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Abstract: The effect of the semitransparent window’s aspect ratio, i.e., the height ratio (hr)
and window width ratio (wr) and Planck numbers on the interaction of the collimated beam
with natural convection has been investigated numerically. The cavity is convectively heated
from the bottom, and a semitransparent window is created on the left wall, and a collimated
beam is irradiated on the window at an azimuthal angle (ϕ) of 135◦. The dynamics of two
vortices inside the cavity change considerably by combination of window’s aspect ratio and
Planck number (Pl) of the medium. The thermal plume flickers depending on the situation
of the dynamics of two vortices inside the cavity. The localised heating of the fluid happens
mostly for the large height ratio of the semitransparent window. The conduction, radiation, and
total Nusselt numbers are also greatly affected by the aspect ratio and Planck number of the
medium.

Keywords: semitransparent wall; natural convection; collimated beam irradiation; symmetrical
cooling; aspect ratio.
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1 Introduction

A collimated beam of electromagnetic radiation is a typical
beam of light which has low beam divergence as it
propagates in a medium. Collimated beams are useful in
many engineering applications like, fibre optics, additive
manufacturing techniques, collimated beam induced natural
convection, solar energy applications, etc. The study
of greenhouse gas effect, heating, ventilation, and air
conditioning systems (HVAC), shallow water dynamic,

marine life, etc. involve collimated beam radiation. In fact,
the glass windows (semitransparent wall) and their aspect
ratios plays a vital role in the heat transfer in a room and
greatly affects the performance of HVAC systems. In such
scenarios, the analysis of natural convection induced by
collimated beam radiation is a subject of a great interest to
the researchers. Though, the practical applications involve
complex geometries, however, physics can be very well
understood by analysing the phenomena in a simple
geometry. Comprehensive reviews of the natural convection
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in practical geometries for engineering applications were
compiled by Das et al. (2017) and Rahimi et al. (2019).

The characteristics of buoyancy flow change with the
aspect ratio of the enclosure and its orientation as well
as with the boundary conditions. Natural convection in
square/rectangular enclosures heated from the bottom and
cooled from the top (Hasnaoui et al., 1992) or sides
(Ganzarolli and Milanez, 1995; Aydin and Yang, 2000;
Calcagni et al., 2005) revealed that the flow field and
temperatures were sensitive to the aspect ratio and position
of the heat source. Furthermore, Yigit et al. (2015) also
reported that the aspect ratio of the geometry had a
significant impact on the formation of convective vortices.

A collimated beam is illuminated on one side of the
test case to study the effect of radiative heating on the
natural convection by Webb and Viskanta (1987) and they
showed the formation of a thin hydrodynamic boundary
layer at the vertical wall, and the flow structure had lost
its centrosymmetry nature. Further, Karatas and Derbentli
(2018) experimental work revealed that the change in the
aspect ratio had greatly affected the heat transfer inside
the enclosure. Further, they proposed the heat transfer
correlations as the function of Rayleigh number, Prandtl
number and the aspect ratio. Though the inclusion of
radiation has an impact on heat transfer characteristics,
the radiative transfer equation (RTE) is computationally
expensive to solve due to its spectral and directional
dependence. An assumption of the grey medium, on the
other hand, can substantially simplify this difficulty. Various
radiation models, such as Monte Carlo method (MCM),
discrete transfer technique (DTM), zonal methods, discrete
ordinate method (DOM) (Chai et al., 1993), and finite
volume discrete ordinate method (FVDOM) (Raithby and
Chui, 1990; Chui and Raithby, 1993), have been widely
employed in situations involving radiative heat transport.
Sun et al. (2017) investigated the performance of various
RTE techniques such as P1, SP3, P3, DOM, and FVDOM.
Their results revealed that the P1 method took minimal
time but suffered inaccuracy for the low optical thickness
medium than any other methods. Whereas, FVDOM on the
other hand, was more accurate than DOM but took more
computational time.

Furthermore, natural convection coupled with radiation
in an emitting, absorbing, and scattering medium was
investigated for various aspect ratios (Fu et al., 2015)
with various parameters such as Planck numbers, wall
emissivity, scattering albedo, and extinction coefficient
(Mondal and Mishra, 2008), and these parameters
significantly influenced the heat transfer characteristics
inside the cavity. The numerical works of Mezrhab et al.
(2006), Sun et al. (2011), Kumar and Eswaran (2013)
and Parmananda et al. (2017) showed that the radiation
exchange homogenised the temperature field inside the
cavity.

The above works have mainly considered either pure
natural convection, or coupled diffuse radiation and natural
convection, however, only a few works considering the
collimated beam radiation is reported in the literature, like,
discrete transfer method (DTM) (Abdallah and Le Dez,

2000) was used to solve RTE in participating media and
derived the exact radiative flux (Krishna and Mishra, 2006)
field expression for the linearly varying refractive index.
The thermal damage in the proximity of the laser source
was evaluated by using the transient radiation transfer
equation by Verma et al. (2016). Further, the initiation of
phototactic bioconvection for an algal has been investigated
by Vincent and Hill (1996), Kong and Vigil (2014), Panda
et al. (2016), Panda (2020) and Bees (2020). Recently,
the effect of diffuse and collimated beam radiation on
the natural convection on symmetrical cooling from the
side has been studied by Chanakya and Kumar (2021a).
They further investigated the effect of the thermal adiabatic
boundary conditions on the semitransparent wall of the
cavity (Chanakya and Kumar, 2021b).

It is evident from the aforementioned literature that
under various conditions, aspect ratio affects the flow and
temperature distributions greatly inside the system. The
present work investigates the effect of an aspect ratio of
semitransparent window through which collimated beam
travels inside the cavity, on the natural convection. The
medium inside the cavity is absorbing/emitting without
scattering. This is the first work of its kind to the best of
the authors’ knowledge at present.

This paper is outlined as follows: problem description is
defined in Section 2, followed by mathematical modelling
and numerical scheme in Section 3. Non-dimensional
parameters are provided in Section 4. Verification and
independent tests for grids are explained in Sections 5 and
6, respectively. Section 7 elaborates results and discussion
for the variation of Planck numbers and aspect ratios.
Finally, conclusions of this numerical study are provided in
Section 8.

2 Problem description

Consider the buoyancy driven flow of Newtonian fluid
within the square enclosure due to heating of bottom wall
by convective heating with a free stream temperature of
305 K and a heat transfer coefficient of 50 W/m2K as
depicted in Figure 1. The top wall is considered adiabatic
and the right and left walls are isothermal conditions at a
temperature of 296 K. The Euclidean coordinate axes are
along the bottom and left vertical walls of the enclosure and
origin is at the junction of these two walls. The acceleration
due to gravity acts vertically in a downward direction
(negative direction). All walls of the enclosure are treated as
opaque with an emissivity of 0.9 for the outgoing radiation.
The four semitransparent window aspect ratio combinations,
height ratio (hr = Hw/L) and window width ratio (wr =
Ww/L), have been considered as below:

• case A: hr = 0.8 and wr = 0.2

• case B: hr = 0.8 and wr = 0.4

• case C: hr = 0.4 and wr = 0.2

• case D: hr = 0.4 and wr = 0.4.
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In all the above cases (i.e., A, B, C and D), a collimated
beam of irradiation value 1,000 W/m2 is applied on
the semitransparent window at an azimuthal angle 135◦.
The semitransparent window is also at temperature 296
K (isothermal boundary). The simulations are carried out
for the constant flow parameter (Ra = 105) and fluid
parameter (Pr = 0.71), thermal parameter (N = 1.5) and
various semitransparent window’s aspect ratios and Planck
numbers (Pl = 0, 1, 10 and 50).

Figure 1 The schematic diagram of the present problem where
a collimated beam is incidented on semitransparent
window at an azimuthal angle 135◦

3 Mathematical formulation and numerical
procedures

The following assumptions have been considered for the
mathematical modelling of the above problem:

1 flow is two-dimensional, steady, laminar and
incompressible

2 flow is driven by buoyancy force which is modelled
by Boussinesq approximation

3 the thermophysical properties of the fluid are constant

4 the fluid medium absorbs/emits but does not scatters
the radiation energy

5 the transmissivity of the semitransparent window is
one for the incoming radiation and zero for the
outgoing radiation.

Based on the above assumptions, the governing equations
(Kumar and Eswaran, 2013; Chanakya and Kumar, 2021a,
2021b) in the Cartesian coordinate system are given as:

∂ui

∂xi
= 0, (1)

∂uiuj

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
+ gβT (T − Tc)δi2, (2)

∂ujT

∂xj
=

k

ρCp

∂2T

∂xj∂xj
− 1

ρCp

∂qR
∂xi

, (3)

where u, p, ρ, βT , g, cp and κ are velocity, pressure,
density, thermal expansion coefficient, gravity, specific heat
capacity at constant pressure and thermal conductivity of
fluid, respectively. i, j are tensor indices which vary from 1
to 2 in Cartesian coordinates system. The δi2 is Kronecker
delta defined as

δi2 =

{
0, if i ̸= 2,

1, if i = 2.

• Flow boundary condition:

no slip: ui = 0.

• Thermal boundary conditions:

1 left wall at X = 0: T = 296 K

2 right wall at X = 1: T = 296 K

3 bottom wall at Y = 0:
qconv = hfree(Tfree − Tw)

4 top wall at Y = 1: qc + qr = 0

where qc = −k ∂T
∂n and qr =

∫
4π

I(rw, ŝ)(n̂ · ŝ)dΩ.
The ∂qRi

∂xi
in equation (3) is the divergence of radiative

flux which is calculated as

∂qRi

∂xi
= κa(4πIb −G), (4)

where κa, Ib and G are absorption coefficient, black body
intensity and irradiation which is evaluated by integrating
the radiative intensity (I) in all directions, i.e.,

G =

∫
4π

IdΩ, (5)

The radiative intensity field inside the cavity can be
obtained by solving the following radiative transfer
equation

∂I (̂r, ŝ)
∂s

= κa(Ib(̂r, ŝ)− I(̂r, ŝ)), (6)

where r̂ and ŝ are position and direction vectors,
respectively, and s is path length in the beam direction.

The Navier-stokes and energy equations are subjected to
the following boundary conditions.

The radiative transfer equation (6) is subjected to grey
diffusely emitting and reflecting wall [shown in Figure 2(a)]
(Modest, 2013) as below,

I(rw, ŝ) = ϵwIb(rw)

+
1− ϵw

π

∫
n̂·̂s>0

I(rw, ŝ)|n̂ · ŝ|dΩ.

for n̂ · ŝ < 0

(7)

where n̂ is the unit normal surface area and the ϵ is
emissivity of the walls and is considered as 0.9 for present
study for all walls.
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Figure 2 The pictorial representation of, (a) diffuse reflection
of an incident ray and diffuse emission due to wall
temperature (b) diffuse emission and collimated
transmission from a semitransparent wall

(a) (b)

The semitransparent window is subjected to diffuse
emission and collimated irradiation as shown in Figure 2(b)
with an collimated irradiation (Gco) of value 1,000 W/m2.
The boundary condition for RTE on the semitransparent
window is

I(rw, ŝ) = Ico(rw, ŝ)δ(ϕ− 135◦) + ϵwIb(rw)

+
1− ϵw

π

∫
n̂·̂s>0

I(rw, ŝ)|n̂ · ŝ|dΩ

for n̂ · ŝ < 0

(8)

where δ(ϕ− 135◦) is Dirac-delta function, and defined as

δ(ϕ− 135◦) =

{
1, if ϕ = 135◦,

0, if ϕ ̸= 135◦.

In the current work, the solid angle (dΩ) of discretised
angular space [Figure 3(b)] is considered as the collimated
beam width. The intensity of collimated beam irradiation
Ico is obtained from the below equation,

Ico =
Gco

dΩ
, (9)

The FVM integrates an partial differential equation over
a control volume [Figure 3(a)] along with boundary
conditions to convert the partial differential equation into a
set of algebraic equations of the form

apϕp =
∑
nb

anbϕnb + S (10)

where ϕp is a scalar, ap is a central coefficient, anb a
coefficients of neighbouring cells and S is the source term.

In the present work, the OpenFOAM application
buoyantBoussinesqSimpleFoam (bBSF) (OpenFOAM,
2017) is employed, it has fluid flow and heat transfer
libraries including library for FVDOM. This application
uses semi-implicit method for pressure linked equations
(SIMPLE) (Patankar, 2018) algorithm for the momentum
equation with preconditioner diagonal incomplete LU

decomposition (DILU) (Chanakya and Kumar, 2021b;
Moukalled et al., 2016). A linear-upwind scheme is used
for the convection term, which is second order accurate
and is given mathematically as

ϕf =

{
ϕp +∇ϕp · r⃗, iffϕ > 0,

ϕnb +∇ϕnb · r⃗, iffϕ < 0.
(11)

where fϕ is the flux of the scalar ϕ on a face [Figure 3(a)],
and p, nb indicate present and neighbouring cells and f
indicates face value of a scalar. The pressure equation
is solved using geometric algebraic multi-grid (GAMG)
with smoother-diagonal incomplete-Cholesky Gauss-Seidel
(DICGaussSeidel).

Moreover, the FVDOM is also employed to discretise
the RTE as it provides the versatility in the selection of
directions. The RTE [equation (6)] represents the transfer of
radiative energy in single direction and in order to obtain
total radiation energy from all directions in a single cell,
equation (6) equation needs to be integrated over each
control volume [Figure 3(a)] and control angle [Figure 3(b)]
which yields the discretised radiative transfer equation. For
the grey gas without any scattering assumption, it entails∫

dΩi

∫
dV

∇ · (sIi)dV dΩ

=

∫
dΩi

∫
dV

k[Ib(r)− Ii(r, s)]dV dΩ

(12)

where Ii is the intensity in direction s (total angular
directions is discretised into many control angles, dΩi, i
represents the index for the control angles). By applying
Gauss’s divergence theorem to the above equation we get,∫

dΩi

∫
dA

Ii(s · n)dAdΩ

=

∫
dΩi

∫
dV

κ(Ib − Ii)dV dΩ

(13)

where n is the unit normal vector of control volume face.
The surface integral can be approximated by the sum
over the control volume faces, assuming that the radiation
intensity is constant on each of the control volume faces.
The intensity is also expected to be constant inside the
control volume and throughout the finite solid angle dΩ.
Thus, equation (13) can be expressed as∑

f

IifAfD
i
f = κ(−Iip + Ib,C)dV dΩi (14)

where the face index f represents the east (E), west (W ),
north (N ), and south (S) faces and P indicates the cell
centroid. The directional weight Di

f can be expressed as,

Di
f =

∫
dΩi

(si · nf )dΩ (15)

and nf is the outward surface normal to a face f , si is the
direction of the pencil of a ray and dΩ is the solid angle
corresponding to the direction i.
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Figure 3 The pictorial representation of (a) cell arrangement for finite volume method for partial differential equations and
(b) angular discretisation for the radiative transfer equation

(a) (b)

The spherical coordinate system is used to discretise the
angular space, Where, a direction is described by polar (θ)
and azimuthal (ϕ) angles as shown in Figure 3(b). The
direction of a pencil of rays (s) and the solid angle dΩ are
expressed as below

s = sin θ sinϕî+ sin θ cosϕĵ + cos θk̂ (16)

and a solid angle is described in polar and azimuthal
directions (θ, ϕ) as

dΩ = 2 sin θ sin
(
dθ

2

)
dϕ (17)

Thus, directional weight Di
f is calculated as below,

Di
f = sinϕ sin

(
dϕ

2

)[
dθ − cos(2θ) sin(dθ)

]̂
i

+ cosϕ sin
(
dϕ

2

)[
dθ − cos(2θ) sin(dθ)

]
ĵ

+
1

2
dϕ sin(2θ) sin(dθ)k̂

In equation (18), î, ĵ and k̂ are the unit basis vectors of the
Cartesian coordinate system.

Equation (14) involves cell centre and faces values of
intensity. A linear upwind scheme is used to interpolate
the intensity at the face from the cell centre value
(Coelho, 2014), then equation (14) is reduced to the
standard algebraic form which can be solved by an iterative
technique. To obtain the intensities, GAMG solver with
symmetric Gauss-Seidel (symGaussSeidel) smoother is used
(Parmananda et al., 2017).

The collimated feature has been developed in
OpenFOAM framework and coupled with bBSF and named
as buoyantBoussinesqCollimatedFoam (bBCF). The bBCF
application has been used for numerical solutions and
it requires extra information in the form of a boundary
condition, which includes the irradiation value and beam
direction, and the intensity on the boundary is computed
using equation (9).

4 Non-dimensional parameters

The scales for length, velocity, temperature, conductive and
radiative fluxes are L, uo, (Tfree − Tc), κ(Tfree − Tc)/L

and σT 4
free respectively, where uo =

√
LgβT (Tfree − Tc)

is convective velocity scale.
Thus, the non-dimensional quantities and parameters

involved are as follows,

Ui =
ui

uo
, Xi =

xi

L
, θ =

T − Tc

Tfree − Tc
,

Ra =
gβT , (Tfree − Tc)L

3

να
, Pr =

ν

α
,

N =
κ

σT 3
freeL

, τ = κaL, P l = Nτ.

where Ra, Pr, N , Pl and τ are Rayleigh number, Prandtl
number, conduction-radiation parameter, Planck number and
optical thickness of the medium.

The non-dimensional irradiation is given as

G =
G

σT 4
free

, (18)

The fluxes on the walls are presented into Nusselt number
as

Nucond =
qcondL

k(Tfree − Tc)
, Nurad =

qradL

k(Tfree − Tc)
.

where, Nucond and Nurad, are conductive and radiative
Nusselt numbers, respectively. qCond and qrad are
conductive and radiative fluxes, respectively and L is the
characteristic dimension of the present problem. Further, the
total Nusselt number (Nut) is calculated as below

Nut = Nucond +Nurad.

5 Verification

5.1 Verification of pure convection

The bBSF without FVDOM has been used to test the
buoyancy flow for the symmetrical cooling case of natural
convection. The pure convection graph in Figure 4 shows
the temperature variation on the bottom wall of the cavity
along with the result by Aswatha et al. (2013). The present
result for pure convection agrees well with the published
work.
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Figure 4 The verification of results for pure convection in a
square enclosure which is heated from the bottom
(symbol A) and the combined diffuse radiation with
natural convection in a square enclosure where
differential temperature is applied on the two
opposite vertical walls (symbol C)
(see online version for colours)

5.2 Verification of diffuse and collimated beam
radiation

The results by FVDOM are verified first for only radiation
in a cavity having absorbing-emitting medium with ka =
0.1 and 10 in a square enclosure as suggested by
Raithby and Chui (1990). Figure 5 shows the variation of
non-dimensional heat flux qr/σT

4
h on the bottom wall and

it matches well with the results of published work. Further,
the collimated irradiation feature (Garg et al., 2019) has
been tested in a square cavity as shown in Figure 6(a). The
left side of the wall has a small window of non-dimensional
size 0.05 at a non-dimensional height of 0.6. The walls of
the square cavity are black and cold and also medium is
non-participating. A collimated beam is irradiated on the
window at an azimuthal 135◦ direction. It is expected that
the beam would travel in an oblique direction of 135◦ angle
without any attenuation and hit exactly a non-dimensional
distance of 0.6 from the left wall. Figure 6(b) shows the
contour of irradiation which clearly shows the travel of
collimated without any attenuation.

Figure 5 The variation of non-dimensional heat flux on the
bottom wall (see online version for colours)

Figure 6 The verification of collimated beam feature, (a) test
geometry (b) contour of irradiation showing the
travel of the beam in transparent medium
(see online version for colours)

(a)

(b)

5.3 Verification of combined natural convection and
radiation

The bBSF is used to simulate diffuse radiation and
natural convection in a square cavity whose top and
bottom walls are adiabatic and vertical walls are isothermal
at differential temperatures and radiatively opaque. The
convective-radiative graph in Figure 4 shows the variation
of temperature at mid height of the cavity for the present
simulation in comparison with the results of Lari et al.
(2011) and the accuracy of the present solver is in
accordance with the published work.

6 Sensitivity tests of domain discretisation

The numerical solutions of Navier-Stokes, energy equations
and radiation transfer equations are sensitive to spatial
discretisation. Additionally, radiative transfer equation
also requires angular space discretisation which provides
directions along which radiation transfer equation is being
solved. Thus, optimum number of grids and directions has
been obtained through sensitivity test study in two steps:
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Figure 7 The progression of collimated beam in (a) non-participating medium Pl = 0; participating medium for (b) Pl = 1
(c) Pl = 10 and (d) Pl = 50, for the irradiation value of 1,000 W/m2 applied on the semitransparent wall for case A
(see online version for colours)

(a) (b) (c) (d)

Figure 8 The contours of the non-dimensional stream function for (a) Pl = 0, (b) Pl = 1, (c) Pl = 10 and (d) Pl = 50 for case A
(see online version for colours)

(a) (b) (c) (d)

Figure 9 The non-dimensional temperature contours for (a) Pl = 0, (b) Pl = 1, (c) Pl = 10 and (d) Pl = 50 for case A
(see online version for colours)

(a) (b) (c) (d)

1 Spatial grids sensitivity test: three spatial grid sizes,
i.e., 60 × 60, 80 × 80, and 100 × 100 are chosen to
calculate the area average total Nusselt number on the
bottom wall as shown in Table 1 for the present
problem. The percentage error between the first and
second grid sizes is 0.8%, whereas between second
and third grid sizes is 0.15%. Thus, the spatial grid
points, 80×80 is selected for the present study.

2 Angular direction sensitivity test: the polar (nθ)
discretisation does not have any effect in
two-dimensional analysis, thus, it has been fixed to
two for polar direction in OpenFOAM. The effect of
angular discretisation on the area average total Nusselt
number on the bottom wall is shown in Table 2. The
percentage difference in area average Nusselt number

in the first and second angular discretisation is 0.09%,
whereas in second and third angular discretisation is
0.22%. Thus, finally nθ × nϕ = 2× 5 in one quadrant
angular space is selected for the study of the present
problem.

Now, it is evident that the radiative transfer equation
requires high computational resources. In order to quantify
the time required to solve RTE in comparison to the
solution of the convective transport equation the time
stamping has been done for individual transport equations.
It has been found that the solution of RTE takes around
91% time of the total simulation time.
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7 Results and discussion

In the present numerical simulation, the parameters such
as, Rayleigh number, Prandtl number, collimated irradiation
and direction of collimated irradiation have been fixed to
values 105, 0.71, Gco = 1,000 W/m2, 135◦, respectively.
The simulations have been performed for the different
aspect ratios of semitransparent window and Planck
numbers and correspondingly, the fluid flow and the heat
transfer characteristics are studied in the sections below.

Table 1 The area average total Nusselt number on the bottom
wall

Nusselt number 60 × 60 80 × 80 100 ×100

Conduction 6.42 6.615 6.78
Radiation –3.3 –3.47 –3.63
Total 3.12 3.145 3.15

Table 2 The area average total Nusselt number for angular
discretisation on the bottom wall

Nusselt number 2 × 3 2 × 5 2 × 7

Conduction 6.617 6.513 6.687
Radiation –3.47 –3.363 –3.53
Total 3.147 3.15 3.157

7.1 Case A: hr = 0.8 and wr = 0.2

A semitransparent window of width ratio of 0.2 is created
at a height ratio of 0.8 on the left vertical wall. A
collimated irradiation value of 1,000 W/m2 is applied on
this semitransparent window at an azimuthal angle of 135◦.
The dynamics of fluid flow and heat transfer for this case
are described below.

The collimated beam progression into the cavity in
azimuthal direction 135◦ from the semitransparent window
can be best represented by irradiation contours. The
irradiation contours inside the cavity for Planck numbers 0,
1, 10 and 50 are shown in Figures 7(a), 7(b), 7(c) and 7(d),
respectively. The Planck number (Pl = 0) corresponds to
a transparent medium, i.e., neither absorption nor emission
happens by fluid therefore, the collimated irradiation value
remains constant till it reaches the bottom wall. It spreads
uniformly to the window width ratio of 0.2 and strikes the
bottom wall at a non-dimensional distance of 0.7 from the
left corner of the cavity. Whereas, the collimated irradiation
reduces along the line of progression in a participating
medium for non-zero Planck numbers of the medium. The
collimated irradiation does not reach the bottom wall for
Pl = 10 as can be seen from Figure 7(c). Moreover, the
collimated beam energy gets absorbed near to the window
for high optical thickness, i.e., Pl = 50 [see Figure 7(d)].

7.1.1 Characteristics of stream function and temperature
fields

The effect of collimated beam irradiation on the stream
function for Planck numbers 0, 1, 10 and 50 are shown
in Figures 8(a)–8(d), respectively. Figure 8(a) depicts
stream function contour for the transparent media, where
two asymmetrical vortices can be observed. The left
vortex is larger in size than the right vortex. As the
medium behaves transparent for the radiation transfer, all
collimated irradiation energy strikes on the bottom wall at
a non-dimensional distance of 0.7 from the left corner with
non-dimensional spread of 0.2. The 90% of the collimated
energy is absorbed by (ϵ = 0.9) the bottom wall, this causes
the enhancement in the buoyancy force in the upward
direction at this location (i.e., over the spread of collimated
beam on the bottom wall), thus the resultant of momentum
force and buoyancy vector is more in upward direction in
the right vortex, thus making right vortex thinner and rest
space is occupied by the left vortex. The reverse trend is
observed for the participating media for Planck numbers
Pl = 1, 10 and 50, where the left vortex is smaller in size
than right vortex. This is due to the fact that collimated
beam is travelling through the left vortex which absorbs
the radiation energy and creates local heating in the fluid,
this enhances local upward buoyancy force in the left
vortex, whereas some energy is also being transferred to
right vortex through absorption in the right vortex and also
absorption by the bottom wall. The energy absorbed by
the left vortex may be higher due to the large distance
travelled by the collimated beam in the left vortex; this
decreases the size of the left vortex and increases the size
of the right vortex. The size of the left vortex keeps on
decreasing till Pl = 10, afterwards its size increases. As the
difference of two adjacent stream function values gives the
mass flow rate (Darbandi and Abrar, 2014), the flow rate
in the left vortex also keeps on decreasing till Pl = 10 and
then increases. The reverse trend of this is found in the right
vortex.

The effect of collimated beam radiation on the
temperature field inside the cavity for the Planck number
0, 1, 10 and 50 are shown in Figures 9(a), 9(b), 9(c) and
9(d), respectively. The symmetrical isotherm lines about
the mid vertical line of the cavity (Chanakya and Kumar,
2021a) becomes asymmetrical with inclusion of collimated
beam and these lines tilt either right or left to the vertical
line depending upon behaviour of the medium for the
radiation. The isothermal lines are bent towards left for
the participating medium as the left vortex is smaller in
size (Figure 9). The clustering of isotherm lines appears
at the strike zone at the bottom wall for non-participating
medium, whereas almost uniform temperature is spread in
the region near to the top adiabatic wall. Furthermore,
density of the isotherm lines increases at the bottom and
on left wall with the increase in Planck number of medium
and also localised heating of the fluid is observed near
to the semitransparent wall for the case Pl = 10 [see
Figure 9(c)], this may be the fact that the most of collimated
irradiation energy is getting absorbed within small distance
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from the semitransparent wall [see Figure 7(c)], whereas
the effect of localised heating is limited to semitransparent
wall for the case of Pl = 50 [see Figure 9(d)], this is
because of the fact that the almost all the collimated
irradiation is absorbed near to semitransparent wall and the
energy is transferred out from the cavity due to isothermal
condition on the semitransparent wall. The maximum
non-dimensional temperature inside the cavity is found on
the bottom wall but at different locations for different
Planck numbers; it is on the strike zone for Planck number
0 and 1, and at the junction point of two vortices for Planck
number 10 and 50.

7.1.2 Velocity and temperature variations

The variations of non-dimensional vertical velocity in the
horizontal direction at mid height of the cavity for the
Planck numbers 0, 1, 10 and 50 are depicted in Figure 10.
The vertical velocity is in the downward direction near
to both the cold walls and reaches to maximum at same
non-dimensional distance of 0.1 from the right vertical
walls for all Planck numbers, however, this distance is
0.075 for Planck number 0 and 1, and 0.05 for Planck
number 10 and 50 from the left wall. Furthermore,
the vertical velocity in the downward directions keeps
on decreasing away from the walls. The maximum
non-dimensional temperature keeps on decreasing with
increasing Planck number till Pl = 10 because heating
near to top then little increase for Pl = 50 and reaches
to zero at centre points of each vortex. The maximum
non-dimensional vertical velocity in upward directions is
achieved at the junction of two vortices.

The non-dimensional temperature on the bottom wall
increases rapidly from the left end till the non-dimensional
distance 0.1 afterwards its rate of increase is slow till
the strike length of the collimated beam [Figure 11(a)].
Afterwards, there is a sudden rise in temperature at
the strike zone and reaches a maximum value of
non-dimensional temperature 1.4 then starts decreasing
till the right wall for Pl = 0. For the case Pl = 1,
two maximas in the temperature curve are observed
that correspond to the strike length of the collimated
beam and stagnation point developed at the junction of
two vortices. Nevertheless, the location of the global
maxima corresponding to the strike zone of the collimated
beam remains fixed. It is the highest for the radiatively
transparent fluid and keeps on decreasing with increasing
Planck number of the medium. The high temperature zone
due to collimated beam strike cannot be seen for Planck
numbers 10 and 50, due to absorption of radiative energy
within the fluid before it reaches to the bottom wall.
The maximum non-dimensional temperature is found at the
junction of two vortices (i.e., the stagnation point) for Pl =
10 and 50. The non-dimensional temperature on the top
wall [Figure 11(b)] increases from both the ends of the
wall upto distance of 0.2 and remains almost constant at
the middle portion of the curve for Pl = 1, 10 and 50.
However, a little decrease in temperature is seen at the

middle for Pl = 0. There is no major difference in the
temperature profile observed for Pl = 1 and 10.

Figure 10 The variation of the non-dimensional vertical
velocity along the horizontal line at the mid height
of the cavity for various Planck numbers for case A
(see online version for colours)

Figure 11 The variation of the non-dimensional temperature
on, (a) bottom wall (b) top wall for various Planck
numbers for case A (see online version for colours)

(a) (b)

7.1.3 Variation of Nusselt number

The conduction (Nucond), radiation (Nurad) and total
(Nutot) Nusselt numbers variation on the bottom wall
are presented in Figure 12 for various values of Planck
numbers. The variation of conduction Nusselt number
on both ends of bottom wall are similar for all the
Planck numbers, and its behaviour remains same till
non-dimensional distance of 0.15 from the left corner and
then slowly decreases to a minimum value of almost zero
at a non-dimensional distance of 0.61 from left corner
Pl = 0. All of a sudden, it increases to 16 at the strike
length of the collimated beam, it further decreases to 9 than
starts increasing and reaches to a maximum value of 17
on the right side of the isothermal wall for the case of
the transparent medium. The lowest conduction Nusselt is
obtained at distance of 0.4 and remains constant till the
strike point of the collimated beam, then increases to a
value of 8 for the case of Pl = 1. Further its behaviour
is similar to the transparent medium case. Whereas, the
conduction Nusselt number behaviour remains unaffected
by the collimated beam for Planck numbers 10 and 50.
However, Nurad remains constant for the values of Pl =
0 and 1 till a distance of 0.6 on the bottom wall, and an
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inverted cone profile having a peak value of 22 and 7, are
observed for the Pl = 0 and 1 respectively, whereas, the
radiation Nusselt number remains constant over the entire
length and its value is almost zero over the entire length of
the bottom wall for the Pl = 10 and 50.

The total Nusselt number which is a linear combination
of conduction and radiation Nusselt numbers is dominated
by conduction Nusselt number over the most part of the
bottom wall except the length over which collimated beam
strikes [Figure 12(c)]. The total Nusselt number at the beam
strike zone is dominated by the radiation Nusselt number.
Whereas, no peak appears in the total Nusselt number for
the Planck number 10 and 50 which further confirms that
the collimated beam energy gets absorbed within the fluid
before reaching to the bottom wall.

The variation of conduction, radiation and total Nusselt
numbers on the left isothermal wall which also includes
the semitransparent window for Pl = 0, 1, 10 and 50 are
depicted in Figures 13(a), 13(b) and 13(c), respectively.
There is sudden decrease in conduction Nusselt number
over small height from the bottom and reaches to a
minimum value of 1 and it almost remains constant
over the rest height of the left wall for transparent
medium cases. Nevertheless, small increment happens on
the semitransparent wall for Pl = 1. However, there is a
sudden increment in the conduction Nusselt number on
the semitransparent window for Pl = 10 and 50. This is
mostly in the negative direction which reveals that the
energy leaves from this wall by the conduction mode
of the heat transfer. The radiation Nusselt number is
found to be almost zero over the height of the left wall
except at the semitransparent wall. A sudden increase of
radiation Nusselt number happens (G = 1,000 W/m2) at
the semitransparent wall [Figure 13(b)] and remains the
same for all Planck numbers. It is noticed that the radiative
Nusselt number is positive; this reveals that the radiative
heat flux is coming inside the cavity through radiation
mode of heat transfer. The total Nusselt number on the left
wall is negative over most part of the height indicates that
energy is leaving from the domain except length of the
semitransparent window, where the total Nusselt number is
positive which indicates that the net energy is entering into
the domain from this portion of the left wall.

The variation of conduction Nusselt number on the right
wall [Figure 14(a)] is similar to the left wall except the
phenomenon on the semitransparent window. There is no
major change in the conduction Nusselt number on this
wall with the Planck numbers of the medium. Nevertheless,
the conduction Nusselt number increases little for Pl =
1 compared to Pl = 0, then decreases for Pl = 10 and
Pl = 50. The radiation Nusselt number is almost constant
over the whole height of the right wall and decreases with
increase in Planck number. The radiation Nusselt number is
almost zero for Pl = 50 on the right wall. The total Nusselt
number is similar to the conduction Nusselt number curve,
but the difference increases from Pl = 1 to Pl = 50.

7.2 Progression of collimated beam in other cases

The collimated irradiation contours for the aspect ratio
of cases B, C, and D and for Pl = 0 are depicted in
Figures 15(a), 15(b) and 15(c), respectively. The purpose
of the present graph is to show the position of the
semitransparent window and its width for different cases.
The transparent medium has been selected to present the
collimated beam contours, so that collimated irradiation
contours remain the same throughout the progression of
the beam. However, collimated beam contours will be
different for different Planck numbers of the medium inside
the cavity as shown Figure 7 nevertheless, they are not
presented here for the brevity. The effects of these aspect
ratios and Planck numbers of the medium on the fluid flow
and the heat transfer will be presented in the subsequent
sections.

7.3 Characteristics of the stream function and the
temperature field in other cases

7.3.1 Case B: hr = 0.8 wr = 0.4

The effect of the collimated beam irradiation for the
semitransparent window with aspect ratio hr = 0.8 and
wr = 0.4 on the stream function for the range of Planck
numbers 0–50 are depicted in Figure 16. The dynamics of
two vortices are almost similar to case A (Figure 8), except
little increase in the value of stream function, i.e., increase
in the flow rate in respective vortices for Planck numbers 0
and 1, however, on further increase of the Planck number
(Pl = 10) of the medium, the left vortex breaks into two
parts upper left vortex and lower left vortex. The flow rate
in the lower left vortex is higher than the upper left vortex.
An interesting fact to notice that the flow rate in the right
vortex also decreases. This upper left vortex disappears for
Planck number Pl = 50 and flow rate in the lower left
vortex also decreases. Nevertheless, the flow rate in the
right vortex has now increased.

Figure 17 depicts the non-dimensional temperature
contours for the range of Planck number Pl = 0− 50. The
qualitative behaviour for the case Pl = 0 [Figure 17(a)],
is same as explained for Figure 9(a). Moreover, the local
heating of the fluid happens near to the semitransparent
wall for Pl = 1 [Figure 17(b)], this local heating further
shifts near to the semitransparent wall for Pl = 10 and the
density of the isothermal lines has also increased. Further,
more temperature variations are seen in the upper region of
the cavity. The local heating of the fluid does not happen
for Pl = 50 as the maximum energy of the collimated
beam gets absorbed near to the semitransparent wall and
transferred out of the cavity as semitransparent wall is being
isothermal. The clustering of isotherm lines near to the
semitransparent window has also decreased. The location of
the maximum temperature is at the beam strike zone at the
bottom of the cavity for Pl = 0 and 1, however it is at the
bottom wall at the junction of two vortices for Pl = 10 and
50.



44 G. Chanakya and P. Kumar

Figure 12 The variation of, (a) conduction (b) radiation (c) total Nusselt numbers for different Planck numbers on the bottom
wall for case A (see online version for colours)

(a) (b) (c)

Figure 13 The variation of, (a) conduction (b) radiation (c) total Nusselt numbers for different Planck numbers on the left wall
for case A (see online version for colours)

(a) (b) (c)

Figure 14 The variation of, (a) conduction (b) radiation (c) total Nusselt numbers for different Planck numbers on the right wall
for case A (see online version for colours)

(a) (b) (c)

Figure 15 The progression of a collimated beam in a non-participating medium for, (a) case B: (hr = 0.8 and wr = 0.4) (b) case C:
(hr = 0.4 and wr = 0.2) (c) case D: (hr = 0.4 and wr = 0.4) for the collimated irradiation value of 1,000 W/m2

applied on the semitransparent wall at an azimuthal angle of 135◦ (see online version for colours)

(a) (b) (c)
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Figure 16 The contours of the non-dimensional stream function for, (a) Pl = 0 (b) Pl = 1 (c) Pl = 10 (d) Pl = 50 for case B
(see online version for colours)

(a) (b) (c) (d)

Figure 17 The contours of the non-dimensional temperature for, (a) Pl = 0 (b) Pl = 1 (c) Pl = 10 (d) Pl = 50 for case B
(see online version for colours)

(a) (b) (c) (d)

Figure 18 The contours of the non-dimensional stream function for, (a) Pl = 0 (b) Pl = 1 (c) Pl = 10 (d) Pl = 50 for case C
(see online version for colours)

(a) (b) (c) (d)

Figure 19 The contours of the non-dimensional temperature for, (a) Pl = 0 (b) Pl = 1 (c) Pl = 10 (d) Pl = 50 for case C
(see online version for colours)

(a) (b) (c) (d)
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Figure 20 The contours of the non-dimensional stream function for, (a) Pl = 0 (b) Pl = 1 (c) Pl = 10 (d) Pl = 50 for case D
(see online version for colours)

(a) (b) (c) (d)

Figure 21 The contours of the non-dimensional temperature for, (a) Pl = 0 (b) Pl = 1 (c) Pl = 10 (d) Pl = 50 for case D
(see online version for colours)

(a) (b) (c) (d)

Figure 22 The variations of the non-dimensional temperature on the bottom wall for, (a) Pl = 0 (b) Pl = 1 (c) Pl = 10
(d) Pl = 50 (see online version for colours)

(a) (b) (c) (d)

Figure 23 The variation of the conduction Nusselt number on the bottom wall for the different cases for (a) Pl = 0 (b) Pl = 1
(c) Pl = 10 (d) Pl = 50 (see online version for colours)

(a) (b) (c) (d)

Table 3 The non-dimensional maximum stream function values for various cases over the range of Planck numbers

Pl Case A Case B Case C Case D
Left Right Left Right Left Right Left Right

0 0.052 –0.043 0.062 –0.051 0.055 –0.058 0.060 –0.063
1 0.032 –0.064 0.037 –0.079 0.029 –0.075 0.015(b) 0.023(t) –0.090
10 0.013 –0.068 0.019(b) 0.002(t) –0.061 0.004(b) 0.014(t) –0.085 0.001(b) 0.016(t) –0.091
50 0.020 –0.071 0.008 –0.071 0.041 –0.061 0.001(b) 0.012(t) –0.076
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Figure 24 The variation of the radiation Nusselt number on the bottom wall for the different cases for, (a) Pl = 0 (b) Pl = 1
(c) Pl = 10 (d) Pl = 50 (see online version for colours)

(a) (b) (c) (d)

7.3.2 Case C: hr = 0.4 wr = 0.2

Unlike to cases A and B for the transparent medium (Pl =
0) the left vortex is little smaller in size to the right side
vortex for this case [compares Figures 8(a), 16(a) to 18(a)].
This is mainly due to the fact that the collimated beam
incidence takes place between the non-dimensional length
0.3 to 0.5 on the bottom wall. This incidence length is
below to the left vortex, thus higher buoyancy causes the
resultant force (momentum and buoyancy) vector more in
vertical direction, thus, reduction of size of the left vortex.
One interesting fact to notice is that fluid velocity has
almost 90◦ turn in the right vortex at the end point of
collimated strike. Also, the flow rate (difference of two
stream function values) in the right vortex is higher than the
left vortex unlike cases A and B for transparent medium.
The flow rate in the right vortex keeps on increasing with
increase of Planck number of the medium till Pl = 10. The
size of the left vortex also keeps on decreasing with the
Planck number of the medium and the left vortex breaks
into two parts for Pl = 10. However, a totally different
situation appears for these two vortices for Pl = 50. The
left vortex has grown and the right vortex has reduced in
the size. The flow rate in the left vortex has also increased
whereas, it is reduced in the right vortex.

The plume is rising from the collimated incidence length
and it is almost vertical for the transparent medium (Pl =
0) [Figure 19(a)], this plume is bent towards the left for
Planck number (Pl = 1) [see Figure 19(b)] case. Further, it
gets more bent and nearly touches the left isothermal wall
for Planck number Pl = 10 [see Figure 19(c)]. On contrary
to this, the plume is bent toward the right for Pl = 50 [see
Figure 19(d)]. The isotherm lines are also clustered and
parallel to the semitransparent window for Planck number
Pl = 50. In this case also, the maximum temperature exists
on the bottom wall like cases A and B and is at the point
of incident of the collimated beam for Planck number 0 and
1 and at the junction point two vortices on the bottom wall
for Pl = 10 and 50.

7.4 Case D: hr = 0.4 wr = 0.4

There is no major change seen in the fluid flow behaviour
with the increase of window width ratio for the transparent

medium case compared to case C (Figure 20). Nevertheless,
the flow rate in both the vortices increases [compare
Figures 18(a) and 20(a)]. However, the size of the left
vortex reduces drastically for Pl = 1 and breaks into two
parts-upper left vortex and lower left vortex but both remain
connected. Furthermore, they are disconnected for Pl = 10.
The lower left vortex has lower flow rate compared to the
upper left vortex, also the flow rate in the right vortex
increases. On further increase of the optical thickness of the
medium (Pl = 50), the flow rates in the right vortex and
upper left vortex decrease and there is no change in lower
left vortex.

Similarly, no major change in the temperature contours
(Figure 21) appear for the transparent and the participating
medium cases compared to case C except the plume is
bent towards the left wall for Pl = 50 case [compare
Figures 18(d) and 20(d)]. The isotherm lines are parallel
and closely packed near to the semitransparent window.

7.5 Variation of non-dimensional temperature profile in
other cases

Figure 22 depicts the non-dimensional temperature variation
on the bottom wall for the different cases, also for the
range of Planck numbers of the medium. The peak of the
temperature profile shifts to the left from case A to C
and for Planck numbers 0 and 1, whereas the temperature
profile almost remains same for case A and B for Planck
number 10. Furthermore, no ordered way of shifting of
temperature peak appears for the different cases for Planck
number 50.

The maximum non-dimensional stream function value
in a vortex for Pl = 0 to 50 and all cases have been
presented in Table 3. As the left vortex breaks into two
parts in some cases, therefore, the stream function value of
these two vortices have been shown in table by bifurcating
the cell into two parts. The first bifurcated part shows the
stream function value of the upper left vortex and second
bifurcated part shows the stream function value of the lower
left vortex. There is no monotonic order for increasing or
decreasing of these stream function values. The maximum
and minimum values of the stream function are found right
vortex for Planck number 10 for case D, and left vortex for
Planck number 0 and case B.
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Similarly, the maximum non-dimensional temperature
inside the cavity is shown in Table 4. In a few scenarios,
the maximum non-dimensional temperature has increased
beyond one. The maximum non-dimensional temperature
is found for case D and Pl = 0, and the minimum
non-dimensional temperature is found for case A and Pl =
10.

Table 4 The maximum non-dimensional temperature inside the
cavity for different cases over a range of Planck
numbers

Pl Case A Case B Case C Case D
0 1.388 1.529 1.509 1.596
1 0.986 1.102 1.324 1.434
10 0.851 0.860 0.863 0.939
50 0.864 0.869 0.872 0.870

7.5.1 Variation of Nusselt number in other cases

Figure 23 shows the variation of conduction Nusselt
number on the bottom wall for different cases and for a
range of Planck numbers. The conduction Nusselt number
goes to minimum (almost zero) before the strike length
of collimated beam, rises to maximum (Nucond = 16) in
the strike length, and decreases at the end of the strike
length then goes up till end of the bottom wall for case A
and for Planck number zero [see Figure 23(a)]. Similarly,
the minimum conduction Nusselt number (Nucond = 1) is
obtained just before strike point of the collimated beam
for case B and for Pl = 0, afterwards, the sharp rise in
the conduction Nusselt number curve appears at the start
of the strike zone of the collimated beam for case B,
and afterward low rate of increase in conduction Nusselt
number happens and finally the highest Nusselt number is
achieved at the end. Moreover, the minimum conduction
Nusselt number (Nucond = 3) is obtained at the end of the
strike point for case C for Pl = 0. The conduction Nusselt
number curve has two peaks in the strike zone of the
collimated beam for case D and Pl = 0. The characteristics
of conduction Nusselt number graph for Pl = 1 and all
the cases are similar to non-participating medium (Pl =
0) except peak and trough of the curve in the strike zone
of the collimated beam have reduced. These peaks have
disappeared for Planck number Pl = 10. The minimum
point in the conduction Nusselt number curve is same
for case A and B, however, it shifts to the left for case
C and further shifting to left happens for case D. Other
than the inflection point, the conduction Nusselt number
curve remains same for all cases. The similar behaviour is
observed for Pl =50. One interesting fact to notice is that
conduction Nusselt number behaviour for cases A and C
is similar and for cases B and D. The minimum Nusselt
number obtained is 2 for Pl = 10 and 50, and maximum is
16 which is obtained at the right end of the bottom wall.

The radiative Nusselt number distribution on the bottom
wall for different cases and range of Pl = 0− 50 is
presented in Figure 24. The radiative Nusselt number is
almost zero over the length of the bottom wall except

the length over which the collimated beam strikes. The
Gaussian profile of radiative Nusselt number in the
collimated beam strike zone appears for cases A and C,
where it is almost square profile for cases B and D. The
front of the square shape of radiative Nusselt number is
not flat but wavy which has peak at the corner and trough
at the middle. Moreover, the maximum value of radiative
Nusselt number is almost same for all cases for Planck
number zero [Figure 24(a)]. The profile of the radiative
Nusselt number curve for different cases are retained
for Pl =1 [Figure 24(b)], however, maximum value of
radiative Nusselt number is monotonically increasing from
case A to case D. One interesting fact to notice that front
of these profile are also tilted which has higher value
at the start of the strike zone of the collimated beam
and lower value at end of the beam. The peaks in the
radiative Nusselt number curve disappear for cases A and
B [Figure 24(c)] for Pl =10, however, the profile for case
C and D become Gaussian where case D has higher value
of radiation Nusselt number than the case C. Furthermore,
these peaks disappear in cases C and D [see Figure 24(d)].

Table 5 shows the area average conduction, radiation
and total Nusselt numbers on the bottom wall of the cavity.
The average conduction Nusselt number decreases upto
Pl = 10 then there is slight increase in the average total
Nusselt number whereas average radiative Nusselt number
first being negative for (Pl = 0 and 1) then becomes
positive for (Pl = 10 and 50) for all cases. Furthermore,
average Nusselt number increases upto Pl = 10 and then
there is minimal decrease in the average Nusselt number
for all cases. The minimum value of average total Nusselt
number is found for Pl = 0 and for case B and the
maximum for Pl = 10 for case A.

The area average conduction, radiation and total Nusselt
numbers on the right and the left walls excluding the
semitransparent window are presented in Table 6 and 7,
respectively. Both the conduction and the raidiative Nusselt
numbers are negative on both the walls for all cases and all
Planck numbers. The average conduction Nusselt number
increases upto Planck number Pl = 1 on the right wall
and Pl = 10 on the left wall for all cases. However,
average radiation Nusselt number monotonically decreases
with Planck number for all the cases.

The area average conduction, radiation and total Nusselt
number on the semitransparent wall for all the cases and
range of Planck numbers are depicted in Table 8. The
conduction Nusselt number is always negative and increases
with increase of the Planck number of the medium for all
cases. While the radiative Nusselt number is positive and
almost constant for all Planck numbers in each case. One
thing to notice is that radiative Nusselt number is same for
case A and C and similarly it is same for cases B and
D. The maximum conduction Nusselt number is found for
case D for Planck number Pl = 50. The maximum and
minimum total Nusselt number on the semitransparent wall
are found for case D for Pl = 0 and Pl = 50, respectively.
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Table 5 The area average Nusselt numbers on the bottom wall for different cases and the range of Planck numbers

Pl Case A Case B Case C Case D

Cond Rad Tot Cond Rad Tot Cond Rad Tot Cond Rad Tot

0 6.513 –3.363 3.033 8.13 –7.709 0.421 7.126 –3.296 3.83 8.718 –7.97 0.748
1 5.712 –0.712 5 6.332 –2.835 3.497 6.422 –1.867 4.555 7.021 –4.882 2.139
10 5.643 0.610 6.254 5.546 0.574 6.12 5.632 0.118 5.75 5.154 0.338 5.492
50 5.845 0.264 6.109 5.653 0.254 5.907 5.663 0.066 5.699 5.513 0.248 5.761

Table 6 The area average Nusselt numbers for on the right wall for different cases and range of Planck numbers

Pl Case A Case B Case C Case D

Cond Rad Tot Cond Rad Tot Cond Rad Tot Cond Rad Tot

0 –3.380 –1.045 –4.425 –4.385 –1.569 –5.954 –3.641 –0.939 –4.58 –4.354 –1.267 –5.621
1 –3.831 –0.940 –4.771 –5.265 –1.287 –6.552 –3.899 –0.892 –4.791 –4.863 –1.097 –5.96
10 –3.619 –0.499 –4.118 –4.924 –0.641 –5.565 –3.298 –0.44 –3.738 –4.397 –0.59 –4.987
50 –3.046 –0.142 –3.188 –3.033 –0.141 –3.174 –3.18 –0.144 –3.324 –2.956 –0.135 –3.091

Table 7 The area average Nusselt numbers on the left wall for different cases and range of Planck numbers

Pl Case A Case B Case C Case D

Cond Rad Tot Cond Rad Tot Cond Rad Tot Cond Rad Tot

0 –2.258 –0.688 –2.946 –1.875 –0.669 –2.544 –3.046 –0.764 –3.81 –3.136 –0.694 –3.83
1 –3.424 –0.814 –4.238 –2.984 –0.666 –3.65 –3.251 –0.767 –4.018 –3.05 –0.691 –3.74
10 –3.92 –0.574 –4.494 –3.313 –0.407 –3.72 –3.621 –0.443 –4.055 –3.433 –0.429 –3.862
50 –3.188 –3.361 –0.138 –2.831 –0.126 –2.957 –3.272 –0.162 –3.439 –2.586 –0.141 –2.727

Table 8 The area average Nusselt numbers on the semitransparent window for different cases and range of Planck numbers

Pl Case A Case B Case C Case D

Cond Rad Tot Cond Rad Tot Cond Rad Tot Cond Rad Tot

0 –0.816 5.152 4.336 –1.848 9.94 8.092 –0.537 5.102 4.565 –1.351 10.055 8.704
1 –1.194 5.182 3.988 –3.2. 9.953 6.723 –0.862 5.12 4.258 –2.558 10.123 7.564
10 –2.738 5.195 2.457 –6.757 9.943 3.186 –3.01 5.166 2.036 –6.87 10.23 3.36
50 –4.489 5.166 0.677 –9.858 10.169 0.311 –4.197 5.265 1.068 -10.375 10.435 0.062

8 Conclusions

The effects of the aspect ratio of the semitransparent
window on the interaction of collimated beam with natural
convection have been studied for Ra = 105, Pr =
0.71, N = 1.5 and G = 1,000 W/m2 numerically in a
square cavity which is heated from the bottom. The four
combinations of height ratio (hr) and window width ratio
(wr) and range of Planck numbers have been considered.
A collimated beam is irradiated on this semitransparent
window at an azimuthal angle 135◦ and the interaction
of this collimated beam irradiation with natural convection
is considered through one way coupling. The following
conclusions are drawn:

1 The left vortex is bigger in size than the right vortex
for cases A and B for transparent medium Pl = 0.
Furthermore, the fluid flow turns to almost right

angle for right vortex at the junction of two vortices
for cases C and D.

2 The left vortex changes its dynamics with Planck
number of the participating medium. It breaks into
two parts for cases B, C and D for Planck number
Pl = 10. Moreover, the left vortex remains confined
into lower left corner for case B and breaks into two
part for case D for Pl = 50.

3 The thermal plume flickers right to left as medium
changes from non-participating to participating
medium for all cases except Planck number Pl = 50
and case C where thermal plume is bent to the right.

4 The local heating of the fluid occurs by collimated
beam for Pl = 10 for case A and Pl = 1 and 10 for
case B.
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5 The temperature rise on the bottom wall happens in
increasing order form case A to case D at the
location of collimated incidence for transparent
medium case and this rise diminishes in the same
order for Pl = 1, and finally no major rise in the
temperature at the bottom wall appear for Pl = 50.

6 The maximum non-dimensional temperature inside
the cavity increases beyond one, and maximum
non-dimensional temperature is found for Pl = 0 of
case D, and minimum for Pl = 10 of case A.

7 The conduction Nusselt number profile is Gaussian
for case A at the collimated incidence location on
the bottom wall and square for case D for
transparent medium. The peak in the curve of
conduction Nusselt number is at the incidence
location and diminishes fast and no such peak is
seen for all cases for Pl = 50.

8 The radiative Nusselt number rises all of sudden at
the collimated beam incidence on the bottom wall
and is almost same for all cases for transparent
medium case. However, nature of this curve is
Gaussian for case A and C and square for B and D,
nevertheless, the front of the square curve is wavy
with peak at the ends and trough at the middle.

9 The sudden rise in the radiation Nusselt number
diminishes fast from case D to case A for Pl = 1
and no such rise appears for Pl = 50.

10 The maximum Nusselt number 5.76 is found for
Pl = 50 and case D, and minimum total Nusselt
number 0.42 is for Pl = 0 and case B on the bottom
wall.
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Nomenclatures

Acronyms

a Coefficient
Cp Specific heat capacity (J/kgK)
g Acceleration due to gravity (m/s2)
bBSF buoyantBoussinesqSimpleFoam
bBCF buoyantBoussinesqCollimatedFoam
RTE Radiative transfer equation
DILU Diagonal incomplete LU decomposition
GAMG Geometric-algebraic multi-grid
DIC Diagonal incomplete-Cholesky
G Irradiation (W/m2)
H Height (m)
I Intensity (W/m2)
Ib Black body intensity (W/m2)
k Thermal conductivity (W/mK)
L Length of the domain of study (m)
N Conduction radiation parameter
Nu Nusselt number
p Pressure (N/m2)
Pr Prandtl number
q Flux (W/m2)
FV DOM Finite volume discrete ordinate method
Ra Rayleigh number
T Temperature (K)
V Velocity vector (m/s)
W Window (m)
Greek symbols

βT Thermal expansion coefficient (1/K)
ϵ Emissivity
κa Absorption coefficient (1/m)
ρ Density of the fluid (kg/m3)
τ Optical thickness
ϕ Scalar
Subscripts

cond Conduction
c Cold wall
co Collimated beam
conv Convection
f Face centre
free Free stream
i, j Tensor indices
nb Neighbour cell
p Cell centre
rad Radiation
t Total
W Window
w Width


