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Abstract: This work studies the valuation of European options under
the constant elasticity of variance model. The model generalises the
Black-Scholes framework for option pricing by incorporating a local
instantaneous volatility term which is a function of the stock price. The
model has the ability to fit certain implied volatility structures exhibited
by market option prices, but the computation of the closed-form European
option formula is not always stable and can be largely inaccurate for some
parameter ranges because of the difficulties associated with the computation
of the non-central chi-square distribution in the valuation formula. As an
alternative to one line of research which aims at accelerating and stabilising
the analytical price computation, we study finite difference techniques to
obtain European option prices and associated hedging parameters. It is
numerically demonstrated that a direct discretisation of the pricing equation
in combination with an exponential integrator in time performs better than
other schemes based on Crank-Nicolson discretisations of two transformed
problems, one posed on an infinite domain and the other on a finite domain.
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1 Introduction

After its discovery, the constant volatility lognormal diffusion model of Black and 
Scholes (1973) for asset prices rapidly became the industry standard as the availability 
of closed-form solutions for European options made possible the dynamic hedging of 
financial risk. The Black-Scholes formula is a monotone function of the unobservable 
volatility parameter and for a quoted market option call or put price, the formula can

Copyright © 2023 Inderscience Enterprises Ltd.
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be inverted to yield the market implied volatility. However over the years, limitations
of Black-Scholes became apparent due to the existence of implied volatility surfaces
known as smiles (U-shaped structure) and skews (decreasing with the option’s strike for
a given maturity). These structures are inconsistent with the constant volatility of asset
returns assumed in Black-Scholes framework.

To provide a better fit to market option prices, several enhancements were proposed
such as stochastic volatility models (Heston, 1993; Hagan et al., 2002) which lead
to two dimensional pricing equations and jump diffusion models (Merton, 1976; Kou,
2002) which contain non-local integral terms. However, jump-diffusion and stochastic
volatility models contain an extra factor which cannot be hedged by trading in the
underlying asset only. Therefore, one-factor models are preferable for perfect replication.
Mitra (2010) mentioned that stochastic volatility models suffer from analytical and
calibration intractability and proposed using Fouque’s option pricing method for pricing
options under regime switching stochastic volatility models over short time scales.

Theoretic arguments and empirical evidence supported the hypothesis that there is
an association between stock price and volatility and to deal with this observation, local
volatility models were introduced which stay within the one-dimensional framework
of the Black-Scholes model and thus lead to complete market models which mean
that dynamic hedging portfolios can be constructed. The constant elasticity of variance
(CEV) model (Cox, 1975) is a prototype of local volatility models in which the volatility
is a deterministic function of the asset price. The CEV process is consistent with two
empirical market observations. The model incorporates the negative relationship between
the asset price and its return volatility and also, it captures the volatility skews observed
in market option prices.

Similar to the case of the Black-Scholes model, European options admit analytical
solutions under the CEV process. However, these formulas are in terms of the
non-central chi-square distribution whose computations become slow when the maturity
is low and the elasticity of the local volatility function is close to one (Schroder, 1989).
To deal with some of the limitations of the approach based on the non-central chi-square
distribution, Araneda and Villena (2021) developed a numerical method for computing
European option prices under the CEV model by using the Feynman’s path integral
approximation technique and it is shown that the relative error is below 20% for most
cases while for short maturity and low volatility, the errors decrease to less than 10%.

Recombining lattice methods for pricing options under CEV have been proposed by
Costabile and Massabó (2010). For pricing American options under the Black-Scholes
model which is a special case of the CEV model, Goldenberg (2010) showed that
the binomial method of Cox and Rubinstein (1985) results in mispricing of the early
exercise boundary in addition to the distribution and nonlinearity errors reported in the
literature. Liu and Pang (2016) developed a time adjusted grid lattice method along with
backward induction for the pricing of European and American options. For the CEV
model, Javaid et al. (2022) recently considered pricing American put options with the
use of Lie symmetry technique under three special cases of the CEV model which are
the Black-Scholes model. the Cox-Ingersoll-Ross model and the Vasicek model. Other
recent methods for option pricing under the CEV model can be found in Lee (2021)
and Zhang et al. (2019).

A most successful approach to the solution of option pricing problems is based
on solving the no-arbitrage partial differential equation (PDE) satisfied by the option
price. This technique is particularly used for option pricing problems where no analytical
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solutions can be obtained. The CEV model has the advantage that it leads to a
Black-Scholes-type one-dimensional PDE. A numerical example given by Wong and
Zhao (2008) showed that a finite difference method may be much faster for some
parameters in the CEV model. Since the CEV PDE cannot be transformed to as simple
a form as the heat equation, we consider in this work three different approaches for
the computation of the European option price. A first method considered has been
derived by Wong and Zhao (2008) which develops a numerical method for a transformed
problem posed on an infinite domain. We then propose a method which is based on
a Crank-Nicolson discretisation of a transformed equation posed on a finite domain.
These two procedures are compared against a finite difference scheme based on direct
discretisation of the space derivatives in the CEV equation and which employs an
exponential integrator for the resulting system of odes.

In previous works (Thakoor et al., 2013, 2015, 2018) we developed fourth-order
numerical schemes for solving the CEV PDE and a sixth-order scheme in Thakoor
(2022), but this higher-order accuracy is achieved at extra complications for
implementation of the high-order schemes since grid refinement techniques or
non-uniform grids need to be employed. Fixed income contracts and their derivatives
under the CEV interest rate model were considered in Thakoor et al. (2012, 2017). In
this work, because of the popularity of standard second-order discretisation schemes
for the solution of finance PDEs, we develop a numerical scheme that is also fast
and accurate. In addition, it is simple to implement and it necessitates only a one-step
integration in time.

The rest of this paper proceeds as follows. The CEV diffusion for the stock price
dynamics and the no-arbitrage PDE satisfied by the option price are described in
Section 2. The numerical schemes derived in Section 3 and performance comparisons
are done in Section 4. Finally, the study’s conclusions are presented in Section 5.

2 European options under CEV

The CEV model assumes that under the risk-neutral measure Q, the stock price
dynamics St at time t is the solution of the stochastic differential equation given by

dSt = (r − q)Stdt+ δSα
t dWt, (1)

where σ (St) = δSα−1
t is the local volatility function, r is the risk-free rate, q is the

dividend yield, δ is a scale parameter, Wt is standard Brownian motion under the
probability measure Q and α is a parameter that relates the instantaneous variance of
the percentage price change to the stock price.

Let Ft = er(T−t)St be the forward price and ν−1 = 2− 2α. Then

dFt = δFα
t dWt. (2)

The forward price process (2) is related to the squared Bessel process Xt of dimension
γ satisfying the stochastic differential equation

dX
(γ)
t = γ dt+ 2

√
X

(γ)
t dWt,

where γ = 2− 2ν and X0 = 4ν2F
1
ν
0 /σ2.



62 N. Thakoor

When the elasticity factor α < 1, the dimension γ of the squared Bessel process is
positive and in this case, the process Xt has a non-central chi-square distribution. The
case when α > 1, the forward process Ft is not a martingale since EQ[FT |F0] ̸= F0 and
this case has been recently considered by Lindsay and Brecher (2012).

In the index options market, it has been empirically observed that the elasticity factor
can be strongly negative (Jackwerth and Rubinstein, 2001) and in this work we consider
the case when α < 1.

To allow comparisons between analytical and numerical approaches, we recall closed
form expressions for the European put price (Schroder, 1989) and the two hedging
sensitivities delta and gamma recently derived in Larguinho et al. (2013). Using the
notations of Wong and Zhao (2008), let Yt = S

1
ν
t . Then using Itô’s lemma, the dynamics

of Yt is given by

dYt = (bYt + ~) dt+
δ

ν

√
Yt dWt,

where b = ν−1(r − q), a = δ2/(2ν2), ~ = (1− ν) a. The transition density g (YT |Yt)
of the process YT for T > t conditional to Yt is given by (Hsu et al., 2008)

g(YT |Yt) = kx
ν
2 z−

ν
2 e−x−zIν

(
2
√
xz
)
,

where k = (2ν(r − q))/(δ2
(
e(r−q)(T−t)/ν − 1

)
), x = kS

1
ν
t e(r−q)(T−t)/ν , z = kS

1
ν

T and
Iw(y) is the modified Bessel function of the first kind of order w given by

Iw(y) =
∞∑
r=0

(y/2)2r+w

r!Γ(r + 1 + w)
.

It then follows that the density ST conditional on St is given by

f(ST |St) =
1

ν
S

1−ν
ν

T g (YT |Yt) =
1

ν
kνx

ν
2 z1−

3
2 νe−x−zIν

(
2
√
xz
)
. (3)

A European put option with maturity T and strike E has price V (S, t) given by

V (S, t) = e−r(T−t)E
[
(E − ST )

+|St = S
]
,

where (E − ST )
+ = max(E − ST , 0). This conditional expectation can be explicitly

calculated in terms of the non-central chi-square distribution χ2
ϑ(λ) with ϑ degrees of

freedom and non-centrality parameter λ whose density function is given by

p (u, ϑ, λ) =
1

2
e−(λ+u)/2

(u
λ

)(ϑ−2)/4

I(ϑ−2)/2

(√
λu
)
.

The complementary distribution function Q (x, ϑ, λ) given by

Q (x, ϑ, λ) =

∫ ∞

x

1

2
e−(λ+u)/2

(u
λ

)(ϑ−2)/4

I(ϑ−2)/2

(√
λu
)
du,

has the property (Hsu et al., 2008)

Q (x, 2− 2ϑ, λ) = 1−Q (λ, 2ϑ, x) . (4)

Using the density function (3), the time zero European put price V (S, 0) is given by
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V (S, 0) = Ee−rT

∫ E

0

f(ST |S0 = S)dST − Se−rT

∫ E

0

Stf(ST |S0 = S)dST .

Letting d = kE
1
ν and using the fact that for integer ν, Iν(y) = I−ν(y), we can show

that ∫ E

0

f(ST |S0 = S)dST =

∫ 2d

0

p (u, 2− 2ν, 2x) du = 1−Q (2d, 2− 2ν, 2x) ,

and ∫ E

0

ST f(ST |S0 = S)dST = Se(r−q)T

∫ 2d

0

p (u, 2ν + 2, 2x) du

= Se(r−q)T (1−Q (2d, 2 + 2ν, 2x)) .

Using equation (4), it then follows that

V (S, 0) = Ee−rTQ (2x, 2ν, 2d)− Se−qT (1−Q (2d, 2 + 2ν, 2x)) . (5)

Analytical delta (∆) and gamma (Γ) for the European put have been recently derived
by Larguinho et al. (2013). The closed-form expression for delta is given by

∆ = −e−qT [1−Q(2d, 2(1 + ν), 2x)]

+
2x

νS

[
Se−qT p(2d, 4 + 2ν, 2x)− Ee−rT p(2x, 2ν, 2d)

]
,

and for gamma, we have

Γ =
2x

ν2S
e−qT [(1 + ν − x)p(2d, 4 + 2ν, 2x) + xp(2d, 6 + 2ν, 2x)]

+
2x

ν2S2
Ee−rT [xp(2x, 2ν, 2d)− dp(2x, 2(1 + ν), 2d)] .

3 Finite difference solutions

The efficient computation of the complementarity non-central chi-square distribution
function in equation (5) have been investigated in Benton and Krishnamoorthy (2003),
Ding (1992), Dyrting (2004) and Schroder (1989) and a comparison of the different
approaches is carried out in a recent work of Larguinho et al. (2013). The main findings
of their work is that although some methods are fast, they differ significantly in accuracy
depending on the parameter range chosen.

Our aim is to obtain an efficient technique which can be used over the whole set of
parameters and the technique we propose is based on solving the PDE satisfied by the
option price. Letting τ = T − t denote the time to maturity, the price V (S, τ) solves
the problem

∂V

∂τ
=

1

2
δ2S2α ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV, S ≥ 0, 0 ≤ τ ≤ T,

V (S, 0) = max(E − S, 0), S ≥ 0,

V (0, τ) = Ee−rτ , 0 ≤ τ ≤ T,

V (S, τ) = 0 as S → +∞, 0 ≤ τ ≤ T. (6)
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3.1 Standardised-form transformation

In, the following, we develop numerical methods for the computation of V . The first
scheme described has been proposed in Wong and Zhao (2008) and is based on a
transformation of equation (6) to a standardised form. The substitutions V = e−rτV1,
S̃ = Se(r−q)τ and V1(S, τ) = U(S̃, τ) transform the PDE (6) into

e−(r−q) τ
ν
∂U

∂τ
=

1

2
δ2S̃2− 1

ν
∂2U

∂S̃2
. (7)

Then using X = S̃
1
ν , equation (7) becomes

2ν2e−(r−q) τ
ν
∂U

∂τ
= δ2X

∂2U

∂X2
+ δ2(1− ν)

∂U

∂X
. (8)

Letting τ̃ =
(
e

(r−q)τ
ν − 1

)
/(2ν(r − q)), equation (8) simplifies further to

∂U

∂τ̃
= δ2X

∂2U

∂X2
+ δ2(1− ν)

∂U

∂X
.

A final substitution using Tmax = (exp {(r − q)T/ν} − 1)/(2ν(r − q)) and Y = 2
δ

√
X ,

gives rise to the problem

∂U

∂τ̃
=

∂2U

∂Y 2
+

(
1− 2ν

Y

)
∂U

∂Y
, 0 ≤ Y ≤ ∞, 0 ≤ τ̃ ≤ Tmax,

U(Y, 0) = max

(
E −

(
δ

2
Y

)2ν

, 0

)
, 0 ≤ Y ≤ ∞,

U(0, τ̃) = E, 0 ≤ τ̃ ≤ Tmax,

U(Y, τ̃) = 0 as Y → −∞, 0 ≤ τ̃ ≤ Tmax. (9)

The method of Wong and Zhao localises the problem to the domain {Y : 0 ≤ Y ≤ a}
where

a = max
(
2(Smaxe

(r−q)T )
1
2ν /σ, 2(Smax)

1
2ν /σ

)
,

with the asset price Smax chosen large enough for obtaining numerical solutions with
sufficient accuracy and the right boundary condition becomes U(YM , τ̃) = 0, 0 ≤ τ̃ ≤
Tmax.

Let ∆Y = a/M be the uniform spacing along the Y -direction, let Ym = m∆Y and
let Um(τ) = U(Ym, τ) for 0 ≤ m ≤ M . Consider the finite differences ∆Y and ∆2

Y

given by

∆Y Um(τ) = Um+1(τ)− Um−1(τ),

∆2
Y Um(τ) = Um+1(τ)− 2Um(τ) + Um−1(τ).

Then, we have

U ′
m(τ) =

1

(∆Y )2
∆2

Y Um(τ)

+
1

2∆Y

(
1− 2ν

Ym

)
∆Y Um(τ), 1 ≤ m ≤ M − 1. (10)
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Letting ηm = (1− 2ν)/(2m) and U(τ) = [U1(τ), U2(τ), ..., UM−1(τ)]
T , U ′(τ) =[

U ′
1(τ), U

′
2(τ), ..., U

′
M−1(τ)

]T and writing equation (10) in matrix form, we obtain the
system of odes given by

U ′(τ) = A1U(τ) + b1, (11)

where A1 ∈ R(M−1)×(M−1) is a tridiagonal matrix given by

A1 =
1

(∆Y )2


−2 1 + η1

1− η2 −2 1 + η2
. . . . . . . . .

1− ηM−2 −2 1 + ηM−2

1− ηM−1 −2

 ,

and b1 which incorporates the boundary condition is given by

b1 = [(1− η1)U0(τ), 0, ..., 0, (1 + ηM−1)UM (τ)]
T
.

Let ∆τ̃ = Tmax/N be the time step, then τ̃n = n∆τ̃ , 0 ≤ n ≤ N and let Un =[
Un
1 , U

n
2 , ..., U

n
M−1

]
denote the vector of unknowns at time level n. Applying the

Crank-Nicolson time stepping to equation (11), we obtain the tridiagonal system(
I− ∆τ̃

2
A1

)
Un+1 =

(
I+ ∆τ̃

2
A1

)
Un +�b1, (12)

where I ∈ R(M−1)×(M−1) is the identity matrix and �b1 is now given by

�b1 =

[
∆τ̃

2
(1− η1)(U

n+1
0 + Un

0 ), 0, ..., 0,
∆τ̃

2
(1 + ηM−1)(U

n+1
M + Un

M )

]T
.

3.2 Finite domain transformation

The second transformed problem is posed on the finite space domain (0, 1). We employ
substitutions described in Zhu et al. (2004) to transform equation (6) to a problem posed
on the finite domain Ωx = (0, 1)× [0, T ]. The substitution S = xE/(1− x) transforms
the local volatility function σ(S) to

σ(x) = δ

(
Ex

1− x

)α−1

.

Then the transformation

x̄ = x(1− x), rq = (r − q), V (S, τ) = EP (x, τ)/(1− x),

gives rise to the following problem

∂P

∂τ
=

1

2
σ2(x)x̄2 ∂

2P

∂x2
+ rqx̄

∂P

∂x
+ (rqx− r)P, 0 < x < 1,

P (x, 0) = max(1− 2x, 0), 0 < x < 1,

P (0, τ) = 0, 0 ≤ τ ≤ T,

P (1, τ) = e−rτ , 0 ≤ τ ≤ T. (13)
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To solve problem (13), we choose spacings ∆x = 1/M and k = T/N and we consider
a uniform grid Ω∆x,k

x = {(xm, τn), xm = m∆x, 0 ≤ m ≤ M, τn = nk, 0 ≤ n ≤ N}
on Ωx. Letting λ = k/(∆x)2 and µ = k/∆x, a second-order discretisation with a
Crank-Nicolson time stepping for equation (13) is given by

A2P
n+1 = B2P

n + b2, (14)

where A2, B2 ∈ R(M−1)×(M−1) are tridiagonal matrices given by

A2 =


ξ+1 −ϱ+1
−ϱ−2 ξ+2 −ϱ+2
. . . . . . . . .

−ϱ−M−2 ξ+M−2 −ϱ+M−2

−ϱ−M−1 ξ+M−1

 , B2 =


ξ−1 ϱ+1
ϱ−2 ξ−2 ϱ+2
. . . . . . . . .

ϱ−M−2 ξ−M−2 ϱ+M−2

ϱ−M−1 ξ−M−1

 ,

and b2 is given by

b2 =
[
ϱ−1 (P

n+1
0 + Pn

0 ), 0, ..., 0, ϱ
+
M−1(P

n+1
M + Pn

M )
]T

,

where for 1 ≤ m ≤ M − 1, ϱ±m = (εm ± ζm), ξ±m = 1± 2εm ± ϵm, εm = λσ2(xm)
x̄2
m/4, ζm = µrqx̄m/4 and ϵm = k (rqxm − r) /2.

3.3 Exponential time differencing scheme

We consider a direct discretisation of equation (6) by localising the problem to the
domain ΩS = [0, Smax]× [0, T ]. Considering a set of grid points (Sm, τn) where Sm =
mh with h = Smax/M and τn = nk with k = T/N , let V n

m = V (Sm, τn) and consider
central-difference approximations to the first and second-order derivatives given by
∆SVm = (Vm+1 − Vm−1)/(2h) and ∆2

SVm = (Vm+1 − 2Vm + Vm−1)/h
2. Then letting

fm = δ2S2α
m /2 and gm = (r − q)Sm, central difference approximations at the interior

grid points of equation (6) gives

V ′
m(τ) = fm∆2

SVm + gm∆SVm − rVm, 1 ≤ m ≤ M − 1. (15)

At the end points, we can either employ the financial boundary conditions given by
V0(τ) = Ee−rτ and VM (τ) = 0 or use one-sided boundary conditions. Our scheme uses
one-sided approximations which is described next.

Let ∆+Vm = Vm+1 − Vm, ∆−Vm = Vm − Vm−1 and consider the operators δ− =(
∆− + 1

2∆
2
−
)
/(2h), δ+ =

(
∆+ + 1

2∆
2
+

)
/(2h) and δ2+ =

(
∆2

+ −∆3
+

)
/h2. Then at the

left boundary point where m = 0, ∆S and ∆2
S are replaced by δ+ and δ2+ as given by

V ′
0(τ) = f0δ

2
+V0 + g0δ+V0 − rV0,

and at the right boundary where m = M , ∆S is replaced by δ− and since the option
has a payoff which is at most linear in S, we use the linear asymptotic boundary
condition VSS(S, τ) = 0 as S → ∞, implemented as VSS(SM , τ) = 0 to obtain the
approximation

V ′
M (τ) = gMδ−VM − rVM .

Then letting V = [V0(τ), V1(τ), ..., VM (τ)]
T , we obtain the semi-discrete system
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V′(τ) = LV(τ), (16)

where L ∈ R(M+1)×(M+1) is given by

L =



a0 b0 c0 d0 0 0

a1 b1 c1 0 · · ·
...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
... · · · 0 aM−1 bM−1 cM−1

0 · · · 0 aM bM cM


, (17)

with

am =
fm
h2

− gm
2h

, bm = −2fm
h2

− r, cm =
fm
h2

+
gm
2h

, 1 ≤ m ≤ M − 1,

a0 =
2f0
h2

− 3g0
2h

− r, b0 = −5f0
h2

+
2g0
h

, c0 =
4f0
h2

− g0
2h

, d0 = − f0
h2

,

and

aM =
gM
2h

, bM = −2gM
h

, cM =
3gM
2h

− r.

An exponential time integration of equation (16) gives

V(T ) = eLTV(0). (18)

To obtain an efficient scheme, we require a fast computation of the matrix exponential in
equation (18). This can be achieved by using the Carathéodory-Fejér (CF) procedure in
Trefethen and Gutknecht (1983) to compute best rational approximations of eLT (Cody
et al., 1969). To describe this procedure, consider the computation of the integral

I =
1

2πi

∫
Υ

ezf(z) dz, (19)

where the function f is analytic in the neighbourhood of the negative real axis and Υ
is a Hankel contour [see Figure 5.1 in Schmelzer and Trefethen (2007)].

Let Rη(z) = P(z)/Q(z) be a rational function of two polynomials P of degree
η − 1 and Q of degree η that is a good approximation to ez on (−∞, 0). Suppose Rη

has poles at z1, z2, ..., zη and let c1, c2, ..., cη be the corresponding residues of Rη.
Then, if Υ′ is a contour lying between (−∞, 0) and the points (zj)ηj=1, the integral

Iη =
1

2πi

∫
Υ′

Rη(z)f(z) dz,

is a good approximation to (19). Using the partial fraction expansion of Rη(z) in the
form

Rη(z) =

η∑
j=1

cj
z − zj

, (20)

we see that
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Iη =

η∑
j=1

cjf(zj). (21)

This shows that equation (21) is a quadrature formula for approximating the integral I
in equation (19).

Algorithm 1 ETD-CF algorithm

begin
1. Initialisation:
(1a). Input elasticity factor α, r, q, initial stock price S, E, T , σ and compute
δ = σS1−α.
(1b). Choose space steps M and set η = 12.
(1c). Set Smax = 2E; compute h = Smax/M .
(1d). Construct the S-grid: S = [Smin, S1, ..., SM−1, SM = Smax].
(1e). Set payoff vector V(0) = max(E − S, 0).
(1f). Initialise V(T ) ∈ RM+1 as a vector of zeros.
2. Build ODE system:
(2a). Construct matrix L in equation (17).
3. Time integration:
(3a). Compute the poles z = [z1, z2, ..., zη] and residues c = [c1, c2, ..., cη]
using the CF procedure.
for j = 1 : 2 : η do

(3b). Find dj from (LT − zjI)dj = V(0).
(3c). V(T ) = V(T ) + cjdj .

end
(3d). V(T ) = 2V(T ).
4. Output option price:
(4a). Interpolate V(T ) to obtain the option price at the initial stock price and
output price.

end

Now if we let Υ to be a contour that encloses the spectrum of LT and I ∈
R(M+1)×(M+1) be the identity matrix, then we have

eLTV(0) = 1

2πi

∫
Υ

esT (sI− LT )−1 V(0) ds.

Generalising equation (20) to the matrix eLT , we find that a rational approximation to
eLTV(0) is given by the partial fraction expansion

eLTV(0) ≈
η∑

j=1

cj(LT − zjI)−1V(0). (22)

The discretisation matrix L is a tridiagonal real matrix, which means that the poles
and residues appear in complex conjugate pairs. Therefore the algorithm requires only
η/2 tridiagonal solves for computing the price and this results in a linear computational
complexity of O(M).
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3.3.1 Pseudocode

A pseudocode demonstrating how to implement the exponential time differencing
scheme with the CF procedure (ETD-CF) algorithm is given in Algorithm 1.

4 Numerical results

The numerical procedures are assessed on various examples. For the schemes based on
transformed PDEs, the scheme in equation (12) is denoted by FDM-WZ and the scheme
in equation (14) by ZW. The exponential time differencing scheme (18) with the CF
procedure (22) is denoted ETD-CF. Comparison is also done against a Crank-Nicolson
discretisation of equation (6) which is denoted by CN.

For a set of options, comparisons between the different methods are carried on the
basis of their computational time required to price all the options in the set and on the
accuracy measure, the root mean square error (RMSE). We choose Smax = 2E and this
choice of Smax is motivated by the fact that in the literature, it is common taken to
be twice the strike price. For the FDM-WZ, ZW and CN schemes we use the same
number of spatial and temporal steps while for ETD-CF we use M spatial steps and a
single time step is required with η = 12. All numerical tests have been performed using
Mathematica 9 on a Core i7 laptop with 8GB RAM and speed 3.20 GHz.

Example 1

A set of nine European put options, each having a maturity of four months are priced
under a CEV process with parameters α = 0.875, S = 40, q = 0 and r = 0.05.
Table 1 shows computed prices for different values of σ and E. We observe that
although ETD-CF(512) and FDM-WZ(512) have similar accuracies, the exponential
time integration scheme is faster with timings approximately half of those required by
the other methods.

Table 1 European put options for α = 0.875

σ E

PDE-methods Closed
FDM-WZ ZW CN ETD-CF ETD-CF form
(512) (512) (512) (512) (1,024)

0.2 35 0.20032 0.20042 0.20100 0.20083 0.20078 0.20071
40 1.51205 1.51375 1.51472 1.51491 1.51490 1.51481
45 4.75303 4.75567 4.75611 4.75637 4.75618 4.75610

0.3 35 0.69720 0.69805 0.69860 0.69852 0.69492 0.69843
40 2.41796 2.41911 2.41976 2.41988 2.41987 2.41980
45 5.49468 5.49723 5.49753 5.49790 5.49778 5.49774

0.4 35 1.34750 1.32848 1.34895 1.34891 1.34891 1.34891
40 3.32432 3.32519 3.32569 3.32577 3.32574 3.32571
45 6.33607 6.33823 6.33846 6.33880 6.33872 6.33868

RMSE 1.3e-3 4.6e-4 2.3e-4 1.1e-4 5.9e-5
cpu(s) 0.620 1.894 0.784 0.252 0.351 1.243



70 N. Thakoor

Refining the grids with M = 1,024 leads to ETD-CF numerical solutions in very close
agreements with analytical solutions.

Example 2

Our second numerical example considers the computation of a set of 20 European put
options, each having a maturity of six months. The initial stock price is S = 100 and
α = –1. Table 2 shows computed put prices for different values of the triplet (r, q,
σ) evaluated at different strike prices using M = 512. We observe that although CN
achieves a similar RMSE as ETD-CF, the exponential time differencing scheme is more
than three times faster. RMSE values and computational times for the numerical schemes
using discretisation matrices with different number of spatial nodes M = 64, 128, 256,
512 and 1,024 were also computed and the log-log plot illustrated in Figure 1 clearly
demonstrates the superiority of ETD-CF.

Table 2 European put options for α = –1, T = 0.5, S = 100, M = 512

(r, q, σ) E FDM-WZ ZW CN ETDCF Closed form
(0.07, 0.03, 0.2) 80 0.58509 0.58429 0.58464 0.58464 0.58466

90 1.75897 1.75735 1.75854 1.75854 1.75857
100 4.59650 5.59457 4.59613 4.59613 4.59666
110 9.98186 9.98009 9.98176 9.98164 9.98164
120 17.84267 17.84230 17.84251 17.84259 17.84235

(0.07, 0.03, 0.4) 80 4.67905 4.59191 4.59239 4.59239 4.59247
90 6.93147 6.84297 6.89373 6.89373 6.89376
100 10.27142 10.18254 10.18328 10.18328 10.18355
110 14.96738 14.87815 14.87923 14.87923 14.87921
120 21.14677 21.05775 21.05859 21.05859 21.05859

(0.07, 0, 0.3) 80 2.05757 2.04021 2.04073 2.04073 2.04081
90 3.78722 3.76947 3.77043 3.77043 3.77049
100 6.77743 6.75933 6.76037 6.76037 6.76073
110 11.47547 11.45738 11.45877 11.45870 11.45874
120 18.05168 18.03430 18.03507 18.03504 18.03502

(0.03, 0.07, 0.3) 80 2.99945 2.97520 2.97571 2.97571 2.97576
90 5.39389 5.36903 5.37003 5.37003 5.37003
100 9.33954 9.31464 9.31565 9.31565 9.31601
110 15.18431 15.15924 15.16059 15.16054 15.16055
120 22.85442 22.82972 22.83048 22.83046 22.83047

RMSE 1.6e-2 4.6e-4 7.8e-5 7.5e-5
cpu(s) 1.280 2.721 2.283 0.608

We also report the L2 and L∞ error norms calculated using the formulas

∥error∥L2 =

(
1

M

M−1∑
i=0

|Vi − exacti|2
) 1

2

, ∥error∥L∞ = max
0≤i≤M−1

|Vi − exacti| ,

where M is the number of spatial grid nodes over the domain (0, 2E] for the set of
parameters α = –1, S = 100, E = 100, r = 0.07, q = 0.03, σ = 0.2 and T = 0.5 in
Table 3. These results indicate a smooth second-order convergence rate in both L2 and
L∞ error norms.



Finite difference solutions of the CEV PDE 71

Figure 1 Plot of log RMSE against log cpu (see online version for colours)
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Table 3 Error norms and convergence rates

M Price Error Order L2 Order L∞ Order

32 4.45477 1.4e-1 - 2.6e-2 - 1.4e-1 -
54 4.56230 3.4e-2 2.046 6.4e-3 2.021 3.4e-2 2.046
128 4.58813 8.5e-3 2.010 1.6e-3 1.984 8.5e-3 2.010
256 4.59453 2.1e-3 2.003 4.1e-4 1.987 2.1e-3 2.003
512 4.59613 5.4e-4 2.004 9.6e-5 2.091 5.3e-4 2.003
1,024 4.59653 1.3e-4 2.011 2.4e-5 1.935 1.3e-4 2.011

Exact 4.59666

Example 3

In Table 4, we show the ability of the ETD-CF procedure to accurately price European
put options when the elasticity factor is strongly negative. The data chosen for this
example are: an initial stock price of S = 100, a maturity of T = 0.5 years, E = 110,
r = 0.05, q = 0 and σ = 0.2. The results indicate that ETD-CF yields a smooth
second-order convergence rate and the computed prices have sufficient accuracy.

Table 4 European put options for strongly negative values of the elasticity factor

M α = –3 α = –4

Price Error Order cpu(s) Price Error Order cpu(s)

64 9.32215 2.6e-2 - 0.022 9.14804 2.5e-2 - 0.019
128 9.34183 6.7e-3 1.971 0.035 9.16724 6.6e-3 1.967 0.030
256 9.34685 1.7e-3 1.966 0.043 9.17214 1.6e-3 1.962 0.046
512 9.34813 4.4e-4 1.973 0.059 9.17340 4.3e-4 1.971 0.052
1,024 9.34846 1.1e-4 2.013 0.067 9.17373 1.1e-4 2.015 0.063

Exact 9.34857 9.17383
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4.1 Hedging sensitivities

Example 4

We show that ETD-CF accurately computes the hedging sensitivities delta and gamma.
We consider a set of nine European put options for α = –4, different strike prices with
low and high volatilities and computed results are shown in Table 5. We observe that
the computed greeks are the same as the analytical solutions (Larguinho et al., 2013).

Table 5 European put prices and greeks for α = –4, T = 0.5, S = 100, r = 0.05, q = 0 and
different at the money volatilities and strikes using M = 1,024 spatial steps

European put

σ E ETD-CF Closed form

Price Delta Gamma Price Delta Gamma

0.2 90 2.56671 –0.38182 0.03367 2.56677 –0.38182 0.03367
100 4.56570 –0.55535 0.03367 4.56583 –0.55536 0.03366
110 9.17386 –0.80798 0.02234 9.17383 –0.80799 0.02234

0.3 90 5.75334 –0.54567 0.02429 5.75338 –0.54568 0.02429
100 7.63678 –0.64904 0.02335 7.63687 –0.64904 0.02335
110 11.35665 –0.79116 0.01766 11.35664 –0.79117 0.01766

0.4 90 8.83063 –0.62045 0.01636 8.83065 –0.62045 0.01636
100 10.64983 –0.70307 0.01633 10.64988 –0.70308 0.01633
110 13.77012 –0.80092 0.01378 13.77012 –0.80093 0.01378

RMSE 2.8e-5 5.5e-6 1.7e-6
cpu(s) 0.549

Example 5

In this last example, we compute call option prices and corresponding greeks using
ETD-CF. Table 6 shows the result for a set of 15 European call options for varying
values of the elasticity parameter evaluated at different strike prices. At-the-money,
in-the-money and out-of-money options are all accurately priced. Moreover, an average
of 64 milliseconds is sufficient for computing each option price and the two greeks.

5 Conclusions

Among the different option pricing models proposed to capture the volatility skew
implied by market option prices, we observed that the CEV process has some important
properties. However, the valuation of European options and hedging sensitivities is not
as simple as in the case of the Black-Scholes model as the functions involved can give
rise to unstable and slow computations for some specific cases. As an alternative to
the analytical price computation, we proposed an easy-to-implement finite difference
scheme using an exponential time discretisation for the price computation. We gave a
wide range of examples illustrating fast and accurate computations of option prices. The
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exponential time integration scheme leads to a very fast technique for European option
pricing since a single step in the time stepping is required.

Table 6 European call option prices and greeks for S = 100, σ = 0.25, T = 0.5, r = 0.1,
q = 0, M = 1,024 for different strikes and values of the elasticity factor

European call

E α
ETD-CF Closed form

Price Delta Gamma Price Delta Gamma

95 0.5 12.66291 0.72925 0.01893 12.66292 0.72925 0.01893
0 12.74260 0.71178 0.01979 12.74262 0.71179 0.01979
–1 12.91973 0.67348 0.02180 12.91975 0.67348 0.02180
–2 13.12136 0.62855 0.02442 13.12138 0.62855 0.02442
–3 13.39483 0.57427 0.02775 13.39481 0.57429 0.02774

100 0.5 9.58443 0.62820 0.02162 9.58454 0.62820 0.02162
0 9.59141 0.61134 0.02223 9.59152 0.61134 0.02223
–1 9.62050 0.57625 0.02365 9.62061 0.57625 0.02365
–2 9.67460 0.53802 0.02548 9.67471 0.53802 0.02547
–3 9.76370 0.49462 0.02784 9.76379 0.49462 0.02784

105 0.5 7.01699 0.52019 0.02278 7.01700 0.52020 0.02278
0 6.94029 0.50279 0.02313 6.94030 0.50280 0.02313
–1 6.80351 0.46860 0.02399 6.80352 0.46860 0.02399
–2 6.68902 0.43437 0.02509 6.68903 0.43437 0.02509
–3 6.59985 0.39880 0.02654 6.59985 0.39880 0.02654

RMSE 2.6e-5 6.8e-6 4.7e-6
cpu(s) 0.960
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