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Abstract: The paper was inspired by comprehensive researches in the field of
video data information security. Video data is considered as a long range of
frames. This work is targeted on the problem of correlations between the already
happened and upcoming incidents in terms of their probability. The main idea of
the paper is to take into account some hidden events that provoke the incidents. The
possible incident is modelled as a finite sequence of those events. The statistical
ensemble approach is used in order to evaluate an incident probability if there
were no registered incidents in the system yet. It is shown that the probability can
be evaluated dynamically if there is enough data about previous incidents in the
statistical ensemble. Thus, it is supposed that the risk manager can operatively
gather information from the similar information systems.
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This paper is a revised and expanded version of a paper entitled ‘Probability model
of risk’ presented at International Conference “Modeling Analysis of Security
and Risk in Complex Systems”, St. Petersburg, Russia, 23–25 June, 2020.

1 Introduction

Rare incidents with significant impact in the field of information security have lack of
studies today. The main reason is that they say “there are very few known incidents of that
type in cybersecurity at all” (Astahov, 2010). However, any zero day vulnerability brings
such kind of risk (Taleb, 2007). The APT and other kinds of attacks, that usually seem to
occur in a specific company rather unlikely, can be concerned as an appointed threat as
well. The artificial random threats, that bring more than a half of total harm of information
security incidents, could be added to the set of such threats. It is more likely that the very
information risk management is the main reason to avoid black swans consideration in
cybersecurity. Because risk managers deal with quite a long-time period of risks validation
that is determined by corporate management, expert re-assessments require resources and
they are forced to be as rare as possible.

The risk definition implies multiplication of two factors: an evaluation of possible
damage and a threat incident probability. Both factors have a great deal of uncertainty, that
is connected to complexity of the system. This complexity implies that there are a lot of
hidden parameters in the system and, of course, any parameter may change its value over
time. The consequences are significant fluctuations of the risk value that forces to perform
reassessment. In order to break uncertainty, it is common to use expert assessments and to
form as large a pool of experts as possible. This, of course, exploits the ergodic hypothesis.
At the same time, due to the openness of real systems, there are big obstacles to apply the
ergodic hypothesis here. A large number of modern research methods exploit ergodicity (van
Handel, 2014). In this regard, there is a great temptation to describe non-ergodic systems
by some ergodic tools and methods.

In the present paper we propose a theoretical background for a risk probability
distribution derivation. The corresponding technique is presented.

1.1 Incident model and data mining

At first, we make a model that describes an incident genesis. Of course, nobody knows how
an incident occurs definitely. But based on some natural proposition or just intuition, we
can suppose that there are some events that precede incident and increase its probability.
Moreover, we should suppose that the incident occurs just in specific case, when there are
more than a fixed number of events occur during some fixed time. The natural question is:
how to gain information on these causing events when we have no idea what kind of events
are meant? The answer is given afterwards. Suppose that the incident happened already, but
not in the controlled system, and we have information about the incident. Assume also that
there is a known pool of the systems similar to our system and we can observe them and
receive operative information from them. This situation is becoming more real every day
because more and more people understand the importance of the data sharing. In this case
we have some kind of statistical ensemble and we can proceed with statistical data although
we have no any incidents in our system.
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There is a wide range of possible data to collect: incidents after personnel errors, random
technical accidents, zero-day vulnerability finding and/or exploiting, grid system crashing
by undisclosed reason and so on. All that may cause big damage and, of course, can be
treated as black swans. Various ways to collect data may be used: internet sites parsing,
queries to special databases, regular requests to news agencies and so on. These forms
are often used, but there are a lot of additional possible ways to collect data. For further
consideration we suppose that the data have been already collected and the way of their
collection is determined. However, in real cases, the choice between several data collection
methods may present a big challenge.

1.2 Data formats and structures

We use Python for the data processing. Of course, there are no restrictions for other tools,
but in order to express what kind of data types we use, it is better to clarify the language.
The collected data has to be presented as lists or DataFrames in order to simplify further
processing. The data must contain the follow information at least: number, type and time
of the incident, an identification number of the system where incident occurred, the scale
factor for the system to be compared to target system.

We suppose that incident probabilities and the corresponding damages are rather
independent values. Because the same incident may cause very different consequences in
different systems or even in the same system, but in different times, our approach concerns
just probabilities and does not involve possible damage re-evaluation. The reason is that
damage can be re-evaluated when there are some changes in assets or it can be evaluated
periodically, for instance, one or two times per year; there is no any connection between
damage evaluation and already happened incidents.

Another parameter that should be taken into account is the data freshness: if an incident
occurs somewhere in observable ensemble of systems, then we should know about it as
soon as possible. In case if the delay becomes more than its limit value, then there is no any
sense to make risk evaluation because there is no chance to take an action. That is why any
received data has to be marked by the renewal time. This time does not coincide with the
last incident detection time because we have chance to detect no incidents for a long time
of the observations.

For our further considerations we use the data in the following simplified form:

x1, x2, . . . ,

where every value xi may be just 0 or 1 that corresponds to the cases “no incident” or
“incident” respectively. However, this sequence is not Bernoulli’s type because we have, in
general, various probabilities for 0 and 1 at the specified i, i.e., the sequence is not stationary.
Further we suppose that every xi resulted from some finite series of Bernoulli type and this
is core idea of our consideration.

Of course, in order to evaluate the target system risk, it is necessary to have the scale
factor between the target system and the whole observable ensemble. We suppose that the
scale factor is known and denote it as σ < 1. The indices i in the notation xi correspond
to the observations number and it is assumed that any observation takes a constant time τ .
Thus, we have Bernoulli sequence ξ1, ξ2, . . . of undisclosed events and it is equal-interval
time series. In our simplified formulation, the mentioned outcomes xi are resulted from
some subsequences of the sequence {ξj}.
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1.3 Our contribution

We bring to the risk evaluation toolkit a new technique for the assessment of short-time risk
value enhancing and the duration of the enhanced risk. This contribution makes it possible
to manage risk while it essentially increases for a short time if the risk manager has some
pool of possible actions that can be activated on demand. The protection of such type looks
like a “fire shield”, but in the considered cases the company does not buy this shield but just
rent it. An ability to make appointed assessments in the background mode can be treated as
an advantage of proposed technique.

2 Finite series probability space

Let us consider a Bernoulli sequence ξ1, ξ2, . . . of some events with p as probability for
outcome 1, that corresponds to above mentioned causing event. Let ηki = {ξi, . . . , ξi+k−1}
be a finite series of k elements from the sequence, starting from the ith element ξi = 1. We
call the series ηki simply as k-series. We define a special kind of k-series with at least a
outcomes 1 inside and we call them a-positive k-series.

While we model an incident as a result of some sequence of events, we should turn
to the conception of the Markov breakpoint introduced in (Shiryaev, 1996) monograph as
stopping time. In the considered case the Markov breakpoint takes place on the following
criterion: during a certain time preceding the breakpoint, there are at least a fixed number a
of causing events. In case of number of events less than a, the breakpoint does not occur. An
incident corresponds to the Markov breakpoint with respect to our propositions. Thus, we
should calculate the breakpoint probability and it is the same that to calculate the probability
to meet a-positive k-series.

At first, let’s note that it is natural to consider just those sequences {ξi} that contain
outcome 1 and hence there is at least one k-series inside the sequence.

Secondly, it is notable that if we examine the last k outcomes before the specified time,
we receive the ordinary binomial distribution because we explore Bernoulli series. In this
connection we have to establish the special proposition.

Proposition 1: Once the start point of the sequence is specified and it is ξ1 = 1, the k-
series cannot be overlap: every new counting of causing events starts just after the previous
k-series is over and the next k-series starts from the first outcome 1 detected.

This proposition should be confirmed by experiment, that is complex enough and at the
time we have just one test performed to check it. The result was positive and the proposition
was taken into account. We suppose that it holds for the further consideration.

We need to calculate the value of probability of the Markov breakpoint at the specified
moment. Suppose that we have just the first N terms in the {ξi} sequence, i.e., we consider
a restricted sequence. Let us denote as

ω = {(i1, ϵ1) , . . . , (im, ϵm)} (1)

an element of the space Ω consists of all possible configurations of k-series within
{ξ1, . . . , ξN}. Here we have il as a start point ofk-series number l, ϵl asa-positivity indicator
of the k-series number l, l = 1, . . . ,m, m ≤ [N/k] and rectangle braces mean integer part.
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Note that il+1 ≥ il + k and ϵl ∈ {0, 1}. There is a set ω̂ of possible instances of the random
sequence ξ that corresponds to ω. Now we can proof the next proposition.

Proposition 2: The following equation

ω̂a ∩ ω̂b = ∅

holds for any two different ωa and ωb.

There are following cases correspond to the different ωa and ωb:

• ma ̸= mb;

• ma = mb, but ial ̸= ibl for at least one l;

• ma = mb and ial = ibl for all l, but ϵal ̸= ϵbl for at least one l.

Otherwise they are coincide.
If ma ̸= mb, let it be ma < mb. Then there are series with outcome 1 at the position

number greater than iama + k for the set ω̂b, but none such series in set ωa.
In case of ma = mb, but ial ̸= ibl for at least one l, let’s take the minimal l and note that

both for ωa and ωb the condition il > il−1 + k holds (l > 1). But we have minimal l taken
and hence ial−1 = ibl−1. This means that sequences from the set ω̂b have 0 at the ial position
and all sequences from ω̂a have 1 there. Hence there is no any intersection.

Finally, when ma = mb and ial = ibl for all l, but ϵal ̸= ϵbl for at least one l, we have the
following. All k-series in both ω̂a and ω̂b sets have common set on start points numbers. In
the same time, for some l there are k-series that content different number of 1 for ω̂a and
ω̂b and therefore the sets content no common sequences again. �

From the proven Proposition 2 we derive that there exists probability space (Ω,F ,P)
in Kolmogorov’s sense and its elements are determined by (1).

3 Probability in the k-series space

Let us construct a probability measure on the Ω space. Let us define a function fa,k
l

determined in Ω in such a way

fa,k
l ≡

{
1, if for ω holds

∑m
j=1 ϵ

a
j = l

0 otherwise
(2)

A probability to receive l instances of a-positive k-series inside the sequence ξ is equal to

P (l, a, k,N, p) =

∑
Ω fa,k

l (ω)∑
l,Ω fa,k

l (ω)
.

We need in just values of P (0, a, k,N, p) and P (1, a, k,N, p) for this article purposes.
Let us find the cardinality of the set Ω(a, k,N). For the fixed m we have

MN
mk = Cm

N−m(k−1).



On the black swan risk dynamical evaluation 61

We have totally M =
∑[Nk ]

m=1 M
N
mk number of elements in the set Ω(a, k,N) and it is the

cardinality of the set.
Probability for the k-series to be a-positive can be easily found from binomial

distribution and it has the next form

πka =
k∑

i=a

Ci
kp

i(1− p)k−i. (3)

Therefore, the number of cases when the function fa,k
l is equal to 1 for the specified set of

{1, i2, . . . , im} can be expressed as follows

mCl
m (πka)

l
(1− πka)

m−l

and we can write down the next equality:

∑
Ω

fa,k
l (ω) =

[Nk ]∑
m=1

Cm
N−m(k−1)mCl

m (πka)
l
(1− πka)

m−l
.

The explicit expression for the probability on the space Ω of k-series can be presented now.
Let us do it in the form of the next proposition.

Proposition 3: In case if Proposition 1 holds, the probability to have l incidents within
first N steps of the sequence {ξi} has the following form

P (l, a, k,N, p) =

[Nk ]∑
m=1

mCm
N−m(k−1)C

l
m (πka)

l
(1− πka)

m−l

[Nk ]∑
m=1

mCm
N−m(k−1)

, (4)

where 2 < k < N , 1 < a < k are integer parameters and 0 < p < 1/2 is real parameter.

4 The Markov breakpoint and measurements

Described above a-positive k-series causes incident. But what if we substantially cannot see
it immediately at the end of the k-series? Our decision that we “see” something is based on
the information we have got. In order to gather the information there should be done some
measurements. Suppose that any measurement that identifies our specified incident takes s
steps of the considered sequence {ξi}. Let τ be the measurement duration and hence τ = sν,
where ν is the duration of a step in the sequence {ξi}. Suppose that any measurement starts
immediately after the previous one, i.e., there is no any outcome outside of measurements
in the sequence.

Thus, from a practical point of view, one should choose the length N of the sequence
that is a multiple of some positive integer s, that shows how many times the sequence
step fits inside the measurement duration in the considered system. Therefore we assume
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N = ns. The first breakpoint can take place at any end of k-series, but just at the end of the
s-sequence we can see it and decide that incident occurred.

Let us denote by Fa,s,k,p(n) the probability to detect the first incident in nth
measurement. If the parameters p, k, a, s have determined values, then the probability
Fa,s,k,p(n) depends just on the measurement number n and the further outcomes do not
affect it value by the definition of the Markov breakpoint. Thus we obviously have

Fa,s,k,p(n) = P (0, a, k, (n− 1)s, p) (1− P (0, a, k, ns, p)) , (5)

where P (0, a, k, ns, p) is determined by the formulas (3) and (4):

P (0, a, k, ns, p) =

∑[ns
k ]

m=1 mCm
ns−m(k−1)

(
a−1∑
i=0

Ci
kp

i(1− p)k−i

)m

∑[ns
k ]

m=1 mCm
ns−m(k−1)

.

While we consider some rare incidents, we do not take into account the situation when there
are more than one incident detected in the nth measurement.

Having the probability of the first incident to appear at nth measurement, we have
information about most dangerous period for the system. Suppose that some asset has
assessed risk value R supposed to be constant for a year. However we have received
information that an incident similar to those in the threats set of the asset was just detected
somewhere. In accordance with our consideration, this fact will affect the probability of the
risk anyway. So we should re-evaluate the risk of the asset because it may rise dramatically
for a short time and may need to be handled. If R = P0 ∗ C, where P0 is the risk probability
evaluated by common method for a year and C is risk criticality, then the new value of the
probability has the next form:

Pd = P0 + 365
1− P (0, a, k, ds, pσ)

d
, (6)

where d shows the duration of increased risk in days and σ is scale factor mentioned before.
The value of d can be determined as it is shown further. For the next d days after incident
detection it is Pd has to be used for the risk evaluation instead of P0.

For the real system, the values of the parameters p, k, a, s are unknown, of course. But
we can suppose that all these values depend just on the very incident, but not on the system.
In this case we can collect statistics on the relevant incidents all over we can. Then it is
possible to draw out a posterior probability distribution. The values of p, k, a, s can be
determined from this distribution by numerical approximation. Then it is easy to apply them
to our target system. This gives us the probability evolution in our system and shows when
the probability increases over allowable value.

The distribution of Fa,s,k,p(n) for different possible cases are illustrated on the graphs.
We consider function (5) on the variable n for different values of parameters a, s, k, p. This
function may have a unique local maximum for certain values of the parameters a, s, k, p
and this maximum is global if any. The situation is illustrated by graphs in Figures 1–3.
They show graphical matrices of probability distributions for different values of parameters.
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Figure 1 The probability of the first incident at p = 0.001 (see online version for colours)

Figure 2 The probability of the first incident at p = 0.0015 (see online version for colours)

We see that the maximum exists when the values of k, s or p are great enough. It is connected
to the definition of these parameters. The likelihood of the several incidents to be detected
within the only measurement is small according to our proposition. It can be easily seen
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that the probability depends on the time passed since the last detected incident and almost
does not depend on how many incidents were detected before.

Figure 3 The probability of the first incident at p = 0.002 (see online version for colours)

5 Results and applications

Suppose we have actual results over the ensemble of the systems for the observations
duration equal to, for instance, 365 days. Let us denote as n values of detected durations
without incidents in the whole ensemble. For example, there might be 1, 7, 8, 30 and 51
days between neighbour incidents detected during the year and then n = 1, 7, 8, 30, 51. We
can treat the minimal duration, like a one day in the example, as a measurement duration
sν and it is some kind of a quant of n. Let gn be the number of cases when incident occurs
after n days since the previous one. Nevertheless we suppose that no more than one incident
during one measurement can happen, it was proposition just for the very target system, not
for ensemble of the systems. Since we collect the data from the ensemble then we can apply
our proposition to any system and hence there are no contradictions. In this case, one can
treat equation (5) as the distribution law for gn. If the parameters a, s, k, p are known, then
the probability of an incident at the measurement n is determined by expression (5), where
n = 0 at the last measurement in the ensemble when an incident detected.

Turn to our target system and now we should evaluate the probability to have the incident
there. In order to compute it, we should determine the values of a, s, k, p. It can be done
if we suppose that the observed ensemble statistics have the same values of parameters. In
this case we have

g =

∑
n
Fa,s,k,p(n)gn∑

n
Fa,s,k,p(n)

,
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where g is the theoretical expectation of the most probable first incident frequency. The
values of the parameters can be found by minimising the next function∑

n

(gn − g(a, s, k, p))
2

on the given sample {gn}.
Equation (6) can provide us with the new factor Pd in the risk formula and then the new

risk value arises

Rd = Pd ∗ C

It can be much greater than R. The duration d is the only parameter remains unknown in
equation (6). We can evaluate it using the form of F (n) function. In the target system there
is a defined level Rb of the risk that must be handled with some actions according to the
information security policy. In this regard, the inequality

Rb <

(
P0 + 365

1− P (0, a, k, ds, pσ)

d

)
C (7)

determines the value of d. If there is no such d that obeys inequality, then there is no reason
to use new risk value. But if the inequality (7) holds for some d, it is necessary to protect
the asset during this period.

To evaluate the value of d for the given parameters, we can use equation (5) as the
probability distribution function that determines the breakpoint probability at the nth
measurement (day) after the data given. In this case the maximal value of d is equal to the
maximal value of nwhenF (n) is great enough in accordance with risk manager preference.
We can then determine not only the duration of the highest probability period, but the
most probable next breakpoint time as well. The periods of high probability can be easily
recognised on the graphs and, of course, can be automatically computed once the actual
data given.

For example, suppose that σ = 0.01, i.e., 100 systems similar to the target system are
observed. Let observations and approximation give us values of a = 3, s = 5000, k = 400
for p = 0.001. In this regard, the central green graph on the Figure 1 is relevant to the
case. Let the risk manager decides that first 12 days are dangerous, hence d = 12. Let the
criticality and the base risk are C = 108 and R0 = 100 whereas Rb = 2000. Then we can
compute 1− P (0, a, k, ds, pσ) = 1.3 ∗ 10−6 and

Pd =
R0

C
+ 365

1− P (0, a, k, ds, pσ)

d
= 4 ∗ 10−5.

After that we have Rd = 4000 during those 12 days and the risk must be handled.

6 Conclusion

This study was initiated as a part of a research project in information security field. The
risks considered in the project are assessed according to the video data. However, the result
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of the paper is of general type and it can be used both in the cybersecurity and reliability
theory risk management.

The proposed model describes the rare incidents and can be applied to dynamical risk
evaluation; this model may be the first one of such type. The most useful application of
the model may be for artificial random threats in information security. These threats are
associated with around of 2/3 of all damages associated with information security incidents.
The relevant risks to these threats are difficult to be managed and arranged. The proposed
model quantitatively estimates probability part of the risks and it is enough to compute the
risk value because the criticality of the assets is assessed by experts. The model can help
to manage risks of “black swan” type as well. Note that the "black swans" are commonly
among accepted risks and it is not because of its lowness, but rather because of the absence
of common ways to manage them. It is possible to apply the ideas and technique proposed in
the paper to predict further incidents at the specified time and, thereby, build an automated
system for assessing information security risks.
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