
 
International Journal of Reliability and Safety
 
ISSN online: 1479-3903 - ISSN print: 1479-389X
https://www.inderscience.com/ijrs

 
Performance of batch service queue model with second optional
service, repairable breakdown and standby server
 
P. Vijaya Laxmi, Andwilile Abrahamu George, Hasan Abdulkader Qrewi
 
DOI: 10.1504/IJRS.2022.10053780
 
Article History:
Received: 05 March 2022
Last revised: 23 June 2022
Accepted: 15 August 2022
Published online: 30 January 2023

Powered by TCPDF (www.tcpdf.org)

Copyright © 2022 Inderscience Enterprises Ltd.

https://www.inderscience.com/jhome.php?jcode=ijrs
https://dx.doi.org/10.1504/IJRS.2022.10053780
http://www.tcpdf.org


   

  

   

   
 

   

   

 

   

   46 Int. J. Reliability and Safety, Vol. 16, Nos. 1/2, 2022    
  

   Copyright © 2022 Inderscience Enterprises Ltd. 
 

   

   
 

   

   

 

   

       
 

Performance of batch service queue model with 
second optional service, repairable breakdown  
and standby server 

P. Vijaya Laxmi*, Andwilile Abrahamu George 
and Hasan Abdulkader Qrewi 
Department of Applied Mathematics, 
Andhra University, 
Visakhapatnam, Andhra Pradesh, India  
Email: vijayalaxmiau@gmail.com  
Email: gandwilile@gmail.com 
Email: hqrewi@gmail.com 
*Corresponding author 

Abstract: In this paper, we investigate the performance of batch service queue 
model with second optional service, repairable breakdown and warm standby 
server. Both primary operating and warm standby servers provide First 
Essential Service (FES) and Second Optional Service (SOS) to customers, 
wherein FES is all arriving customers and only some of them may further 
request the SOS. The service times, failure times and repair times of both 
primary operating and warm standby server are assumed to follow exponential 
distributions. We use Runge-Kutta method to obtain the transient state 
probabilities and matrix-decomposition method to obtain the steady-state 
probabilities of the model. Also, a cost model is presented to determine the 
optimal service rates so that the expected cost is minimised. Finally, the effect 
of the model parameters on the system behaviour is demonstrated through 
numerical results and discussions.  

Keywords: batch service queue model; first essential service; second optional 
service; repairable breakdown; standby server. 
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1 Introduction 

Availability of the system is an essential issue to measure the performance of a repairable 
system such as industrial system, manufacturing, power plants, telecommunication 
system, etc. A system may fail as time goes by, resulting in a loss of production, 
opportunities, goodwill, revenue, etc. The system can maintain a required or a high level 
of availability by keeping a standby server. If the primary operating server fails, the 
standby server is immediately replaced and continues to perform the assigned task. The 
provision of a standby server ensures the smooth functioning and availability of the 
server. The standby server can be classified as cold, warm, or hot standby. Suppose a 
standby server’s failure rate is zero. In that case, it is termed a cold standby, a warm 
standby when the failure rate is non-zero but less than that of the primary operating 
server, and a hot standby when the failure rate is same as that of the primary operating 
server. 

Machines (servers) are necessary for every industry, but they are also subjected to 
breakdown, resulting in interference. The repair facility should be available to fix the 
failed server otherwise the failed server has a negative effect on the system by lowering 
efficiency and hence increasing the total cost. In this scenario, several researchers have 
advocated the provision of standby servers to ensure the repairable system’s efficiency 
and availability. Jain et al. (2014) investigated the performance of queuing system having 
a warm standby server and two heterogeneous servers. They computed the steady-state 
queuing size distribution using the matrix method for the Markovian server repair 
problem and switching failure. El-Said and El-Sherbeny (2005) studied the cold standby 
system with preventive maintenance and arbitrary change in units. They obtained the 
expected frequency of preventative maintenance, a busy period of the system, etc. Jain 
and Preeti (2014) presented the single server queue with repair and standbys, including 
the working vacation and server breakdown. They assumed that the server may have 
been breakdown whenever it has been in a busy state or a working vacation state. Also, 
they computed various performance measures using the recursive matrix method. Wang 
et al. (2006) evaluated distinct system configurations with warm standby server 
components and standby switching failures based on reliability and availability. Also, 
they construct explicit expressions for mean time to failure and the steady-state 
availability for four configurations. Ayyappan and Thilagavathy (2021) presented the 
queuing model with standby server, delayed repair, breakdown, single vacation, 
immediate feedback and impatient customers under the steady-state probability vector. 
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The authors use matrix analytic method to obtain the total number of customers present 
in the system. Readers may see other comprehensive research works of queuing models 
involving standby servers in Ke and Wu (2012); Kuo and Ke (2016); Hajee (2011); Jain 
and Rani (2013); Zhang and Zhang (2016); Jain and Gupta (2018); Radha et al. (2020) 
and Kotb and El-Ashkar (2022), etc. 

The service process is one of the most significant aspects of a queuing system. 
Recently, there has been a lot of interest in queuing systems in which the service 
discipline involves more than one service, e.g., in bank operation, where bank clerks 
assist all arriving customers by creating bank accounts, making cash deposits and 
withdrawing money. Additionally, some customers may want additional services from 
bank clerks, such as online banking, after creating a bank account. This paper considers 
the server (primary or standby) providing two types of services, FES provided to all 
arriving customers. After completing FES, the customers may opt for SOS provided by 
the server (primary or standby) with probability r  or leave the system with probability 

 1 r . The previous studies dealing with the repairable server with SOS are found in 

Laxmi and Bhavani (2021) where they evaluated the availability of the SOS queuing 
model with combined warm standby and cold standby through indicator function. They 
obtain the steady state probabilities of the model using the matrix geometric method. The 
second optional repair service with warm standby is discussed by Gao (2021), who deals 
with the availability and reliability of a repairable fault-tolerant system. The reliability 
function and the meantime to the system’s first failure are calculated using Laplace 
transform approach. Further, the steady-state probabilities of the system are obtained by 
solving the matrix equation. Laxmi et al. (2020) considered a queuing model with SOS, 
correlated reneging and working vacations. The authors use the matrix geometric method 
to derive the steady-state probabilities of the system. 

Batch service refers to a queuing system in which customers are served in batches. It 
plays an essential role in many areas, such as manufacturing systems, telecommunication 
networks, transportation systems, etc. Numerous researchers have broadly studied the 
batch service queue, such as Ayyappan and Karpagam (2018) discussed a non-
Markovian batch arrival general bulk service single server queuing system including 
server breakdown and repair, a standby server, several vacations, and re-service. They 
used a standby server when the primary server is under repair. Further, they computed 
the queue size at a random time using the probability generating function. Devipriya  
et al. (2014) investigated a fixed batch single server queuing system under multiple 
vacations with SOS. The probability of the number of customers in the queue during the 
server busy and on vacation is derived. Also, the average number of customers and 
variance of the system are computed using the probability generating function and 
Rouche’s theorem. 

In queuing theory, almost every process or system has a steady-state and transient 
state. Tarabia (2011) contributed to studying transient and steady-state behaviour. 
Tarabia considered the single server queue with balking, catastrophes, server failures and 
repairs, wherein transient and steady-state probabilities are obtained using probability 
generating function. Later, Kumar et al. (2019) studied queuing systems having 
customers’ impatience with threshold under transient and steady-state. Using the 
probability generating function, they obtained average and variance of the number of 
customers in the system. For more work on queuing systems with transient state 
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behaviour, one may refer Kumar and Sharma (2018, 2019); Legros (2019), Kumar and 
Sharma (2021), etc. 

In real-life situations, queues with limited waiting space are more realistic. This 
situation may be seen in routers servicing arrival packets with varying speeds in a 
network. When the server is busy, arrival items wait in the queue, but when the waiting 
area is full, the arriving items are considered to be lost. A detailed survey on queues with 
limited waiting space can be found in Sikdar and Gupta (2008); Ammar et al. (2011); 
Gupta et al. (2019); Kuaban et al. (2020); Soodan and Kumar (2020); Sampath et al. 
(2020); Kumar et al. (2021), etc. 

In existing literature reviews, no work has been reported for varying batch service 
queue model with SOS, repairable breakdown and standby server under transient and 
steady-state behaviours. This spurs us to investigate a batch service finite buffer queue 
model with SOS, repairable breakdown and warm standby server. The model becomes 
more adaptable by consideration of SOS along with varying batch size service. The key 
goals of this paper are as follows: 

 To present the transient state probabilities using the Runge-Kutta method.  

 To derive the steady-state probabilities recursively by using the matrix 
decomposition method.  

 To optimise the service rates for both FES and SOS so that the expected cost is 
minimised.  

 To examine the impact of various parameters on the system’s performance measures.  

The remaining part of the paper is structured as follows: Mathematical model description 
is presented in Section 2. Section 3 presents the transient state equations in matrix form. 
The steady-state is discussed in Section 4. The performance measures are presented in 
Section 5. Cost analysis is presented in Section 6. In Section 7, we present and discuss 
the numerical analysis followed by conclusions in Section 8. 

2 Mathematical description of the model 

This paper examines a batch queuing model with SOS in which a Poisson process 
determines the arrival with parameter  . The system consists of two servers, one of 
which is the primary operating server and the other acts as a warm standby server. 
Initially, a primary server is operative and the second server is kept as a warm standby. 
When the primary server fails, the warm standby server replaces it. Both the primary 
operating server and the warm standby server are repairable. The primary operating 
server may fail at any time during FES (SOS) with exponential rate  1 2  , and in such 

circumstances, the primary server immediately goes for a repair, which follows an 
exponential distribution with repair rates  1 1F S  . Also, the warm standby server may 

fail during FES (SOS) with exponential distribution of parameter  1 2  . Further, the 

switching standby server to replace the failed primary server may or may not be 
successful. We assume that switching the server to replace the failed server has a failure 
probability  1 2   for FES (SOS). Furthermore, if both the primary and standby servers 
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fail, it is automatically routed to a repair facility, with repair times that follow an 
exponential distribution with parameter  2 2F S   for FES (SOS). 

Both the primary and standby servers provide the FES to all incoming customers. 
After FES completion, the customers may opt for SOS provided by the server (primary or 
standby) with probability r  or may exit the system with probability  1 r . Service 

times in FES and SOS are exponential distributions with service rates 1  and 2 , 

respectively, and services are offered in batches of no more than b  customers. Therefore, 
if the server finds fewer or equal to b  customers in the queue, he serves them all at once. 
If the server observes more than b  customers in the queue, he accepts a batch of b  on a 
first-come, first-served (FCFS) basis, while others continue waiting in the queue. The 
system has a limited capacity of size N , beyond which incoming customers are blocked 
from entering the system. 

3 Transient state analysis of the model  

3.1 Formulation of mathematical model 

Let ( )X t  be the number of customers in the system at time t , ( )S t  be the server states 

at time t , which is given as 

, represents the state of the primary operating server, = 0,1
( ) =

, represents the state of the warm standby server, = 0,1

i i
S t

j j





 

where 0  represents unavailability of the server and 1  represents availability of the server 
to service customers. Also, let ( )H t  be the state of the service at time t , which is  

given as 

1, server is in FES
( ) =

2, server is in SOS
H t





 

The process   ( ), ( ), ( ) ; 0X t S t H t t   defines a continuous time Markov process with 

state space 

  = , , ; 0 ; = {0,1} {0,1}; = {1, 2}n s h n N s h     

For the mathematical description of the birth-death process in a continuous time finite 
state space model at time t , the following notations are used: 

 ,(1,1),1( ) =nP t  transient state probability that there are n  number of customer in the 

system, both primary operating server and warm standby server are available for the 
service and the server is providing FES, 0 n N  .  

 ,(1,1),2 ( ) =nP t  transient state probability that there are n  number of customer in the 

system, both primary operating server and warm standby server are available for the 
service and the server is providing SOS, 1 n N  .  
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 ,(0,1),1( ) =nP t  transient state probability that there are n  number of customer in the 

system, primary operating server is in breakdown state and warm standby server is 
available for the service and the server is providing FES, 0 n N  .  

 ,(0,1),2 ( ) =nP t  transient state probability that there are n  number of customer in the 

system, primary operating server is in breakdown state and warm standby server is 
available for the service and the server is providing SOS, 1 n N  .  

 ,(1,0),1 ( ) =nP t  transient state probability that there are n  number of customer in the 

system, primary operating server is available for service and warm standby server is 
in breakdown and the server is providing FES, 0 n N  .  

 ,(1,0),2 ( ) =nP t  transient state probability that there are n  number of customer in the 

system, primary operating server is available for service and warm standby server is 
in breakdown and the server is providing SOS, 1 n N  .  

  ,(0,0),1 ,(0,0),2( ) ( ) =n nP t P t  transient state probability that there are n  number of 

customer in the system, both primary operating server and warm standby server are 
in breakdown while is providing FES(SOS), 1 n N  .  

The following set of equations are obtained using the probabilistic arguments in four 
cases: 

Case I: = 1i  and = 1j , when both the primary and warm standby servers are available 

for the service.  

 0,(1,1),1 0,(1,1),1 1 ,(1,1),1 2 ,(1,1),2
=1 =1

( ) = ( ) 1 ( ) ( )
b b

k k
k k

P t P t r P t P t         (1) 

 ,(1,1),1 1 1 1 ,(1,1),1 1,(1,1),1

1 ,(1,1),1 2 ,(1,1),2 1 ,(0,1),1

1 ,(1,0),1 2 ,(0,0),1

( ) = ( ) ( )

(1 ) ( ) ( ) ( )

( ) ( ),1

n n n

n b n b F n

F n F n

P t P t P t

r P t P t P t

P t P t n N b

    

  

 



 

     

   

    

 (2) 

 ,(1,1),1 1 1 1 ,(1,1),1 1,(1,1),1

1 ,(0,1),1 1 ,(1,0),1 2 ,(0,0),1

( ) = ( ) ( )

( ) ( ) ( )

n n n

F n F n F n

P t P t P t

P t P t P t

    

  
     

  
 

1 1N b n N      (3) 

 ,(1,1),1 1 1 1 ,(1,1),1 1,(1,1),1

1 ,(0,1),1 1 ,(1,0),1 2 ,(0,0),1

( ) = ( ) ( )

( ) ( ) ( )

N N N

F N F N F N

P t P t P t

P t P t P t

   

  
    

  
 (4) 

 1,(1,1),2 2 2 2 1,(1,1),2 1 1,(1,1),1

1 1,(0,1),2 1 1,(1,0),2 2 1,(0,0),2

( ) = ( ) ( )

( ) ( ) ( )S s s

P t P t r P t

P t P t P t

    

  

     

  
 (5) 

 ,(1,1),2 2 2 2 ,(1,1),2 1,(1,1),2

1 ,(1,1),1 1 ,(0,1),2 1 ,(1,0),2

1 ,(1,1),1 1 ,(0,1),2 1 ,(1,0),2

( ) = ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n n n

n S n s n

n S n s n

P t P t P t

r P t P t P t

r P t P t P t

    

  

  

     

  

  

 (6) 
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 ,(1,1),2 2 2 2 ,(1,1),2 1,(1,1),2 1 ,(1,1),1

1 ,(0,1),2 1 ,(1,0),2 2 ,(0,0),2

( ) = ( ) ( ) ( )

( ) ( ) ( )

N N N N

S N s N s N

P t P t P t r P t

P t P t P t

    

  
     

  
  (7) 

Case II: = 0i  and = 1j , when the primary server is in breakdown and warm standby 

server is available for service. 

0,(0,1),1 0,(0,1),1 1 ,(0,1),1 2 ,(0,1),2
=1 =1

( ) = ( ) (1 ) ( ) ( )
b b

k k
k k

P t P t r P t P t         (8) 

 

 

,(0,1),1 1 1 1 ,(0,1),1 1,(0,1),1

1 ,(0,1),1 2 ,(0,1),2

1 1 ,(1,1),1

( ) = ( ) ( )

(1 ) ( ) ( )

1 ( ),1

n F n n

n b n b

n

P t P t P t

r P t P t

P t n N b

    

 

 



 

     

  

    

 (9) 

 
 

,(0,1),1 1 1 1 ,(0,1),1 1,(0,1),1

1 1 ,(1,1),1

( ) = ( ) ( )

1 ( ), 1 1

n F n n

n

P t P t P t

P t N b n N

    

 
     

      
 (10) 

   ,(0,1),1 1 1 1 ,(0,1),1 1,(0,1),1 1 1 ,(1,1),1( ) = ( ) ( ) 1 ( )N F N N NP t P t P t P t             (11) 

   1,(0,1),2 2 1 2 1,(0,1),2 1 1,(0,1),1 2 2 ,(1,1),2( ) = ( ) ( ) 1 ( )S nP t P t r P t P t               (12) 

 
 

,(0,1),2 2 1 2 ,(0,1),2 1,(0,1),2

1 ,(0,1),1 2 2 ,(1,1),2

( ) = ( ) ( )

( ) 1 ( ), 2 1

n S n n

n n

P t P t P t

r P t P t n N

    

  
     

     
 (13) 

 
 

,(0,1),2 2 1 2 ,(0,1),2 1,(0,1),2

1 ,(0,1),1 2 2 ,(1,1),2

( ) = ( ) ( )

( ) 1 ( )

N S N N

N N

P t P t P t

r P t P t

   

  
    

  
 (14) 

Case III: = 1i  and = 0j , when the primary server is available for service and warm 

standby server is in breakdown state. 

0,(1,0),1 0,(1,0),1 1 ,(1,0),1 2 ,(1,0),2
=1 =1

( ) = ( ) (1 ) ( ) ( )
b b

k k
k k

P t P t r P t P t         (15) 

 ,(1,0),1 1 1 1 ,(1,0),1 1,(1,0),1

1 ,(1,0),1 2 ,(1,0),2 1 ,(1,1),1

( ) = ( ) ( )

(1 ) ( ) ( ) ( )

1

n F n n

n b n b n

P t P t P t

r P t P t P t

n N b

    

  


 

     

   

  

 (16) 

 ,(1,0),1 1 1 1 ,(1,0),1 1,(1,0),1

1 ,(1,1),1

( ) = ( ) ( )

( ), 1 1

n F n n

n

P t P t P t

P t N b n N

    


     

     
 (17) 

 ,(1,0),1 1 1 1 ,(1,0),1 1,(1,0),1 1 ,(1,1),1( ) = ( ) ( ) ( )N F N N NP t P t P t P t           (18) 

 1,(1,0),2 2 1 2 1,(1,0),2 1 1,(1,0),1 2 ,(1,1),2( ) = ( ) ( ) ( )S nP t P t r P t P t             (19) 

 ,(1,0),2 2 1 2 ,(1,0),2 1,(1,0),2

1 ,(1,0),1 2 ,(1,1),2

( ) = ( ) ( )

( ) ( ), 2 1

n S n n

n n

P t P t P t

r P t P t n N

    

 
     

    
 (20) 
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 ,(1,0),2 2 1 2 ,(1,0),2 1,(1,0),2

1 ,(1,0),1 2 ,(1,1),2

( ) = ( ) ( )

( ) ( )

N S N N

N N

P t P t P t

r P t P t

   

 
    

 
 (21) 

Case IV: = 0i  and = 0j , when both of primary server and warm standby server are in 

breakdown state. 

 1,(0,0),1 2 1,(0,0),1 1 1 1,(1,1),1 1 1,(1,0),1( ) = ( ) ( ) ( )FP t P t P t P t          (22) 

 ,(0,0),1 2 ,(0,0),1 1,(0,0),1 1 1 ,(1,1),1

1 ,(1,0),1 1 ,(0,1),1

( ) = ( ) ( ) ( )

( ) ( ), 2 1

n F n n n

n n

P t P t P t P t

P t P t n N

    

 
    

    
 (23) 

,(0,0),1 2 ,(0,0),1 1,(0,0),1 1 1 ,(1,1),1

1 ,(1,0),1 1 ,(0,1),1

( ) = ( ) ( ) ( )

( ) ( )

N F N N N

N N

P t P t P t P t

P t P t

   

 
   

 
 (24) 

 1,(0,0),2 2 1,(0,0),2 2 2 1,(1,1),2 2 1,(1,0),2 2 1,(0,1),2( ) = ( ) ( ) ( ) ( )SP t P t P t P t P t            (25) 

 ,(0,0),2 2 ,(0,0),2 1,(0,0),2 2 2 ,(1,1),2

2 ,(1,0),2 2 ,(0,1),2

( ) = ( ) ( ) ( )

( ) ( ), 2 1

n S n n n

n n

P t P t P t P t

P t P t n N

    

 
    

    
 (26) 

,(0,0),2 2 ,(0,0),2 1,(0,0),2 2 2 ,(1,1),2

2 ,(1,0),2 2 ,(0,1),2

( ) = ( ) ( ) ( )

( ) ( )

N S N N N

N N

P t P t P t P t

P t P t

   

 
   

 
 (27) 

Let 0,(1,1),1 1 2 0,(0,1),1 3 4 0,(1,0),1 5 6 7 8( ) = ( ), ( ), ( ), ( ), ( ), ( ), , ( ), ( ),..., ( ), ( ) , 
T

P t P t P t P t P t P t P t P P t P t P t P t    

(0) = [1,0,0,...,0]TP  be the vectors of transient state probabilities, where 

   1 1,(1,1),1 ,(1,1),1 2 1,(1,1),2 ,(1,1),2( ) = ( ),..., ( ) ,  ( ) = ( ),..., ( )N NP t P t P t P t P t P t  

   3 1,(0,1),1 ,(0,1),1 4 1,(0,1),2 ,(0,1),2( ) = ( ),.., ( ) ,  ( ) = ( ),..., ( )N NP t P t P t P t P t P t  

   5 1,(1,0),1 ,(1,0),1 6 1,(1,0),2 ,(1,0),2( ) = ( ),..., ( ) ,  ( ) = ( ),..., ( )N NP t P t P t P t P t P t  

   7 1,(0,0),1 ,(0,0),1 8 1,(0,0),2 ,(0,0),2( ) = ( ),..., ( ) ,  ( ) = ( ),..., ( )N NP t P t P t P t P t P t  

we obtain the system of equations as 

( ) = ( )
d

P t QP t
dt

 (28) 

Equation (28) is derived using Chapman-Kolmogorov equations. The reader may refer 
Theorem 2.15 in Shortle et al. (2018) for more details. 

The co-efficient matrix of the above system of equations is denoted by Q and it is 
presented as follows: 
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1,2 1,3 1,5 1,6 1,8 1,9 1,10

1,11

2,1 2,2 2,3 2,4 2,5 2,6 2,7 2,8 2,9 2,10

2,11

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 3,9 3,10

3,11

4,2 4,3 4,5 4,6 4,8 4,9 4,10

4,11

5,1 5,2 5,3 5,4 5,5 5,6 5,7 5

0 0

0 0

=

A A A A A A A

A

A A A A A A A A A A

A

A A A A A A A A A A

A

A A A A A A A

A

A A A A A A A A

Q









,8 5,9 5,10

5,11

6,1 6,2 6,3 6,4 6,5 6,6 6,7 6,8 6,9 6,10

6,11

7,2 7,3 7,5 7,6 7,8 7,9 7,10

7,11

8,1 8,2 8,3 8,4 8,5 8,6 8,7 8,8 8,9 8,10

8,11

9,1 9,2 9,3 9,4 9,5 9,6 9,7 9,8 9,9 9,10

9,11

10,1 10

0 0

A A

A

A A A A A A A A A A

A

A A A A A A A

A

A A A A A A A A A A

A

A A A A A A A A A A

A

A A



,2 10,3 10,4 10,5 10,6 10,7 10,8 10,9 10,10

10,11

11,1 11,2 11,3 11,4 11,5 11,6 11,7 11,8 11,9 11,10

11,11

A A A A A A A A

A

A A A A A A A A A A

A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

is a (8 3) (8 3)N N    square matrix. The entries of the matrix Q  are listed below: 

   

1

1
1,2 2,8 4,51 1

1

0 0

0 0
= 0 0 , = , = 0 0

0 0

N N

N N

A A A




 



 



 
 
 
 
 
 




 
   



 

1

1,0 1,1

2,0 2,1 1
2,1 2,2

2,0 2,1 2,2 11

1,0 1,1 1,2 1, 2 1

0 0 0

0 0

0 0
 = ,  =

0

0

i

N N NN

N N N N N N N

Ma

M M
A A

M M M

M M M M

  
  

 

  


  

     

 
    

      
   
       

 





     


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where 

 1 1 1 1 ,1 1= , = (1 ) , for = 1, 2,...,   and ia r i b b N          

1
,

(1 ) , if  = 1 for 1 1, 0 2, 
=

0, otherwise
i j

i j
r i N j N b N

M b
         




 

 
 

 

1 1 1 1

1 1 1 1
2,10 2,5

1 1 1 1

0 0 1 0 0

0 0 0 1 0
= , =

0 0 0 0 1
N N N N

A A

   
   

   
 

   
     
  
       

 
 

       
 

 

 
 

 

1 2 2

1 2 2
2,3 3,6

1 2 2

0 0 1 0 0

0 0 0 1 0
= , =

0 0 0 0 1
N N N N

r

r
A A

r

  
  

  
 

   
     
  
       

 
 

       
 

 

1,0,1

2,0 21
3,1 3,2

2,0 2,1 2,21

1,0 1,1 1,2 1, 2

0 0 0 0 0

0 0 0 0

0 0 0
 = ,  =

0

0 00

0

i

N N NN

N N N N N N N

Bs

B B
A A

B B B

B B B B
  

     

 
 

                   
 





     



 

where 

,1 2= , for = 1, 2, ...,   and is i b b N   

,

2,  1 for 1 1,0 2, ,

0, otherwise.
i j

i j
if i N j N b N

B b
          


 

2 2

2 2
3,3 3,9

2 2

0 0 0 0

0 0 0 0
= , =

0 0 0 0
N N N N

A A

  
  

 
 

   
      
   
   
   

 
 

       
 

 

where 

 2 2 2 2=       

2 2 1

2 2 1
3,11 5,2

2 2 1

0 0 0 0

0 0 0 0
= , =

0 0 0 0

F

F

FN N N N

A A

  
  

  
 

   
   
   
   
   
   

 
 

       
 
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3

1,0 3,1

2,0 2,1 3
5,4 5,5

2,0 2,1 2,2 31

1,0 1,1 1,2 1, 2 3

0 0 0

0 0

0 0
 = ,  =

0

0

i
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N N N N N N N
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M M M
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 

  


  
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 
                    
 





     



 

where 

 3 1 1 1 ,1 1= , = (1 ) , for = 1, 2, ...,   and F ia r i b b N          

1
,

(1 ) ,   if  = 1 for 1 1, 0 2, 
=

0,   otherwise
i j

i j
r i N j N b N

M b
         



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

      
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 
 
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 





     



 

where 

,1 2= , for = 1, 2, ...,   and is i b b N   

2
,

,   if  = 1 for 1 1, 0 2, 
=

0,   otherwise
i j

i j
i N j N b N

B b
        



 

 
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4

4
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4
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  






 
  
 
 
 
 
  
 






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where 

 4 2 1 2= S       
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1 1
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 
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 
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 
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where 

 5 1 1 1 ,1 1= , = (1 ) , for = 1, 2, ...,   and F ia r i b b N          

1
,

(1 ) ,   if  = 1 for 1 1, 0 2, 
=

0,   otherwise
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where 

,1 2= , for = 1, 2,...,   and is i b b N   

2
,

,   if  = 1 for 1 1, 0 2, 
=

0,   otherwise
i j

i j
i N j N b N

B b
        



 

6

6 2

6 2
9,9 9,11

6 2

6

0 0 0

0 0 0 0 0

0 0 0 0 0 0
= , =

0 0 0 0 0

0 0 0 0
N N

N N

A A

  
   

  

   






 
                    
 


 
 

         
 


 

where 

 6 2 1 2= S       

7

2 7

2 7
6,11 10,10

2 7

2

0 0 0

0 0 0 0 0

0 0 0 0 0 0
= , =

0 0 0 0 0

0 0 0 0
N N

F N N

A A

 
  

 

  






 
                     


 
 

         
 



 

where 

 7 2= F     

8

2 8

2 8
11,3 11,11

2 8

2

0 0 0

0 0 0 0 0

0 0 0 0 0 0
= , =

0 0 0 0 0

0 0 0 0

S

S

S N N

S N N

A A

 
  

 

  






 
                     


 
 

         
 



 

where 

 8 2= S     

The remaining matrices are zero matrices with appropriate dimensions. To find the 
transient solution of the model, we employ a numerical approach using Runge-Kutta 
method of fourth order. Some of the numerical results are presented in Section 7. 
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4 Steady-state analysis of the model 

The steady-state equation for (28) can be expressed in matrix-form as 

0 = QP  (29) 

From equation (29), the following steady-state equations can be written. 

0,(1,1),1 1 2,1 2 3,10 = P P A P A    (30) 

0,(1,1),1 1,2 1 2,2 2 3,2 3 5,2 5 8,2 7 10,20 = P A P A P A P A P A P A      (31) 

1 2,3 2 3,3 4 6,3 6 9,3 8 11,30 = P A P A P A P A P A     (32) 

0,(0,1),1 3 5,4 4 6,40 = P P A P A    (33) 

1 2,5 0,(0,1),1 4,5 3 5,5 4 6,50 = P A P A P A P A    (34) 

2 3,6 3 5,6 4 6,60 = P A P A P A   (35) 

0,(1,0),1 5 8,7 6 9,70 = P P A P A    (36) 

1 2,8 0,(1,0),1 7,8 5 8,8 6 9,80 = P A P A P A P A    (37) 

2 3,9 5 8,9 6 9,90 = P A P A P A   (38) 

1 2,10 3 5,10 5 8,10 7 10,100 = P A P A P A P A    (39) 

2 3,11 4 6,11 6 9,11 8 11,110 = P A P A P A P A    (40) 

Equation (37) yields 

5 1 1 0,(1,0),1 2 6 3=P P P P      (41) 

where 1 1
1 2,8 8,8 2 7,8 8,8 = , =A A A A      and 1

3 9,8 8,8= A A    

Using equation (41) into equation (38), we obtain  

6 1 4 0,(1,0),1 5 2 6=P P P P      (42) 

where    1 1

4 1 8,9 3 8,9 9,9 5 2 8,9 3 8,9 9,9 = , =A A A A A A
 

         and 

  1

6 3,9 3 8,9 9,9= A A A


     

Using (42) into (40), we obtain  

8 1 7 0,(1,0),1 8 2 9=P P P P      (43) 

where 1 1
7 4 9,11 11,11 8 5 9,11 11,11 = , =A A A A      and   1

9 3,11 6 9,11 11,11= .A A A    

Using equation (43) into equation (32), we get  

4 1 10 0,(1,0),1 11 2 12=P P P P      (44) 
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where    1 1
10 2,3 4 9,3 7 11,3 6,3 11 5 9,3 8 11,3 6,3 = ,  =A A A A A A A          and 

  1
12 3,3 6 9,3 9 11,3 6,3= A A A A    . 

Using equation (44) into equation (35), we obtain  

3 1 13 0,(1,0),1 14 2 15=P P P P      (45) 

where 1 1
13 10 6,6 5,6 14 11 6,6 5,6 = , =A A A A      and 1

15 3,6 12 6,6 5,6= ( ) .A A A    

Using equations (45) into equation (33), we have  

0,(0,1),1 1 16 0,(1,0),1 17 2 18=P P P P      (46) 

where    16 13 5,4 10 6,4 17 14 5,4 11 6,4

1 1
 = ,  =A A A A

 
       

and  18 15 5,4 12 6,4

1
= A A


    

Substituting equations (44), (45) and (46) into equation (34), we have 

2 1 19 0,(1,0),1 20=P P P    (47) 

where    1

19 2,5 16 4,5 13 5,5 10 6,5 18 4,5 15 5,5 12 6,5= ,A A A A A A A


         and 

   1

20 17 4,5 14 5,5 11 6,5 18 4,5 15 5,5 12 6,5= A A A A A A


        . 

Substituting equation (47) into equations (41) to (46), respectively, we obtain  

5 1 21 0,(1,0),1 22=P P P    (48) 

where 21 1 4 3 19 6 = ,       and 22 2 5 3 20 6  =      . 

6 1 23 0,(1,0),1 24=P P P    (49) 

where 23 4 19 6 = ,     and 24 5 20 6  =    . 

8 1 25 0,(1,0),1 26=P P P    (50) 

where 25 7 19 9 = ,     and 26 8 20 9  =    . 

4 1 27 0,(1,0),1 28=P P P    (51) 

where 27 10 19 12 = ,     and 28 11 20 12  =    . 

3 1 29 0,(1,0),1 30=P P P    (52) 

where 29 13 19 15 = ,     and 30 14 20 15  =    . 

0,(0,1),1 1 31 0,(1,0),1 32=P P P    (53) 

where 31 16 19 18 = ,     and 32 17 20 18  =    . 
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Using equations (48) and (52) into (39), we get  

7 1 33 0,(1,0),1 34=P P P    (54) 

where   1
33 2,10 29 5,10 21 8,10 10,10 = ,A A A A     and 

1
34 30 5,10 22 8,10 10,10  = ( )A A A    . 

From equation (30), we have 

0,(1,1),1 1 35 0,(1,0),1 36=P P P    (55) 

where  35 2,1 19 3,1

1
 = A A


   and  36 20 3,1

1
  = A


  . 

From equation (31), we have 

1 0,(1,0),1 37=P P   (56) 

37and  is given by  

1
37 = BC  . 

where 36 1,2 20 3,2 30 5,2 22 8,2 34 10,2=B A A A A A      

35 1,2 2,2 19 3,2 29 5,2 21 8,2 33 10,2=C A A A A A A       

Substituting equation (56) into equations (47) to (55), respectively, we get 

 2 0,(1,0),1 37 19 20=P P     (57) 

 5 0,(1,0),1 37 21 22=P P     (58) 

 6 0,(1,0),1 37 23 24=P P     (59) 

 8 0,(1,0),1 37 25 26=P P     (60) 

 4 0,(1,0),1 37 27 28=P P     (61) 

 3 0,(1,0),1 37 29 30=P P     (62) 

 0,(0,1),1 0,(1,0),1 37 31 32=P P     (63) 

 7 0,(1,0),1 37 33 34=P P     (64) 

 0,(1,1),1 0,(1,0),1 37 35 36=P P     (65) 

Now all probabilities have been expressed as a function of 0,(1,0),1P . The normalisation 

condition is 

0,(1,1),1 0,(1,0),1 0,(0,1),1 1 2 3 4 5 6P P P Pe P e P e P e P e P e         

7 8 = 1P e P e   (66) 
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where e  is a vector of dimensions  1N   with all of the entries equal to one. 

Substituting equations (56) to (65) into equation (66), we get  

0,(1,0),1
38

1
= ,P


 (67) 

where 

38 37 35 36 37 31 32 37 37 19 20= 1 e e e             

37 29 30 37 27 28 37 21 22 37 23e e e e e e e            

24 37 33 34 37 25 26e e e e e        

The derivation is complete for all steady-state probabilities, which can be used to find the 
measures of performance of the model. 

5 Measures of performance 

The analysis of this study is based on the following system performance measures. 

 Expected system length during FES is given by  

,(1,1),1 ,(0,1),1
=1 =1

( ) = ( ) ( )
N N

s n n
n n

L FES t nP t nP t   

,(1,0),1 ,(0,0),1
=1 =1

( ) ( )
N N

n n
n n

nP t nP t    

 Expected system length during SOS is given by  

,(1,1),2 ,(0,1),2
=1 =1

( ) = ( ) ( )
N N

s n n
n n

L SOS t nP t nP t   

,(1,0),2 ,(0,0),2
=1 =1

( ) ( )
N N

n n
n n

nP t nP t    

 Overall expected system length is given by  

2 2

,(1,1), ,(0,1),
=1 =1 =1 =1

( ) = ( ) ( )
N N

s n i n i
n i n i

L t nP t nP t   

2 2

,(1,0), ,(0,0),
=1 =1 =1 =1

( ) ( )
N N

n i n i
n i n i

nP t nP t    

 Let ( )blockP FES t  denote the blocking probability of the customers to enter the system 

when the server provides FES  

,(1,1),1 ,(0,1),1 ,(1,0),1 ,(0,0),1( ) = ( ) ( ) ( ) ( )block N N N NP FES t P t P t P t P t    
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 Let ( )blockP SOS t  denote the blocking probability of the customers to enter the system 

when the server provides SOS  

,(1,1),2 ,(0,1),2 ,(1,0),2 ,(0,0),2( ) = ( ) ( ) ( ) ( )block N N N NP SOS t P t P t P t P t    

 Probability of the system being under repair  

( ) = ( ) ( )r r rP t P FES t P SOS t  

2 2 2

,(1,0), ,(0,1), ,(0,0),
=1 =1 =1 =1 =1 =1

= ( ) ( ) ( )
N N N

n i n i n i
n i n i n i

P t P t P t     

 The effective arrival rate is given by  

1 2 1 2

,(1,1), ,(0,1),
=1 =1 =1 =1

( ) = (1 ) = ( ) ( )
N N

eff block n i n i
n i n i

t P P t P t  
  


   

1 2 1 2

,(1,0), ,(0,0),
=1 =1 =1 =1

( ) ( )
N N

n i n i
n i n i

P t P t
    


   

 Availability of the server is given by  

 ,(1,1),1 ,(1,0),1 ,(0,1),1
=0

( ) = (1 ) ( ) ( ) ( )
N

s n n n
n

A t r P t P t P t    

 ,(1,1),2 ,(1,0),2 ,(0,1),2
=1

( ) ( ) ( )
N

n n n
n

P t P t P t    

 The expected waiting time in the system during FES using Little’s law, is given by  

( )
( ) = s

s
eff

L FES t
W FES t


 

 The expected waiting time in the system during SOS using Little’s law, we get  

( )
( ) = s

s
eff

L SOS t
W SOS t


 

 The overall expected waiting time in the system using Little’s law, we get  

( )
( ) = s

s
eff

L t
W t


 

 Probability that the server is idle is given by  

0 0,(1,1),1 0,(1,0),1 0,(0,1),1( ) = ( ) ( ) ( )P t P t P t P t   

 Fixing failure of warm-standby  

1 1 ,(1,1),1 2 2 ,(1,1),2
=1 =1

( ) = ( ) ( )
N N

f n n
n n

F t P t P t      
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Note that one can obtain the steady-state performance measures by replacing the transient 
state probabilities with their steady-state counterparts. 

6 Cost analysis of the model 

In this section, we develop the total expected cost per customer per unit time using the 
performance measures mentioned in the previous section. The primary objective is to 
minimise the cost as much as possible by setting the optimal service rates. We define the 
cost components of the model as follows: 

 0 =c  cost per unit time when the server is idle,  

 1 =c  cost per unit per customer present in the system,  

 2 =c  cost per unit time when a failed server is present in the system,  

 3 =c  cost per unit time of the server under repair,  

 4 =c  cost per unit time for each server available for the service,  

   =f sc c  fixed cost per unit time of FES(SOS).  

Using the above definitions of each cost component and its associated system 
performance measure, the total expected cost function may be mathematically 
represented as follows: 

    1 2 0 0 1 2 3 4 0 1 2, = 1s f r s f sF c P c L c F c P c A P c c           

Let us consider the following optimisation problem 

   * *
1 2 1 2

.   , >01 2

, = Minimise ,
s t

F F
 

     (68) 

We employ the Quasi-Newton method to search  1 2,   until the minimum values of 

 1 2,F    is achieved, say  * *
1 2,F   . The steps of Quasi-Newton method you may 

refer Laxmi and George (2020). 

7 Numerical investigation 

In this section, we illustrate the applicability of the Runge-Kutta approach in transient 
state and the matrix-decomposition method in steady-state. We compute the model 
numerically by taking the arbitrary model parameters that have close incidence with the 
practical situations as 

1 2 1 2 1 2= 7, = 3, = 4.5, = 5.5, = 4.5, = 0.2, = 0.65, = 0.55, = 1.5, = 1.1,N b r      

1 1 2 2 1 2 0 1 2 3 = 0.8, = 1.0, = 0.6, = 0.5, = 0.35, = 0.5, = 3, = 12, = 6, = 4, = 6, = 8F S F S f sc c c c c c      , with 

the assumption that b N . Tables and graphs are used to present the numerical 
computations.   



   

 

   

   
 

   

   

 

   

    Performance of batch service queue model with second optional service 65    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Waiting time in the system for different 1 1,    and 1  at steady-state 

1 1( , )   sW FES  sW SOS  sW FES  sW SOS  

 1 = 0.2  1 = 0.3  

(4.5, 0.9) 0.823173 0.239404 0.859868 0.245128 

(4.5, 1.2) 0.958233 0.230523 1.00485 0.236029 

(4.5, 1.5) 1.076750 0.222975 1.13263 0.228284 

 1 = 0.2  1 = 0.3  

(5.5, 0.9) 0.681825 0.246254 0.712115 0.251926 

(5.5, 1.2) 0.797443 0.237071 0.835707 0.242508 

(5.5, 1.5) 0.899323 0.229248 0.945034 0.234473 

 1 = 0.2  1 = 0.3  

(6.5, 0.9) 0.585429 0.252596 0.611258 0.258212 

(6.5, 1.2) 0.687302 0.243212 0.719773 0.248581 

(6.5, 1.5) 0.777417 0.235188 0.816095 0.240338 

Table 1 shows the effect of waiting time for both FES and SOS in the system for 
different 1 1,    and 1  at steady-state. In this Table, we observe that: 

 For a fixed failure rates   1 1  , waiting time in FES decreases while in SOS 

increases as 1  increases. Increasing 1 , the customers are served faster so that the 

waiting time decrease during FES, and the customer opting for SOS spend much 
time in SOS because the service rate  2  is kept constant.  

 The waiting time during FES increases as the failure rate  1  increases when 

  1 1   is kept constant. The reverse trend is observed during SOS.  

 For a fixed  1 1  , as failure rate  1  increases, the waiting time during FES 

increases. However, the opposite trend is observed during SOS. This indicates that 
as the failure rate increases during FES, fewer customers opt for SOS, resulting in 
less waiting time during SOS and more waiting time during FES.  

From Table 2, an increase in failure rate 1  and the probability of switching failure 1  

lead to a decrease in the server’s availability. This agrees with our intuition. 
Table 3 shows optimal service rates and cost on the different probability of switching 

failure  1  and probability of opting for SOS  r . In this Table, when 1  is kept 

constant, we observe that as r  increases, the optimal service rate  2  and cost 

increases while the optimal service rate  1  decreases. The reason is that, as more 

customers opt for SOS, the server increases 2  while 1  decreases to balance the system 

profitably. Further, for fixed r , as probability of switching failure increases, the optimal 
cost increases while optimal service rates for both FES and SOS decreases. This is 
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because as probability of switching failure increases, the server tends to be inactive, 
resulting in slower service. 

Table 2 Impact of 1  on sA  with different probability of switching failure 

  sA   

1  1 = 0.55  1 = 0.60  1 = 0.65  

0.5 0.590178 0.584093 0.577964 

0.6 0.574038 0.566938 0.559778 

0.7 0.559410 0.551356 0.543226 

0.8 0.546099 0.537148 0.528105 

0.9 0.533941 0.524147 0.514245 

1.0 0.522797 0.512211 0.501500 

1.1 0.512550 0.501218 0.489746 

1.2 0.503100 0.491066 0.478876 

1.3 0.494359 0.481664 0.468797 

1.4 0.486254 0.472935 0.459430 

1.5 0.478720 0.464812 0.450703 

Table 3 The optimal service rates  1 2,    and cost function  1 2,f    obtained in variation 

of r  and 1  at steady-state 

  *
1  *

2   * *
1 2,f    

= 0.3r  

1 = 0.2  7.57193 5.88470 75.8115 

1 = 0.4  7.14676 5.22095 80.5383 

1 = 0.6  6.59207 4.50464 85.3466 

= 0.4r  

1 = 0.2  6.86070 6.11661 79.3859 

1 = 0.4  6.46623 5.41546 83.9408 

1 = 0.6  5.94114 4.65734 88.4880 

= 0.5r  

1 = 0.2  6.34801 6.29105 82.3816 

1 = 0.4  5.96509 5.55460 86.7738 

1 = 0.6  5.43876 4.74946 91.0851 

In Table 4, we present the impact of the primary server’s failure rate  1  and repair rate 

 1F  on the optimal cost and service rates. We can see that, as 1  kept constant, the 

optimal service rates and cost increases as 1F  increases, which is true. Furthermore, for 

a fixed 1F , as 1  increases, the optimal cost increases while the service rate decreases. 
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Table 4 The optimal service rates  1 2,    and cost function  1 2,f    obtained in variation 

of 1  and 1F  at steady-state 

  *
1  *

2   * *
1 2,f    

1 = 0.8  

1 = 0.5F  7.96017 4.75736 77.2618 

1 = 0.7F  7.96606 4.77579 77.3422 

1 = 0.9F  7.97532 4.79770 77.4020 

1 = 1.0  

1 = 0.5F  7.66956 4.39425 79.9129 

1 = 0.7F  7.67429 4.39840 80.1180 

1 = 0.9F  7.68166 4.40935 80.2801 

1 = 1.2  

1 = 0.5F  7.36684 4.08863 82.1546 

1 = 0.7F  7.36663 4.07874 82.4759 

1 = 0.9F  7.36613 4.07674 82.7342 

Figure 1 plots the transient state probabilities when the server is idle versus time. The 
graph show the sharp decrease in 0,(1,1),1P (t) and increases in 0,(0,1),1 ( )P t  and 0,(1,0),1( )P t  

with time until it attains the steady-state. 

Figure 1 Transient state probabilities when the server is idle versus time 

 

Figure 2 shows the effect of time on the availability of the server  sA  with different 

values of probability of opting for SOS ( )r . We observe that as time progresses, sA  in 

FES shows the decreasing trend until it attains a steady-state. However, a reverse trend is 
observed for sA  in SOS. Furthermore, when = 0.6r , we observe the intersection points 
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of the curves of sA  for both FES and SOS at = 2.5,t  for < 2.5t  sA  in FES is 

maximum and for > 2.5 st A  in SOS is maximum. 

Figure 2 Effect of time on an availability of the server with different values of r  

 

The impact of time on the probability of the system being under repair  rP  with 

different values of repair rates  1F  is demonstrated in Figure 3. The Figure shows that 

as time progresses, rP  increases until it reaches a steady-state. Also, as 1F  increases, 

rP  decreases because the server repaired faster which results in reducing the probability 

of the system being under repair. 

Figure 3 Impact of time on the probability of the system being under repair with different values 
of repair rates 
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The probability of the system being under repair  rP  and the failure rate of the primary 

operating server  1  with different buffer size ( )N  is shown in Figure 4. As failure rate 

in FES increases, we observer the increasing trend of rP  for different values of N . 

Similarly, for a fixed 1 , rP  is high for larger values of N , which is true. 

Figure 4 Impact of failure rate in FES on the probability of the system being under repair 

 

In Figure 5, we show the effect of probability of opting for SOS ( )r  on the blocking 

probability  blockP . We observe that as r  raises, blockP  shows decreasing trend in FES 

and opposite trend observed in SOS. Moreover, in case of = 7N , we observe an 
interesting behaviour, for < 0.8 blockr P  in FES is larger, for > 0.8 blockr P  in SOS is larger 

and at = 0.8r , they coincide. Similarly, the same trend observed in case of = 13N , for 
< 0.76, > 0.76r r  and = 0.76r . This reveals the fact that as more customers opting for 

SOS as more blocking probability observed when the server is in SOS. 
In Figure 6, we plot the expected system length  sL  versus arrival rate ( ) . It is 

obvious that as   increases, the inflow of customers to the system increases, which tend 
to a longer queue. Moreover, sL  shows an opposite trend with the increase of batch size 

taken for the service, as we expect. 
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Figure 5 Effect of probability of opting for SOS on the blocking probability 

 

Figure 6 Impact of arrival rate on the expected system length 

 

8 Conclusions 

This paper presents the performance of the batch service queue model with SOS, 
repairable breakdown, and warm standby server. We compute the model in the transient 
state using the Runge-Kutta method and the steady-state using the matrix decomposition 
method. Also, we present various performance measures of the system, such as the mean 
number of the customers in the system, the blocking probability, availability of the server 



   

 

   

   
 

   

   

 

   

    Performance of batch service queue model with second optional service 71    
 

    
 
 

   

   
 

   

   

 

   

       
 

in the system, probability of the system being under repair, etc. Further, the cost model 
analysis has been presented to determine the minimum cost and optimal service rates 
during FES and SOS. Numerically we find the following: 

 An increase in failure rate leads to a decrease in the server’s availability, as observed 
in Table 2, which is intuitively true.  

 The blocking probability is reduced when buffer size increases, as depicted in  
Figure 5.  

 As shown in Figure 4, the probability of the system being under repair obviously 
increases as the failure rate increase.  

 Increase in batch size for the service decreases the expected system length, as shown 
in Figure 6.  

 From Table 4, an increase in the failure rate of the primary operating server 
decreases the optimum service rates and increases the optimum expected cost.  

In future work, one can incorporate the concepts of working vacations and vacation 
interruption batch arrivals, Markovian arrival process, etc. 
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