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Abstract: This paper investigates inertial measurement unit (IMU) data processing methods for 
human gesture classification and arm motion tracking in wireless body sensor network (WBSN). 
The method is adopted that consists of two main stages. In the training stage, the supervised 
learning method is adopted to obtain the HMM model and the Viterbi algorithm is used to obtain 
the optimal hidden state sequence in the testing stage. HMM also complements the intuitional 
evaluation for arm motion recovery. We take advantage of the twists and exponential maps to 
recover the arm motion process. In addition, visual tracking device-VICON is utilised to validate 
the accuracy of the inertial tracking system. The experimental results show that the HMM 
algorithm gesture classifier achieves up to 96.63% accuracy on five commonly used arm gestures 
and visual assisted tracking outcomes verify the robustness and feasibility of the IMU tracking 
device. 

Keywords: gesture classification; arm motion tracking; inertial measurement unit; computer 
network; vision motion tracking. 

Reference to this paper should be made as follows: Wang, D., Wang, J., Liu, Y. and Meng, X. 
(2023) ‘HMM-based IMU data processing for arm gesture classification and motion tracking’, 
Int. J. Modelling, Identification and Control, Vol. 42, No. 1, pp.54–63. 

Biographical notes: Danping Wang received her PhD from the Shenyang Institute of 
Automation, Chinese Academy of Sciences, Shenyang, China, in 2019. Currently, she is a 
Teacher at Shenyang University, Shenyang, China. Her current research interests include swarm 
intelligence and their applications in design and optimisation of intelligent transportation 
systems. 

Jina Wang received her MS degree in Software Engineering from Shenyang University of 
Technology, in 2011. Currently, she is a Senior Engineer of Liaoning Province’s Construction 
and Engineering Center for Advanced Equipment Manufacturing Base (Liaoning Information 
Security and Software Testing and Certification Center). Her research interests include software 
testing, software engineering cost evaluation, etc. 



 HMM-based IMU data processing for arm gesture classification and motion tracking 55 

Yang Liu received her PhD from the Shenyang Institute of Automation, Chinese Academy of 
Sciences, Shenyang, China,in 2017. Currently, she is a Teacher at Shenyang University, 
Shenyang, China. Her current research interests include artificial intelligence, evolutionary 
computation, swarm intelligence, and their applications in design and optimisation of intelligent 
transportation systems, and RFID systems. 

Xianming Meng received his BS degree in Material Forming and Control Engineering from 
Shenyang University of Technology, Shenyang, China in 2003 and MS degree in Computer 
Software and Theory from Shenyang University of Technology, Shenyang, China in 2006. 
Currently, he is an Associate Researcher at the Department of Information, Wuxi Forward 
Technology Co., Ltd. His research interests include issues related to RFID, industrial IoT, big 
data. 

 

1 Introduction 
Gesture classification is an important application in pattern 
recognition and pertains to recognising the meaningful 
expressions of motion by a human, involving the hands, 
arm, face, head, and body (Sushmita and Tinku, 2007). 
Human motion tracking or Mocap is currently a booming 
research field and being applied to a variety of areas such as 
biomedical gait analysis, lost motor function recovery, 
effective athlete training, virtual reality, human-computer 
interface, to name only a few. As the proliferation of 
MEMS technology has inspired the sensor-based research, 
quite a lot of literatures on gesture recognition and motion 
tracking have been published. 

In gesture classification, most of the previous literatures 
have been focused on computer vision techniques. But the 
vision-based recognition performance is largely degraded 
when the lighting condition is bad or the fixed camera’s 
angle is not appropriate. By contrast, accelerometer-based 
gesture techniques are widely used in mobile or wearable 
devices like Apple iPhone or Wiimote. Usually, the typical 
gestures are hand and arm gestures (Markos et al., 2010; 
Geng et al., 2019; Mace et al., 2013; Yin et al., 2014; Xu et 
al., 2012; Zhang et al., 2011; Liu et al., 2009; Wu et al., 
2009; Zhu et al., 2019), head and face gestures (Morency 
and Darrell, 2006) and body gestures (Cutler and Turk, 
1998). Among these gesture categories, arm gestures are 
relatively more meaningful and its degree of freedom is 
larger than the other limbs (e.g., the lower limbs). In 
addition, the number of the accelerometer-integrated IMUs 
mounted on the arm is more than that attached or held by 
the hand, which provide more accurate and reliable gesture 
information. A few researches have been conducted on arm 
gesture recognition. The feature is selected using the 
discrete cosine transformation (DCT) and principal 
component analysis (PCA) to reduce the number of features 
and increase the probability of correct classification results. 
Yet this method is applicable as far as three gestures are 
concerned. For more arm gestures, PCA or DCT is not 
appropriate for feature extraction as the optimal number of 
the features is not well determined. Another gesture 
recognition method uses dynamic time warping and affinity 
propagation that creates the exemplars in the testing stage. 
The candidate traces are projected to the lower dimensional 
subspace and compared with the features stored in the 
established gesture dictionary. In this paper, we mount 

IMUs on the right arm joints and the readings from the IMU 
accelerometers are all taken into account (compared and 
selected) in arm gesture classification. 

Motion tracking is categorised as visual tracking and 
non-visual tracking (Hadjidj et al., 2013). Visual motion 
tracking system can localise the human’s body or limbs by 
means of combining the data such as the coordinates from a 
certain number of cameras that are installed at different 
perspectives in a lab. The popular marker-based system 
such as VICON or QUALYSIS performs. However, visual 
tracking fails to accommodate the human motions in free 
living environments, though its capture accuracy is within 
1.5 mm. Besides, high-resolution in-studio commercial 
capture system requires the external sources like calibrated 
cameras and specified workstation for the computational 
load is dramatically heavy, which is not appropriate for 
tracking the people in daily life, especially for the patients 
in rehabilitation. The mechanical assistance of robotic 
rehabilitators in improving the arm movement ability 
justifies its tracking’s stability and effectiveness (Salah  
et al., 2020). This kind of tracking device fixed on the body 
measures the acceleration, velocity and force, which 
facilitates those patients with severe disabilities and unable 
to perform the normal daily exercises in everyday life. Yet 
the mechanical device is quite cumbersome and inhibits the 
personal movements. Sensors have been used in motion 
tracking to avoid the problems inherently existing in visual 
tracking, e.g., line-of-sight problems and self-occlusion. 
Ultrasound tracking, magnetic tracking and inertial tracking 
are all classified as sensor-based tracking methods. 
Ultrasound tracking has characteristics of low cost and 
compactness, but its intrinsic vulnerability to occlusion and 
inaccuracy limits its wide applications. Similarly, the 
ferromagnetic materials severely affect the measurement on 
earth magnetic direction and therefore limit the magnetic 
tracking in daily life. By contrast, compactable and low-cost 
micro electromechanical system (MEMS) is relatively 
competent for human motion tracking. The advantages of 
these wearable tracking devices are: 

1 source free and wearable 

2 low power consumption and long battery span 

3 free from the self-occlusion and unobtrusiveness, which 
inherently exist in vision tracking 
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4 low cost and long-term tracking. 

Although its drawbacks on drift problem caused by noise 
and offsets are considerable, the corresponding methods are 
proposed, such as the quaternion-based filter and the 
adaptive-gain orientation filter, which have improved 
gyroscope output efficiently (Tian et al., 2013; Chen et al., 
2011). IMU positioning for indoor pedestrian, which has 
proposed the ZUPT algorithm to correct the walking 
velocity that effectively reduces the accumulated drift errors 
in accelerometers (Hadjidj et al., 2013). 

In this paper, we firstly propose an HMM-based arm 
gesture classification method based on three-axis 
accelerometer data. In HMM modelling, we adopt the 
supervised learning instead of the widely used Baum-Welch 
method, which is largely susceptible to the initial points and 
apt to plunge into local minimum. HMM also complements 
the intuitional evaluation for arm motion recovery for fear 
that the recovery result is not convincing. Secondly, a 
quaternion-based arm motion tracking method is utilised. 
To the best of our knowledge, there’s no literature on 
human motion tracking methodology taking gesture 
recognition into consideration. Personally speaking, motion 
tracking requires the data collected by IMU being imported 
to the corresponding computer, which is impossible for the 
user without any PC. But the gesture recognition sequences 
can be calculated by the micro-controller unit, stored and 
displayed on the IMU board that potentially facilitates the 
user to refer to their personal motion data in any specified 
time. 

Main contributions of this paper are as follows: 

1 HMM applied in gesture classification using supervised 
learning method in modelling and to evaluate the arm 
motion tracking outcome with the HMM optimal 

hidden sequences to achieve the multi-functional goals 
for the users, especially for the patients in 
rehabilitation. In supervised learning, the training data 
has both features and labels. Through training, the 
machine can find the connection between features and 
labels on its own, so that it can determine the labels 
when faced with data that has only features but no 
labels. 

2 Unlike the traditional wearable system that uses both 
accelerations and angular rates to estimate the human 
joints positions and orientations in which the double 
integration of accelerations would largely exaggerate 
the sensor noises on position estimation, the proposed 
method uses merely the angular rate and predetermined 
arm lengths to fulfil the arm motion tracking. 

3 The ‘golden standard’ visual tracking device – VICON 
is utilised to assist and verify the IMU tracking results 
by directly comparing the joint positions rather than the 
joint angles. 

The organisation of this paper is as follows: Section 2 
formulates the problem and introduces a general overview 
of the proposed gesture recognition and motion tracking 
system. Section 3 describes the Hidden Markov Model 
(HMM) algorithm to classify the arm motions. Section 4 
describes the motion reconstruction with twists and 
exponential maps. The accurate visual-assisted tracking 
method is also introduced to validate the IMU tracking 
system. Section 5 shows the HMM-based motion 
classification outcome and tracking result. Section 6 
concludes the whole paper. 

The main framework of the recognition and tracking 
methods is shown in Figure 1. 

Figure 1 The main framework of the proposed arm gesture classification and motion tracking 
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Firstly, the acceleration offset of the raw acceleration data is 
initialised, and the raw gyroscope data is filtered based on 
quaternions. Secondly, the resulting acceleration is 
calibrated，and optimal hidden state sequence can be 
obtained by HMM-based arm gesture classification. Then, 
twist and exponential maps can be used by calibrated 
angular rate ω, quaternion q, limb lengths and IMU 
initialisation positions to recover the arm motion，Finally, 
the feasibility of the IMU tracking system can be verified by 
VICON visual assisted tracking. 

2 Problem formulation and system overview 
2.1 Arm kinematic modelling 
Human arm is modelled as an articulated multi-link chain 
consisting of three rigid body parts, three joints and 7 DoFs 
as is shown in Figure 2(a). Shoulder is described as a ball 
that has 3 DoFs. Elbow is modelled as two hinge joints with 
2 DoFs. Wrist is modelled as an ellipsoid joint with 2 DoFs. 

Figure 2 IMU placements and board, (a) IMU placements  
(b) IMU board (see online version for colours) 

  
 (a) (b) 

Our proposed gesture classification and motion tracking 
system employs IMUs mounted on the arm joints, (i.e., 
wrist, elbow, shoulder) shown in Figure 2(a). IMU is 
intended to collect the instant acceleration α, angular 
velocity ω, magnetic field intensity m and quaternion q. 

Before conducting the IMU tracking, we need to 
measure the radius of rotation around each degree of 
freedom and to load the accelerometer offsets in the IMU 
initialisation step. The gyroscope on the IMU is capable of 
capturing the link circular motion around each axis. Thus, 
the initial global position of the relative joint is determined 
on condition that the radius is given. The shoulder joint and 
elbow joint are taken as an example, the elbow angular rate 
relative to the shoulder joint can be recorded by the IMU 
mounted near the elbow. Once the radius of the upper arm 
length in three axes X-Y-Z is obtained, elbow joint position 
will be determined. Similarly, repetitive procedure is 

suitable for the wrist joint position relative to the elbow 
joint. 

2.2 System overview 
The hardware, as is shown in Figure 2(b) includes a module 
MPU6500 integrated with a MEMS triaxial accelerometer, 
triaxial gyroscope and triaxial magnetometer. An embedded 
processor MSP4300 and a Bluetooth module are also 
designed on this IMU board. The board size is 35 mm ×  
30 mm × 8 mm. The sensor signals are sampled at 40 Hz 
and interfaced to the computer by bluetooth. 

3 HMM in gesture recognition 
Markov process is a general stochastic process characteristic 
of the well-known statistical Markov model. The ubiquitous 
case is the first-order discrete Markov chain. The 
probability of the current state is only related to the 
predecessor state, i.e., Pr(qt+1 = Si|qi = Sj, qt–1 = Sk, …, q = 
Sm) = Pr(qt+1 = Si|qt = Sj) = aji, where qt is the state at the 
time instant t that has N states: 1 2, , , NS S S… . This conditional 
probability is independent of time t, i.e., Pr(qt+1 = Si|qt = Sj) 
= Pr(qt+Δt+1 = Si|qt+Δt = Sj). The parameter aij is an element of 
the state transition probability matrix A, which has the 

property that aij is no smaller than zero and 
1

1.
=

=N
ijj

a   

for they obey standard stochastic constraints and each 
element aij corresponds to a specific physical event. As for 
the discussed problems of interest, it can be used to 
represent the probability of the coupled arm gestures. 

HMM is a doubly stochastic process, in which the 
observable state sequence is generated from a hidden 
Markov sequence (Nguyen et al., 2010). It is depicted in 
Figure 3. 

The outputs of the triaxial accelerometers are three 
feature curves parts of which are shown in Figure 6. The red 
one represents the X-axis accelerometer output. Similarly, 
the green one and the blue one represent the Y-axis and  
Z-axis accelerations respectively. Traditional methods in 
selecting the features of acceleration curves are FFT with an 
appropriate window size. Usually, the window size is 
determined by the length of the motion time which largely 
differs from person to person. Even the same person 
performs the identical motion with the movement time 
space discrepant. Thus, the manual segmentation approach 
is applied to improve the gesture recognition accuracy. The 
features of the commonly used five motions are determined 
intuitionally by the listed curves. The flow chart for HMM-
based motion classification is shown in Figure 4. 
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Figure 3 Hidden state sequence and observation sequence in HMM (see online version for colours) 

 

Figure 4 HMM-based arm gesture classification flow chart 

 

 
3.1 HMM modelling 
The critical issue in HMM is modelling, to be specific, 
learning. HMM learning method is dichotomised  
into supervised learning and unsupervised learning.  
Baum-Welch algorithm is a pervasively used unsupervised 
learning method but it suffers from the local maxima and is 
vulnerable to the initial values. In contrast, the supervised 

learning method is independent of the initial estimation as 
well as the local maximum though it requires the repetitive 
work in labelling the observation symbols. Thus, the 
supervised learning is adopted to determine the model 
parameter λ at the cost of pre-labelling work. The step-in 
determining λ is as follows: 
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1 State transition probability matrix A = [aij]N×N 
determination 

1=

=


ij
ij N

ijj

A
a

A
 (1) 

where Aij is the number of times that the hidden state 
transits from state Si to Sj. 

2 Observation probability matrix B = [bij]N×N 
determination 

1=

=


jk
ij M

jkk

B
b

B
 (2) 

where Bjk is the number of times that the observation 
symbol is k and the hidden state is Sj. 

3 Initial probability distribution π = [πi]N×1, where 

( )0Pr= =i iπ q S  (3) 

3.2 Optimal hidden state sequence 
The second critical issue in HMM, however, is decoding, 
i.e., given the model parameter λ and the output sequence O, 
how could we deduce the ‘optimal’ hidden state sequence 
that best fits the model as well as the observation sequence. 
Compared with the approximation algorithm, the case 
where the transition state equals to zero isn’t taken into 
account, will result in the impossible hidden state sequence. 
Henceforth, the Viterbi algorithm in our gesture recognition 
is applied to find the best hidden state sequence. 

4 Arm motion tracking 
Liu et al. (2009) pointed out that a rigid body can be moved 
from any one place to any other by a movement, which 
consists of rotation and transition. Rigid motion has the 
elegant property that preserves the distance between  
two points and the angle between the vectors. In this paper, 
arm is modelled as a kinematic chain and is characteristic of  
7 DoFs. Shoulder is described as a socket joint with 3 DoFs. 
Elbow is modelled as two hinge joints with non-intersecting 
axes. Wrist is modelled as an ellipsoid joint with 2 DoFs. 

4.1 IMU configuration 
In our arm motion system, three coordinate frames are 
considered. These are shoulder joint coordinate frames, 
elbow joint coordinate frame and wrist joint coordinate 
frame. The shoulder joint is assigned to be the base frame 
linking a succession of upper arm and forearm movements. 
The instantaneous position and orientation of the wrist and 
elbow joint, relative to the shoulder inertial frame, can be 
represented by the pair {Pab, Rab}, where Pab is the vector 
from the origin of shoulder coordinate frame to wrist/elbow 
frame, Rab is the rotation of wrist/elbow frame relative to the 
shoulder frame. 

Three IMUs are mounted on the right arm near the joints 
based on the consideration that IMU will affect the normal 
movements of the arm if being placed right on the joint 
centre. Besides, we must focus on how to lessen the effect 
on soft tissue artefact and try to improve the relative 
accuracy of the deduced joint position. Therefore, one of the 
IMUs is positioned over the distal humerus to capture the 
upper arm movement, another is attached to the distal flat 
surface of radius and ulna, adjacent to the joint elbow. The 
third is mounted on the right of shoulder as it slightly affects 
the shoulder joint movements. 

4.2 Twists and exponential maps 
As we have mentioned above, the pair {Pab, Rab} describes 
the relationship between the inertial frame B and inertial 
frame A. More precisely, let qa and qb be the coordinates of 
point Q in the frame A and B respectively. Then qa and qb 
satisfy qb = Pab + Rabqa. 

The homogeneous representation of the above equation 
is: 

, (3)
1 0 1 1

     
= = ∈     

     

a ab ab b
ab b ab

q R P q
g q g se  (4) 

where 3∈abP  is the vector that directs the origin of frame 
B relatively to the origin of frame A; 3 3×∈abR  is an 
orthogonal matrix that represents the rotation of frame B 
relative to frame A. 

The commonly used frame rotation expression is 
quaternion. Unlike the Euler angle, quaternion doesn’t 
suffer from singularities. Besides, quaternion is 
computationally efficient than the conventional rotational 
matrix representation. 

Quaternion generalises a four-dimensional vector 
0 1 2 3 0( , ),= + + + =i j kq q q q q q q  where q0 is the scalar part, 

q1, q2, q3, are the weighted values on the basis elements 
denoted as , , .I j k  In the coordinate rotation representation, 

cos , sin cos , sin cos , sin cos ,
2 2 2 2

 =  
 

x y z
θ θ θ θq ω ω ω   

(cos ωx, cos ωy, cos ωz) represent the quaternion axis; θ 
symbolises the angle around this axis. 

As for every homogeneous matrix ,abg  there always 
exists a corresponding twist in the tangent space se(3), and 
we define 

( ){ }3ˆ ˆ(3) , : , (3)= ∈ ∈se v w v w so  (5) 

{ }3 3(3) :×= ∈ = −Tso S R S S  (6) 

Let 
^ ˆˆ (3),

0
   

= = ∈   
   0

v w v
ξ se

ω
, where v = –ω × qg 

represents the velocity of the point and ŵ  is a  
skew-symmetric matrix. Define ω = [ω1, ω2, ω3], then we 
get 
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3 2

3 1

2 1

0
ˆ 0

0

− 
 = − 
 − 

ω ω
w ω ω

ω ω
 (7) 

The exponential product of ξ̂θ  is an element that belongs to 
se(3). 

( )( )ˆ ˆ

ˆ

ˆ

ˆ
0

0 1

0
0 1

 − +
≠ 

 = 
  = =   

wθ wθ T

ξθ

ξθ

e I e wv ωω vθ ω
e

I vθ
e ω

 (8) 

If we define gglobal,n(0) as the initial configuration of a rigid 
body in reference n relative to the global frame, then the 
final configuration is given by ˆ

, ,( ) (0),= ξθ
global n global ng θ e g  

where ξ̂θe  can be calculated by the Rodrigues’ formula: 
ˆ 2ˆ ˆsin (1 cos )= + + −wθe I w θ w θ  (9) 

4.3 Coordinate transformation 
In order to verify the IMU motion tracking accuracy, we 
take advantage of the ‘golden standard’ visual tracking 
device: the arm motion capture can be assisted by VICON 
as this system tracking error is less than 1.5 mm. The 
experiment is conducted by keeping IMU tracking records 
as well as the VICON tracking records frame by frame at 
the same time. The problem of interests is to transform the 
joint position in VICON coordinate frame to the 
corresponding position in IMU coordinate frame. For this 
reason, the coordinate transformation is conducted, in which 
the scale factor K0, the rotation matrix R and coordinate 
translation parameters (X0, Y0, Z0) need to be determined. 

Three points P1, P2, P3 are denoted as the shoulder joint, 
elbow joint and wrist joint respectively. The IMU 
coordinate frame is defined as O-XYZ. VICON coordinate 
frame is defined as O′-X′Y′Z′. (xi, yi, zi) i = 1, 2, 3 represents 
coordinate of Pi in O-XYZ frame. In a similar way, 
( , , )′ ′ ′i i ix y z  represents coordinate of Pi in O′-X′Y′Z′. 

The difference of coordinate length basis gives rise to 
the parameter k0. Here we define 

( ) ( ) ( )2 2 2= − + − + −ij i j i j i jS x x y y z z  (10) 

( ) ( ) ( )2 2 2′ ′ ′ ′ ′ ′ ′= − + − + −ij i j i j i jS x x y y z z  (11) 

where Sij is the distance of Pi and Pj in O-XYZ frame and ′ijS   
is the distance of Pi and Pj in O′-X′Y′Z′ frame. Based on the 
above definition, we could determine the scale factor k0 as 
follows: 

12 13 23
0

12 13 23

+ +
′ ′ ′+ +

s s sk
s s s

 (12) 

4.3.1 Transformation matrix R 
A new coordinate frame P1-XYZ is defined in which P1 is 
the origin and vector 1 2P P  lies on the X axis. After 

normalisation, we obtain 1 2
1 4 1 1 1

1 2

( , , ).= =P PP P a b c
P P

 As we 

can see from Figure 5, the product of 1 2 1 3×P P P P  lies on the 
Z axis and after normalisation, ( )1 6 2 2 2, ,=P P a b c   is 

derived. Similarly, the cross product of 1 6P P  and 1 4P P  
renders the normalised vector 1 5 3 3 3( , , ),=P P a b c  since 

1 6P P  and 1 4P P  are all normalised, the cross product is still 
normalised. Conspicuously, 1 5P P  lies on the Y axis in  
P1-XYZ coordinate frame. In P1-XYZ coordinate frame, 

1 4 ,P P  1 5 ,P P  1 6P P  are quantity of the form: ,i  ,j  .k   

While in O-XYZ coordinate frame, 1 4 ,P P  1 5 ,P P  1 6P P  are 
directional cosines: (a1, b1, c1), (a3, b3, c3), (a2, b2, c2). 
Hence, we obtain the rotation matrix Pop1 between frame  
P1-XYZ and O-XYZ. 

1 3 2

1 1 3 2

1 3 2

 
 =  
  

op

a a a
P b b b

c c c
 (13) 

By means of this transformation stated above, we can also 
obtain the transformation matrix Ro′p1 between P1-X′Y′Z′ and 
O′-X′Y′Z′. 

Finally, the transformation matrix between the frame O-
XYZ and frame O′-X′Y′Z′ is 

1
1 1

−
′= ×op o pR P R  (14) 

Figure 5 P1-XYZ frame (see online version for colours) 

 

4.3.2 Translation candidates (X0, Y0, Z0)  
Given the above derived scale factor k0 and matrix R, we 
can easily deduce the translation parameters. The point P is 
arbitrarily chosen of which (xp, yp, zp) and ( , , )′ ′ ′p p px y z   are 
the coordinates in O-XYZ and O′-X′Y′Z′ frames respectively. 
Then we get 
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0

0 0

0

′     
     ′= −     
     ′     

p p

p p

p p

x x x
y y k R y
z z z

 (15) 

5 Experiment result and analysis 
5.1 HMM classifier for arm motion 
In our experiment, five commonly used symbolic gestures 
are designed: 

S1 arm extending horizontally 

S2 arm waving up and down 

S3 arm waving left and right 

S4 forearm bending over 

S5 arm rotating inside and out. 

There are seven observation symbols corresponding to these 
states, we listed as O1 to O7. These observation symbols are 
the selected feature curves of three-axis accelerometer 
output. 

Seven experiments are conducted with the sample size 
ranging from 40 to 160 respectively. The accuracy of the 
tests is shown in Table 1. 

The overall accuracy reaches up to 92%. As we can see 
from Table 1, the accuracy increases while the sample size 
enlarges and this outcome shows that the more the sample 
size is, the more accurate and reliable the hidden state 
sequence will be. The best accuracy the proposed system 
yields are 96.63% that outperforms the discrete HMMs, 
which is 89.9%. And our system’s performance reaches the 
same level compared with the uWave. 

5.2 Arm motion tracking 
The proposed system recovers the arm motion process by 
using the twist and exponential maps. The parameters 
determined before conducting the experiment are the 
lengths of forearm and lower arm. Besides, the initial 
positions of IMU mounted adjacent to the wrist, elbow and 
shoulder are also measured. The unique data to be processed 
is quaternion. Here we use MATAB to process the IMU 
data and use VICON studio to process the VICON data in 
recovering the arm motion process. 

Figure 6 Observation symbols in HMM (see online version for colours) 

 

Table 1 HMM classifier accuracy 

Sample size 40 60 80 100 120 140 160 

Accuracy 85% 88% 92.5% 95.24% 93.41% 94.29% 94.29% 

Table 2 Comparison of the classification performance 

Classification method Number of gestures Accuracy % 

Proposed method 5 96.63% 
Discrete HMMs in Akl et al. 
(2011) 

5 89.7% 

uWave 8 98.6% 
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Figure 7 Triaxial wrist joint error (see online version for colours) 

 

Figure 8 Triaxial elbow joint error (see online version for colours) 

 

Figure 9 Triaxial shoulder joint error (see online version for colours) 

 

 
5.3 Tracking accuracy test 
For verifying our wearable IMU tracking system feasibility, 
we keep VICON visual tracking records while conducting 
the inertial tracking simultaneously. The problem we 
encountered is the frame alignment between IMU 
coordinate and VICON coordinate. Due to that reason, a 
local minimisation solution is applied. 

( )3 3
21 1,

min ( ) ( ) , 1
= =

− = k k k ik ii j
ω P i P j ω  (16) 

where k = 1, 2, 3 represent the shoulder, elbow, wrist joint 
respectively. ωk represents the weighted value on the  
2-norm distance between the Pk(i) and Pk(j) of which  
i represents the frame number in IMU coordinate and  
j represents the frame number in VICON coordinate. In this 
experiment, ω1 = 0.6, ω2 = 0.3, ω3 = 0.1. 

Figures 7, 8 and 9 depict the arm joint errors in three 
axes. From these three figures, we can deduce that wrist 
errors are pretty unpredictable in X and Z directions. Some 
of the deflection points are due to the sensor noise and the 
soft tissue artefact. 

 

 

6 Conclusions and discussion 
In conclusion, we’ve proposed an IMU data processing 
system for arm gesture classification and arm motion 
tracking. In HMM-based arm gesture classification, five 
commonly used arm gestures are selected and HMM is 
established in the supervised learning, which is good to 
avoid the influence of initial points and not easy to fall into 
local minima. Afterwards, Viterbi algorithm is introduced to 
deduce the optimal hidden state sequences. In addition to 
classification, HMM also complements the intuitional 
evaluation for arm motion recovery. In arm motion tracking, 
twists and exponential maps are applied to recover the arm 
motion using the quaternions, pre-measured upper-limb 
length and designated initial IMU positions. VICON visual 
tracking device is utilised to validate the feasibility of the 
IMU tracking system. 

One drawback in the tracking system is the 
impracticability in firmly fixing the IMU board at the 
designated positions，which will give rise to the soft tissue 
artefact and noise from the sensor output. The future goal is 
to obtain an IMU working system that can work in any 
position. Another issue of interest is the IMU accumulated 
errors caused by gyroscope, which will pose tremendous 
effect on tracking. A potential solution to this issue will be 
meaningful in real-time accurate motion tracking and 
positioning. Our research group will dig on that challenging 
issue afterwards. 
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