely applied to web service
recommendation or service quality prediction (Zheng et al.,
2020; Chen et al., 2019). Different from the content-based
methods which focus on matching the contents of a user and
a service, CF-based methods exploit in whole or in part the
historical invocation records of other users and services for
service recommendation. Among all CF-based web service
recommendation methods, matrix factorisation (MF),
factorisation machine (FM) and link prediction (LP) are the
most widely used techniques. Therefore, this section focuses
on the CF-based web service recommendation methods
based on the three prevailing techniques, and discusses their
features and differences.

3.2.1 Matrix factorisation
MF can be used to discover the latent factors from the
service-Mashup matrix and to map all services and Mashups
into the same space constructed by the latent factors.
Consider a service-Mashup matrix R with invocation
records by m Mashups for n services. The matrix R with m
rows and n columns can be decomposed into two thin
matrices M’ and S’. M’ will have m × l dimensions and S’
will have n × l dimensions where l is the number of latent
factors. The matrix R can be decomposed in such a way that
the dot product of the matrix M’ and transposed S’ will yield
a matrix with m × n dimensions that closely approximates
the original ratings matrix, i.e., R ≈ M’ • S’. Therefore, the
key to the MF-based web service recommendation is
finding the optimal M’ and S’, so that the results of their dot
product can be used to accurately predict the missing values
in R, which determines whether a service should be
recommended to the new Mashup or not.

A number of MF-based web service recommendation
methods have been proposed for Mashup creation. Xu et al.
(2013) used a combination of MFs to predict
recommendation scores of each service for a new Mashup,
in which the Mashup-creator matrix, the Mashup-topic
matric, the service-tag matrix and the service-topic matrix
are incorporated. Yao et al. (2018) divided the correlation of
services as an additional regularisation term into the
probability matrix factorisation (PMF) to support more

accurate service recommendation. Fletcher (2019a)
introduced the user’s implicit preferences into MF to enrich
the web service invocation record so as to improve the
accuracy and diversity of recommendations.

There are some studies that integrate other factors with
MF to improve the prediction of service recommendation
scores. In Liu and Fulia (2015), Jain et al. (2015) and
Samanta and Liu (2017), the popularity of services was
integrated with MF to rank the services in the
recommendation list. In Tang et al. (2016), Liu et al. (2016)
and Botangen et al. (2019, 2020), the geographic correlation
and functional correlation were integrated with MF infer the
priority of implicit Mashup-service invocations, so as to
improve the accuracy of service recommendations. In
Fletcher (2019b), the service quality indicators such as
reliability and usability were integrated with MF to
recommend top-k services.

3.2.2 Factorisation machine
FMs are generic supervised learning models that map
arbitrary real-valued features into a low-dimensional latent
factor space and can be applied naturally to a wide variety
of prediction tasks including regression, classification, and
ranking (Rendle, 2010). More specifically, the prediction
task for a FM model is to estimate a function ŷ from a
feature set x to a target domain. The advantages of this
model majorly lie in the way it uses a factorised
parametrisation to capture the pairwise feature interactions.
It can be represented mathematically as follows:

0ˆ + + ,i i i j i j
i i j i

y w w x v v x x
>

= < >

The three terms in this equation correspond respectively to
the three components of the model:

• w0 represents the global bias.

• wi models the strength of the ith variable.

• <vi, vj> models the pairwise interaction between the ith
and jth variable.

Several studies have employed FMs to recommend services
for Mashup creation. Li et al. (2017) proposed a FM-based
service recommendation method which exploits
multi-dimensional data such as tags, topics, service
co-occurrences and popularity factors. The tags and topics
of Mashup and web services were employed to calculate the
similarity between web services and the similarity between
Mashups. Finally, similar Mashups, similar web services,
co-occurrence and popular factors of web services are
combined by FMs to predict the recommendation scores of
web services. Cao et al. (2019a) improved (Cao et al., 2013)
by using the relational topic model (RTM) to extract more
accurate topic vectors of Mashups and services, and based
on which to compute their similarities. To improve the
representations of Mashups and services, Zhang et al.
(2018) employed word2Vec to extract the functional
information of Mashups and services, and use a FM-based

50 G. Xu et al.

neural network to integrate various features to compute the
recommendation score services. The aforementioned work
assumes that all features are with the same or equal
importance. However, different features may have different
levels of impacts. Some unnecessary features may even
raise negative impacts in the recommendation performance
for their data noise. Cao et al. (2019b) introduced an
attention mechanism to distinguish the importance of each
factor in the training data, so as to improve the
recommendation performance. Tang et al. (2021) proposed
a deep FM-based method and took into consideration the
composition patterns of services to recommend suitable
services for Mashup creation.

3.2.3 Link prediction
This class of service recommendation methods model the
relationships between Mashups, web services and other
related objects as a graph, and recommend services by
predicting new links. Based on the graph structure, previous
LP-based service recommendation methods can further be
divided into homogeneous graph-based and heterogeneous
graph-based. The former class of methods considers
homogeneous service graphs consisting of only web
services and their relationships. The latter class of methods
considers heterogeneous service graphs which consist of
different types of nodes such as web services,
Mashups/apps, tags, and service providers.

Zhao et al. (2010) and Mokarizadeh et al. (2012)
focused on mining the dependency relationship between the
input/output data of two web services, and proposed service
navigation and recommendation methods via the links
generated. Tang et al. (2019) mined both the cooperation
and similarity relationships between web services. The
cooperation relationship between two web services was
inferred by identifying whether they have been co-invoked
by one or more Mashups. Then, according to a series of
heuristic rules based on the cooperation and similarity
relationships, potentially cooperative web services were
recommended for a given service via LP. Huang et al.
(2014) built a service-service homogeneous network based
on the concurrence of web services in Mashups, and
proposed a network model to mimic the evolution of the
service network, through which potential service
compositions are predicted.

The service-Mashup ecosystem (including services,
Mashups, developers and providers) can be viewed as a
heterogeneous information network (HIN) (Lian and Tang,
2021). A number of studies have explored the
heterogeneous service networks to recommend services for
Mashup creation. Liang et al. (2016) took into account the
relationships between services, Mashups, tags, and service
providers to build a heterogeneous service network, and
calculated the similarities between different objects based
on meta-paths in the network. Then, they predicted the
possible links between a new Mashup and all services using
a CF technique. Xie et al. (2019) proposed a Bayesian
personalised ranking algorithm by sampling meta-paths in a
heterogeneous service network and base on Mashup group

preference to recommend services. Wang et al. (2019b)
proposed a link-based service recommendation method
based on the knowledge graph constructed by extracting the
various relationships between services, Mashups, tags and
service providers. They employed a random walk method
with restart to estimate the relevance of API candidates for a
Mashup.

3.3 Hybrid methods
Hybrid service recommendation methods combines both
contents and relationships to recommend services according
to the requirement description of the new Mashup
development, which is typically expressed using keywords
or natural language sentences.

Some studies use keywords to describe the users’
functional requirements. He et al. (2017) proposed a service
search/recommendation method, i.e., keyword search for
service-based systems (KS3), which searches web API by
entering keywords. They also assumed that the
functionalities of services are also represented by keywords,
and a service graph was built based on the invocation
relationships between services. The goal is to find a subset
of nodes (services) of the service graph, so that the
keywords of the services will cover those keywords entered.
In a similar manner, Qi et al. (2019) used a set of keywords
to describe API functions and the user’s request, and built a
service graph based on the concurrence relationships
between services. Then, they transformed the service
search/recommendation problem into an optimal Steiner
tree finding problem, and developed a dynamic
programming (DP)-based method to solve the problem.

The keyword-based methods may have limitations such
as poor recommendation performance and heavy
dependence on correct keywords from users. In practice, the
Mashup development requirements are likely to be specified
by users with natural language-based sentences. It would be
desirable for a system to recommend web services to users
with natural language-based requests. Yao et al. (2014)
proposed a service recommendation method that unifies CF
and content-based recommendations. It considered
simultaneously both rating data (e.g., QoS) and semantic
content data (e.g., functionalities) of web services using a
probabilistic generative model. Cao et al. (2016) proposed
an integrated content and network-based service clustering
and web service recommendation method for Mashup
development. The method used a two-level topic model to
mine the latent topics from the description of Mashups and
the user’s request, and mapped the user’s request to similar
Mashups. Then, it adopted a CF method which exploits the
concurrence of web services in Mashups to recommend web
APIs for the requirements of the new Mashup.

To further improve the effect of combining contents and
relationships for service recommendation, some recent work
proposed neural-based service recommendation methods by
using the techniques such as convolutional neural networks
(CNN), recurrent neural networks (RNN) and hierarchical
attention networks (HAN). Xue et al. (2017) employed
CNN and long short-term memory (LSTM) to integrate both

 Web API service recommendation for Mashup creation 51

contents and relationships of services to obtain better
service classification effects for service discovery/
recommendation. Xiong et al. (2018) converted the natural
language-based description of services and Mashup
developments into semantic relationship triples (X, α, Y),
and employ deep learning to learn semantic representation
of relationships for service recommendation. Bai et al.
(2020) used stacked denoising autoencoders (SDAE) to
train services description text and exploit the service usage
records as a regularisation of the encoding output of SDAE,
to enhance the robustness of embeddings. Ma et al. (2020)
proposed a multiplex interaction-based service
recommendation approach named MISR, which
incorporates three types of interactions between services
and mashups into a deep neural network.

4 Challenges and future research possibilities
Although the above-mentioned works are valuable in
addressing the service recommendation problem, they still
have limitations in terms of recommendation performance.
Besides, the service recommendation problem also faces
some new challenges. Below, we present some challenges
and future research possibilities.

Web service recommendation algorithms with higher
accuracy. Although recent methods have improved the
recommendation performance to some extent, there are still
much room for further improvement. Emerging deep
learning and neural model-based technologies are
continuously introduced to various recommender systems,
and have demonstrated their significant advantages over the
other methods in many cases. For example, graph neural
network (GNN), as a novel technology, has recently been
applied to recommendation systems (Wang et al., 2019a)
and achieved high performance. It can effectively solve the
data sparseness and cold start problems, and is good at
building a more robust and reliable recommendation
system. In addition to the interactions between users and
items, GNN can effectively use and integrate the relevant
information from multiple sources that has explicit or
implicit influence on the recommendation. How to design
algorithms based on GNN or other neural models to
improve web service recommendation for Mashup creation
is a possible research direction.

Industrial applications of web service recommendation.
web service recommendation is playing an increasingly
important role in the development of service-based systems
like Mashups. However, there is still a lack of research on
the industrial implementation of web service
recommendations. On the one hand, although there could be
millions of services providing various functions on the web,
most of them are not well maintained and the sustainability
of those services cannot be guaranteed. Therefore,
recommending with such a large-scale, highly unreliable
services to meet the needs of developers is a difficult task.
On the other hand, due to the privacy concerns, industrial
companies (including both service providers and
consumers) may be reluctant to disclose information about

service usage. However, abundant service usage records are
very important for service recommendations. Studies of
industrial applications of web service recommendation may
provide a promising direction which requires urgent
attention.

Automated web service composition for Mashup
creation. Web service composition is undoubtedly the most
promising way to integrate business-to-business
applications. However, the current solutions from industry
and the academia often focus on either SOAP-based web
services or semantic web services. As a lightweight and
cost-effective alternative to SOAP-based services, RESTful
services recently have shown their potential to compose
reliable and visible web-scale applications based on the
so-called Mashups. Previous studies on RESTful service
composition are mostly manual or semi-automated. The
manual composition requires the user manually complete
the whole service composition process from service
discovery to service binding, which is impractical when the
service number is very large. As a contrast, the
semi-automated composition techniques make suggestions
to the user for service selection during the composition
process. Nevertheless, the user still needs to select services
and bind them in an appropriate order. At present, fully
automated composition for RESTful services is still a
challenging issue, for the RESTful services suffer from
shortcomings on semantically describing, finding and
composing services as well as the absence of a holistic
framework covering the entire service lifecycle. Therefore,
how to automate RESTful service composition is also a
promising research direction.

5 Conclusions
Web service recommendation for Mashup creation has
become a hot research topic in the service computing field.
In this survey, we conducted a comprehensive review of the
state-of-the-art methods in this topic, which are divided into
three categories: content-based, CF-based and hybrid
methods. The content-based methods primarily rely on the
description text of services and user requirements to make
service recommendations. The CF-based methods exploit
the relationships between services and Mashups to make
service recommendations. And the hybrid methods combine
contents and relationships of services to make service
recommendations. We also summarised the challenges
faced by web service recommendation and suggested some
future research directions.

References
Bai, B., Fan, Y., Tan, W. and Zhang, J. (2020) ‘DLTSR: a deep

learning framework for recommendations of long-tail web
services’, IEEE Transactions on Services Computing,
Vol. 13, No. 1, pp.73–85.

Bosch, J. (2009) From Software Product Lines to Software
Ecosystems, SPLC, pp.111–119.

52 G. Xu et al.

Botangen, K.A., Yu, J., Sheng, Q.Z., Han, Y. and Yongchareon, S.
(2020) ‘Geographic-aware collaborative filtering for web
service recommendation’, Expert Systems with Applications,
Vol. 151, No. 113347.

Botangen, K.A., Yu, J., Yongchareon, S., Yang, L. and
Sheng, Q.Z. (2019) ‘Integrating geographical and functional
relevance to implicit data for web service recommendation’,
International Conference on Service-Oriented Computing,
Springer, pp.53–57.

Bouguettaya, A., Sheng, Q.Z. and Daniel, F. (2014) Web Services
Foundations, Springer.

Cao, B., Liu, J., Tang, M., Zheng, Z. and Wang, G. (2013)
‘Mashup service recommendation based on user interest and
social network’, 2013 IEEE 20th International Conference on
Web Services, IEEE, pp.99–106.

Cao, B., Liu, X., Li, B., Liu, J., Tang, M., Zhang, T. and Shi, M.
(2016) ‘Mashup service clustering based on an integration of
service content and network via exploiting a two-level topic
model’, 2016 IEEE International Conference on Web
Services (ICWS).

Cao, B., Liu, J., Wen, Y., Li, H., Xiao, Q. and Chen, J. (2019a)
‘QoS-aware service recommendation based on relational topic
model and factorization machines for IoT Mashup
applications’, Journal of Parallel and Distributed Computing,
Vol. 132, No. 2019, pp.177–189.

Cao, Y., Liu, J., Shi, M., Cao, B., Chen, T. and Wen, Y. (2019b)
‘Service recommendation based on attentional factorization
machine’, 2019 IEEE International Conference on Services
Computing (SCC).

Cappiello, C., Daniel, F., Matera, M. and Pautasso, C. (2010)
‘Information quality in mashups’, IEEE Internet Computing,
Vol. 14, No. 4, pp.14–22.

Chen, Z., Shen, L., You, D., Ma, C. and Li, F. (2019) ‘A
location-aware matrix factorisation approach for collaborative
web service QoS prediction’, International Journal of
Computational Science and Engineering, Vol. 19,
No. 3, pp.354–367.

Fletcher, K. (2019a) ‘Regularizing matrix factorization with
implicit user preference embeddings for web API
recommendation’, 2019 IEEE International Conference on
Services Computing (SCC).

Fletcher, K.K. (2019b) ‘A quality-aware web API recommender
system for mashup development’, Services Computing – SCC
2019.

Halevy, A., Nemes, E., Dong, X., Madhavan, J. and Zhang, J.
(2004) ‘Similarity search for web services’, Proceedings of
the 30th VLDB Conference, pp.372–383.

He, Q., Zhou, R., Zhang, X., Wang, Y., Ye, D., Chen, F.,
Grundy, J.C. and Yang, Y. (2017) ‘Keyword search for
building service-based systems’, IEEE Transactions on
Software Engineering, Vol. 43, No. 7, pp.658–674.

Hsieh, M.Y., Lin, H.Y. and Li, K.C. (2011) ‘A web-based travel
system using mashup in the RESTful design’, International
Journal of Computational Science & Engineering, Vol. 6,
No. 3, pp.185–191.

Huang, K., Fan, Y. and Tan, W. (2014) ‘Recommendation in an
evolving service ecosystem based on network prediction’,
IEEE Transactions on Automation Science and Engineering,
Vol. 11, No. 3, pp.906–920.

Im, J., Kim, S. and Kim, D. (2013) ‘IoT mashup as a service:
cloud-based mashup service for the internet of things’, 2013
IEEE International Conference on Services Computing,
IEEE, pp.462–469.

Jain, A., Liu, X. and Yu, Q. (2015) ‘Aggregating functionality, use
history, and popularity of APIs to recommend mashup
creation’, International Conference on Service-Oriented
Computing, Springer, pp.188–202.

Jiang, W., Lee, D. and Hu, S. (2012) ‘Large-scale longitudinal
analysis of soap-based and restful web services’, 2012 IEEE
19th International Conference on Web Services, IEEE,
pp.218–225.

Junghans, M., Agarwal, S. and Studer, R. (2010) ‘Towards
practical semantic web service discovery’, Extended Semantic
Web Conference, Springer, pp.15–29.

Kopecký, J., Vitvar, T., Bournez, C. and Farrell, J. (2007) ‘Sawsdl:
Semantic annotations for wsdl and xml schema’, IEEE
Internet Computing, Vol. 11, pp.60–67.

Lanthaler, M. and Gütl, C. (2010) ‘Towards a RESTful service
ecosystem’, 4th IEEE International Conference on Digital
Ecosystems and Technologies, IEEE, pp.209–214.

Li, H., Liu, J., Cao, B., Tang, M., Liu, X. and Li, B. (2017)
‘Integrating tag, topic, co-occurrence, and popularity to
recommend web APIs for Mashup creation’, 2017 IEEE
International Conference on Services Computing (SCC).

Lian, S. and Tang, M. (2021) ‘API recommendation for
Mashup creation based on neural graph collaborative
filtering’, Connection Science, pp.1–15, DOI:10.1080/
09540091.2021.1974819.

Liang, T., Chen, L., Wu, J., Dong, H. and Bouguettaya, A. (2016)
‘Meta-path based service recommendation in heterogeneous
information networks’, International Conference on Service-
Oriented Computing, Springer, pp.371–386.

Lin, C., Kalia, A., Xiao, J., Vukovic, M. and Anerousis, N. (2018)
‘Nl2api: a framework for bootstrapping service
recommendation using natural language queries’, 2018 IEEE
International Conference on Web Services (ICWS), IEEE,
pp.235–242.

Liu, F., Shi, Y., Yu, J., Wang, T. and Wu, J. (2010) ‘Measuring
similarity of web services based on WSDL’, 2010 IEEE
International Conference on Web Services.

Liu, J., Tang, M., Zheng, Z., Liu, X. and Lyu, S. (2016)
‘Location-aware and personalized collaborative filtering for
web service recommendation’, IEEE Transactions on
Services Computing, Vol. 9, No. 5, pp.686–699.

Liu, X. and Fulia, I. (2015) ‘Incorporating user, topic, and service
related latent factors into web service recommendation’, 2015
IEEE International Conference on Web Services.

Ma, Y., Geng, X. and Wang, J. (2020) ‘A deep neural network
with multiplex interactions for cold-start service
recommendation’, IEEE Transactions on Engineering
Management, Vol. 68, No. 1, pp.1–15.

Martin, D., Burstein, M., Mcdermott, D., Mcilraith, S.,
Paolucci, M., Sycara, K., Mcguinness, D. L., Sirin, E. and
Srinivasan, N. (2007) ‘Bringing semantics to web services
with OWL-S’, World Wide Web, Vol. 10, pp.243–277.

Mikkonen, T. and Taivalsaari, A. (2010) ‘The mashware
challenge: bridging the gap between web development and
software engineering’, Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research,
pp.245–250.

Mokarizadeh, S., Küngas, P., Matskin, M., Crasso, M., Campo, M.
and Zunino, A. (2012) ‘Information diffusion in web services
networks’, 2012 IEEE 19th International Conference on Web
Services, IEEE, pp.488–495.

 Web API service recommendation for Mashup creation 53

Papazoglou, M.P., Traverso, P., Dustdar, S. and Leymann, F.
(2007) ‘Service-oriented computing: state of the art and
research challenges’, Computer, Vol. 40, No. 11, pp.38–45.

Qi, L., He, Q., Chen, F., Dou, W., Wan, S., Zhang, X. and Xu, X.
(2019) ‘Finding all you need: web APIs recommendation
in web of things through keywords search’, IEEE
Transactions on Computational Social Systems, Vol. 6, No. 5,
pp.1063–1072.

Rendle, S. (2010) ‘Factorization machines’, 2010 IEEE
International Conference on Data Mining, IEEE,
pp.995–1000.

Salminen, A. and Mikkonen, T. (2012) ‘Mashups-software
ecosystems for the web era’, IWSECO@ ICSOB, pp.18–32.

Samanta, P. and Liu, X. (2017) ‘Recommending services for new
mashups through service factors and top-K neighbors’, 2017
IEEE International Conference on Web Services (ICWS).

Sangers, J., Frasincar, F., Hogenboom, F. and Chepegin, V. (2013)
‘Semantic web service discovery using natural language
processing techniques’, Expert Systems with Applications,
Vol. 40, No. 11, pp.4660–4671.

Shi, M., Tang, Y. and Liu, J. (2019) ‘Functional and contextual
attention-based LSTM for service recommendation in
Mashup creation’, IEEE Transactions on Parallel and
Distributed Systems, Vol. 30, No. 5, pp.1077–1090.

Taivalsaari, A. (2009) Mashware: The Future of Web
Applications, Sun Microsystems, Inc.

Tan, W., Fan, Y., Ghoneim, A., Hossain, M.A. and Dustdar, S.
(2016) ‘From the service-oriented architecture to the web
API economy’, IEEE Internet Computing, Vol. 20, No. 4,
pp.64–68.

Tang, B., Tang, M., Xia, Y. and Hsieh, M-Y. (2021) ‘Composition
pattern-aware web service recommendation based on depth
factorisation machine’, Connection Science, pp.1–21, DOI:
10.1109/TSC.2020.2995571.

Tang, M., Xie, F., Liang, W., Xia, Y. and Li, K-C. (2019)
‘Predicting new composition relations between web services
via link analysis’, International Journal of Computational
Science and Engineering, Vol. 20, No. 1, pp.88–101.

Tang, M., Zheng, Z., Chen, L., Liu, J., Cao, B. and You, Z. (2014)
‘A trust-aware search engine for complex service computing’,
International Journal of Web Services Research (IJWSR),
Vol. 11, No. 1, pp.57–75.

Tang, M., Zheng, Z., Kang, G., Liu, J., Yang, Y. and Zhang, T.
(2016) ‘Collaborative web service quality prediction via
exploiting matrix factorization and network map’, IEEE
Transactions on Network and Service Management, Vol. 13,
No. 1, pp.126–137.

Wang, X., He, X., Wang, M., Feng, F. and Chua, T-S. (2019a)
‘Neural graph collaborative filtering’, Proceedings of the
42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval.

Wang, X., Wu, H. and Hsu, C-H. (2019b) ‘Mashup-oriented API
recommendation via random walk on knowledge graph’,
IEEE Access, Vol. 7, No. 2018, pp.7651–7662.

Wu, C. (2012) ‘WSDL term tokenization methods for IR-style web
services discovery’, Science of Computer Programming,
Vol. 77, No. 3, pp.355–374.

Xie, F., Chen, L., Lin, D., Zheng, Z. and Lin, X. (2019)
‘Personalized service recommendation with mashup group
preference in heterogeneous information network’, IEEE
Access, Vol. 7, No. 2019, pp.16155–16167.

Xiong, W., Lu, Z., Li, B., Hang, B. and Wu, Z. (2018)
‘Automating smart recommendation from natural language
API descriptions via representation learning’, Future
Generation Computer Systems, Vol. 87, No. 2018,
pp.382–391.

Xu, W., Cao, J., Hu, L., Wang, J. and Li, M. (2013) ‘A
social-aware service recommendation approach for mashup
creation’, 2013 IEEE 20th International Conference on Web
Services.

Xue, Q., Liu, L., Chen, W. and Chuah, M.C. (2017) ‘Automatic
Generation and Recommendation for API Mashups’, 2017
16th IEEE International Conference on Machine Learning
and Applications (ICMLA).

Yang, X., Xu, H., Shu, H., Wang, Y., Liu, K. and Ho, Y. (2021)
‘Service component recommendation based on LSTM’,
International Journal of Embedded Systems, Vol. 14,
No. 2, pp.201–209.

Yao, L., Sheng, Q.Z., Ngu, A.H., Yu, J. and Segev, A. (2014)
‘Unified collaborative and content-based web service
recommendation’, IEEE Transactions on Services
Computing, Vol. 8, No. 3, pp.453–466.

Yao, L., Wang, X., Sheng, Q.Z., Benatallah, B. and Huang, C.
(2018) ‘Mashup recommendation by regularizing matrix
factorization with API co-invocations’, IEEE Transactions on
Services Computing, Vol. 14, No. 2, pp.502–515.

Yu, Q., Liu, X., Bouguettaya, A. and Medjahed, B. (2008)
‘Deploying and managing web services: issues, solutions, and
directions’, The VLDB Journal, Vol. 17, No. 3, pp.537–572.

Zhang, X., Liu, J., Cao, B., Xiao, Q. and Wen, Y. (2018) ‘Web
service recommendation via combining Doc2Vec-based
functionality clustering and deep FM-based score prediction’,
2018 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Ubiquitous Computing &
Communications, Big Data & Cloud Computing, Social
Computing & Networking, Sustainable Computing
& Communications (ISPA/IUCC/BDCloud/SocialCom
/SustainCom).

Zhao, C., Zhang, J., Zhang, J., Yi, L. and Mao, X. (2010)
‘Hyperservice: linking and exploring services on the web’,
2010 IEEE International Conference on Web Services, IEEE,
pp.17–24.

Zheng, Z., Xiaoli, L., Tang, M., Xie, F. and Lyu, M.R. (2020)
‘Web service QoS prediction via collaborative filtering:
a survey’, IEEE Transactions on Services Computing, DOI is
10.1109/TSC.2020.2995571

