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Abstract: This paper introduces cooperative continuous static games (CCSG) 
with parameters in the cost functions of the players and in the right-hand side of 
the constraints. The CCSG is converted into the corresponding multi-objective 
nonlinear programming problem. The resulted nonlinear programming problem 
is converted into the single objective nonlinear programming problem through 
the use of the weighted sum method. A solution method for obtaining the 
stability set of the second kind without differentiability for the CCSG is 
presented using Karush-Kuhn-Tucker conditions. A numerical example is 
given for the illustration. 
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1 Introduction 

Game theory has enormous application as in economics, engineering, biology, etc. Three 
major classes of games are matrix games, continuous static games and differential games. 
In continuous static games, the decision probabilities are involved, which need not be 
discrete. Moreover, continuous static games, the decisions and costs are related in a 
continuous rather than a discrete manner. Sakawa and Yano (1994) introduced an 
interactive decision making method for solving multi-objective nonlinear programming 
problem (MONLP) with fuzzy parameters both in objective functions and constraints. 
Osman (1984) gave the formulation of different formulations of continuous static games. 
Osman and El-Banna (1993) studied MONLP problem with fuzzy parameters in the 
objective functions. 

Sakawa and Nishizaki (1989) considered two-person zero-sum games with fuzzy 
multiple payoff matrices. Stoer and Witzgall (1970) proposed the convexity and 
optimisation in finite dimensions. Osman et al. (1999b) presented the formulation of 
continuous static games, where the fuzzy numbers were considered in cost functions as 
well as in constraints. Vives (2005) presented the games with strategic 
complementarities. They also presented some new applications to the field of industrial 
organisation. Beckenkamp (2006) introduced a game-theoretic approach for the 
taxonomy of social dilemmas. Elshafei (2007) introduced an interactive approach for 
solving Nash cooperative continuous static games (CCSG), and also determined the 
stability set of the first kind corresponding to the obtained compromise solution. Potters 
and Suetens (2009) discussed the cooperation in games strategy involving the strategic 
complements as well as substitutes. Dutta and Kumar (2015) studied the multi-objective 
linear fractional inventory model with application of fuzzy goal programming approach. 
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Khalifa and ZeinEldein (2015) introduced an interactive approach for solving CCSG with 
fuzzy parameters in the objective functions coefficients. Very recently, Potters and 
Suetens (2020) proposed the optimisation incentives in various dilemma games including 
the strategic complementarity. The concept of equilibrium for a non-cooperative game 
with fuzzy goals involving fuzzy parameters has been introduced by Kacher and Larbain 
(2008). 

Cruz and Simaan (2000) proposed theory of ordinal games where, the players are able 
to rank-order their decision choices against the choice by the other players instead of 
payoff function. Navidi et al. (2014) presented a new game theoretic-based approach for 
multi-response optimisation problem. Osman (1977) posed a qualitative analysis of basic 
notions in parametric convex programming. Daskalakis et al. (2009) investigated the 
complexity for computation of a Nash equilibrium. Corley et al. (2014) studied the  
n-person prescriptive games and presented a scalar compromise equilibrium for the same. 
Corley (2015) defined a mixed dual to the Nash equilibrium for n person in strategic 
form, where in a Nash equilibrium every players’ mixed strategy maximise his/her own 
expected payoff for the other n – 1 player’s strategies. Also, the comparison between the 
dual and the related to the mixed Nash equilibrium and both topological and algebraic 
conditions are given. 

Kumar and Dutta (2015) developed a multi-objective linear fractional optimisation 
model with an application to inventory problem of multi-products in fuzzy environment. 
Famrooqui and Niazi (2016) introduced a comprehensive multidisciplinary  
state-of-the-art review and taxonomy of the game theory models of complex interactions 
between agents. Pakdaman and Effati (2017) investigated the bounds for the convex as 
well as quadratic programming problem. They also presented some applications. Rout  
et al. (2019) proposed the multi-objective quadratic programming problem with the fuzzy 
as well as probabilistic uncertainty. Khalifa (2018) introduced an interactive approach for 
solving multi-objective nonlinear programming problem and applied it to CCSG. Aineth 
and Ravindran (2018) presented a multi-objective optimisation model with an application 
to the selection of critical suppliers. Mrinal and Geetanjali (2018) presented a linear 
relaxation (LR)-optimal solution for the nonlinear optimisation model considering  
the variations in model parameters. Ezimadu and Nwozo (2019) studied a  
manufacturer-retailers dynamic cooperative advertising with retail competition. They 
investigated the influence of subsidy on awareness shares, retail advertising and, as a 
result, the payoffs matrix for all the players in the game problem. 

Awaya and Krishna (2019) studied the role of communication in repeated games with 
private monitoring and compared the set of equilibria under two regimes.  
Figueroa-García et al. (2019) presented the optimal solutions for the group matrix games. 
They considered the interval-valued fuzzy numbers in their investigation. Liu et al. 
(2020) proposed an algorithm for the multi-UUV cooperative dynamic manoeuvre 
decision-making applying intuitionistic fuzzy game theory. Stefanini and Arana-Jiménez 
(2019) presented the Karush-Kuhn-Tucker conditions for the interval as well the fuzzy 
optimisation problems in multiple variables. They considered the total and directional 
generalised differentiability in their study. 

Chankong and Haimes (1983) proposed a multi-objective decision making theory and 
methodology. Bazaraa et al. (1993) described the nonlinear programming with theory and 
algorithm. Osman et al. (1999a) introduced large scale continuous static games involving 
fuzzy parameters both in the cost functions and constraints. Marler and Arora (2010) 



   

 

   

   
 

   

   

 

   

   136 H.A.E-W. Khalifa and P. Kumar    
 

    
 
 

   

   
 

   

   

 

   

       
 

presented some new insights using ‘the weighted sum method for multiple objective 
optimisation problems. Matsumoto and Szidarovszky (2015) studied the continuous static 
games with some applications. 

In this paper, CCSG with parameters involving in the cost functions of the players 
and in the right-hand side of the constraints is introduced. The stability set of the second 
kind corresponding to the optimal solution resulted from the use of weighted sum 
method, is determined. 

The main contributions of the present paper are summarised below: 

 Introducing the CCSG. 

 Applying weighted sum method to solve the multi-objective optimisation problem. 

 Solving the derived multi-objective models using Karush-Kuhn-Tucker conditions. 

 Demonstrating the problem and algorithm with the help of a numerical example of 
two-person game problem. 

 Determining the stability set of the second kind. 

The outlay of the paper is organised as follows: in Section 2, the preliminaries are 
presented. In Section 3, CCSG are introduced as specific definition and properties. 
Section 4 introduces the stability set of the second kind. In Section 5, a solution method 
for determining the stability set of the second kind is introduced. In Section 6, a 
numerical example is given to clarify the solution approach. Finally, some concluding 
remarks are reported in Section 7. 

2 Preliminaries 

In this section, we discuss some definitions used in this paper. 

Definition 1: Cooperative game (Khalifa, 2018). 

A cooperative game is the one in which players are convinced to adopt a particular 
strategy through negotiations and agreements between players. 

Definition 2: Continuous game (Matsumoto and Szidarovszky, 2015). 

A game is called ‘continuous’ when the choice set of at least one player is the continuum 
to begin with, not just an extension of a discrete set to the probability distributions over 
that set. Let N be the number of players. If Sk is the strategy set of the player k, then its 
payoff function φk is defined on the set of all simultaneous strategies, which is 
represented by 

1 2 , and ( ) for all is a real number.    … N kS S S S φ s s S  

Then, the game is continuous, if all sets Sk are connected and all payoff functions φk are 
piecewise continuous. 

Definition 3: Static game (Khalifa, 2018). 

A game is static in the sense that no time history is involved in the relationship between 
costs and decisions. 
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Definition 4: Cooperative continuous static game (Khalifa, 2018). 

A static game, which is also continuous and cooperative, is referred to be cooperative 
continuous static game. 

Definition 5: Optimal solution to a game (Figueroa-García et al., 2019). 

An optimal solution to the game is said to be reached if neither player finds it beneficial 
to alter his strategy. In this case the game is said to be in a state of equilibrium. 

Definition 6: Weighted sum method (Marler and Arora, 2010). 

The weighted sum method combines all the multi-objective functions into one scalar, 
composite objective function using the weighted sum. 

1 1 2 2( ) ( ) ( ) ( ),   … n nF x λ f x λ f x λ f x  

where 

   1 2 1 2, , , , , , , , … …n nx x x x λ λ λ λ  

1
1

0, 0 1.


   k
i

i
λ λ  

3 Problem statement and solution concepts 

Before defining the proposed problem statement and solution concepts, let us present the 
main notations. 

3.1 Notations 

The main notations are given in Table 1. 

Table 1 List of notations used 

k Number of players 
P(τ(J)) Stability set of the second kind 

  Real line 
n  n-dimensional space 

n s   Product space of dimension n × s, where n, s    

( , )
i

i
aM x δ  Convex functions on n s   

gt(x, δ) Concave functions on n s   

i

i
aγ  Arbitrary non-negative real numbers 

vt Any real numbers, t = 1, 2, …, r 

B Solvability set 

Ψ(v) A regular set equal to {δ  s : gt(x, δ) ≥ vt, t = 1, 2, …, r} 
τ(J) Side of Ψ(v) 
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3.2 Problem statement 

Consider the following CCSG with parameters in the cost functions of the players and in 
the right-hand side of the constraints, with k players. Assume these players have the cost 
as follows: 

 For 1st player, cost function = 
1

1 11

1 1 ( , ). l

a aa
γ M x δ  

 For 2nd player, cost function = 
2

2 22

2 2 ( , ). l

a aa
γ M x δ  

 For 3rd player, cost function = 
3

3 33

3 3 ( , ). l

a aa
γ M x δ  

 Similarly, for the kth player, cost function = ( , ). k

k kk

l
k k
a aa
γ M x δ  

Thus, for k player, we can write, 

1

1 11

1 1 ( , ), , ( , ), …
k

k kk

l l
k k

a a a aa a
γ M x δ γ M x δ  (1) 

Subject to 

( , ) 0, 1, 2, , ;  …jh b δ j n  (2) 

 ( ) : ( , ) , 1, 2, , .     …s
t tδ v δ g x δ v t r  (3) 

Here, ( , ),
i

i
aM x δ  i = 1, 2, …, k; ai = 1, 2, …, li are convex functions on ,n s   gt(x, δ), 

t = 1, 2, …, r are concave functions on ,n s   
i

i
aγ  are arbitrary non-negative real 

numbers, and vt are any real numbers. Assume that there exists a function b = f(δ). 

If the function hj(b, δ), j = 1, 2, …, n differentiable, then the Jacobian 
( , )

0,




j

k

h b δ

b
 

j; k = 1, 2, …, n, in a neighbourhood of the solution point to equation (3), which is 
generated by δ  Ψ(v). It is noted that the differentiability assumptions are not needed for 
the functions ( , )

i

i
aM x δ  and gt(x, δ). Furthermore, Ψ(v) is a regular set. 

Consequently, the corresponding multi-objective optimisation problem with 
parameters in both of the objective functions and in the right-hand side of the constraints, 
is written as 

 1

1 11

1 1
1 1

Min ( ), , .
  …

k

k kk

Tl l
k k

a a a aa a
γ M δ γ M  

Subject to 

 ( ) : ( ) , 1, 2, , ,     …s
t tv δ g δ v t r  (4) 

where 
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 ( ), 1, 2, , …
i

i
aM δ i k  are convex functions on s  

 ( ), 1, 2, , …tg δ t r  are concave functions on s  

 ( ) ( ( ), )
i i

i i
a aM δ M f δ δ  and ( ) ( ( ), ).t tg δ g f δ δ  

The problem (4) is assumed to be stable (Chankong and Haimes, 1983). In addition, the 
problem (4) may be treated by using the weighted sum method (Marler and Arora, 2010) 
as: 

1 1

Min ( ) ,
 

 
  
 

 
i

i i

i

lk
i i

i a a
i a

λ γ M δ  

Subject to 

 

1

( ) : ( ) , 1, 2, ,

1

0 1.


    





 


…s

t t

k
i

i

i

v δ g δ v t r

λ

λ


 (5) 

Let 
1

  i

ii

l
i

i i aa
μ λ γ  and 

1
( ) ( ),


 i

ii

l
i

i aa
M δ M δ  for i = 1, 2, …, k; ai = 1, 2, …, li. 

Then, problem (5) can be rewritten as in the form 

1

Min ( )



l

i i

i

μ M δ  

Subject to: 

 
1 2

( ) : ( ) , 1, 2, ,

0, 1, 2, , .

    


   
  

…

…

…

s
t t

k

i

v δ g δ v t r

l l l l

μ i l


 (6) 

It is obvious that the stability of problem (4) implies to the stability of problem (6) for all 
μ. 

Suppose that problem (6) is solvable for 1*( , ) {0} .   tμ v    Let τ(J) be the side 

(sides) of Ψ(v), J  {1, 2, …, r} , which is defined by 

 ( ) : ( ) , , ( ) , .     s
t t t tτ J δ g δ v t J g δ v t J  

Definition 7 (Osman, 1977): The stability set of the second kind of problem (6) 
corresponding to τ(J) is denoted by P(τ(J)), and is defined by 

   1*( ) ( , ) : ( ) contains efficient solutions of problem (4) .   tP τ J μ v τ J   

Definition 8 (Osman, 1977): The solvability set of problem (6) which is denoted by B and 
is defined as 



   

 

   

   
 

   

   

 

   

   140 H.A.E-W. Khalifa and P. Kumar    
 

    
 
 

   

   
 

   

   

 

   

       
 




1*( , ) : there exists an efficient solution of problem (4),

( , ) .

  



tB μ v

δ E μ v

 
 

4 The stability set of the second kind 

Let (μ, v)  B be a corresponding efficient solution .δ  Since the problem (4) is stable, 
therefore problem (6) is also stable, and by applying the Karush-Kuhn-Tucker Saddle 
Point necessary optimality theorem (Bazaraa et al., 1993; Stoer and Witzgall, 1970; 
Stefanini and Arana-Jiménez, 2019), there exists μ  and some , 0 ru u  such that 

( , , )δ μ u  solves the Karush-Kuhn-Tucker saddle point problem and ( ( ) ) 0, t t tu g δ v  

i.e., 

     , , , , , , , , , for all , , 0.    s sφ δ μ u v φ δ μ u v φ δ μ u v δ u u   

Here 

  
1 1

( , , , ) ( ) ,
 

   l r
i i t t t

i t
φ δ μ u v μ M δ u g δ v  

and 

0, 1, 2, , .   …iμ i t r  

Let us formulate the Karush-Kuhn-Tucker saddle point conditions of problem (6) as: 

       

    

1 1 1 1

1 1 1 1

( )

( ) ( ) ( )

for all , , 0.

   

   

    

     

  

   

   

l r l r

i i t t t i i t t t

i t i t

l r l r

i i t t t i i t t t

i t i t

s r

μ M δ u g δ v μ M δ u g δ v

μ M δ u g δ v μ M δ u g δ v

δ u u 

 

Also, 

  , 1, 2, ,  …t tg δ v t r  

   0, 1, 2, ,   …t t tu g δ v t r  

0, 0, 1, 2, , .   …t iu μ i l  

It follows that δ  = h(μ) satisfies the Kuhn-Tucker saddle point conditions where 

1*: .  nh    
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5 Solution method 

Based on the discussion mentioned above, the algorithm for obtaining the stability set of 
the second kind can be summarised as follows. 

Inputs: 

k = number of players. 

Cost functions and constraints for each of the players. 

Step 1 Deduce the Karush-Kuhn-Tucker saddle point conditions for problem (6). 

Step 2 Construct a function 1*:   nh    such that δ = h(μ) and satisfies the  
Karush-Kuhn-Tucker saddle point conditions. 

Step 3 Determine the stability set of the second kind P(τ(J)) as 

 
   

 
( , ) : ( ) for

( )
( ) for

         

t t

t t

μ v B g h μ v t J
P τ J

g h μ v t J
 

Step 4 Stop. 

Outputs: The stability set of the second kind P(τ(J)) for all players. 

The flowchart of the proposed algorithm is depicted in Figure 1. 

Figure 1 The flowchart of the proposed algorithm (see online version for colours) 
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6 Numerical example 

Consider a two-player game with parameters in the cost functions and in the constraints 

       2 2 21 2 3 4
1 2 1 21 1 , 2 3 ,     γ δ γ δ γ δ γ δ  

where player I controls δ1    and player II controls δ2    with 

1 2 1

2 2

1

2

0

0.

 
 
 
 

δ δ v

δ v

δ

δ

 (7) 

Here, γi, i = 1, 2, 3, 4 are arbitrary nonnegative real numbers, vt, t = 1, 2 are any real 
numbers. 

The corresponding multi-objective nonlinear optimisation problem is 

        2 2 2 21 2 3 4
1 2 1 2Min 1 1 , 2 3     γ δ γ δ γ δ γ δ  

Subject to 

 2
1 2 1 2 2 1 2( ) : 2 , , , 0 .      v δ δ δ v δ v δ δ  (8) 

This problem is treated by using the weighted sum method (Marler and Arora, 2010) as: 

        2 2 2 21 2 3 4
1 1 1 2 2 1 2 2Min 1 1 2 3      λ γ δ λ γ δ λ γ δ λ γ δ  

Subject to 

 2
1 2 1 2 2 1 2

1
1

1

( ) : 2 , , , 0

1

0 1


      





 

 k

i

v δ δ δ v δ v δ δ

λ

λ


 (9) 

Problem (9) is a single objective nonlinear optimisation problem, which can be rewritten 
in the following form: 

        2 2 2 2
1 1 2 2 3 1 4 2Min 1 1 2 3      μ δ μ δ μ δ μ δ  

Subject to 

 2
1 2 1 2 2 1 2( ) : 2 , , , 0 .      v δ δ δ v δ v δ δ  (10) 

Here, the coefficients μi, i = 1, 2, 3, 4, are written as: 

1
1 1

2
2 1

3
3 2

4
4 2

 
 


 
 

μ λ γ

μ λ γ

μ λ γ

μ λ γ

 (11) 
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We have J  {1, 2, 3, 4}. Let J1 = , i.e., the interior side (δ1 + 2 δ2 ≤ v1, δ2 ≤ v2, –δ1 ≤ 0, 
–δ2 ≤ 0). The first condition of the Karush-Kuhn-Tucker saddle point is as follows: 

       

       

2 2 2 2
1 1 2 2 3 1 4 2

2 2 2
1 1 2 2 3 1 4 2

1 1 2 3

1 1 2 3 0.

      

        

μ δ μ δ μ δ μ δ

μ δ μ δ μ δ μ δ
 (12) 

Consider the following three cases: 

6.1 Case 1: when μ1, μ3 > 0 and μ2, μ4 > 0 

From the first condition of the Karush-Kuhn-Tucker Saddle Point, we obtain 

1 3 2 4
1 2

1 3 2 4

2 3
and .

 
 

 
μ μ μ μ

δ δ
μ μ μ μ

 (13) 

Hence, P(τ(J1)) can be determined as: 

  
4* 2

1 2

1 1 3 2 4 2 4
1 2

1 3 2 4 2 4

( , ) : 0, 0,
.2 3 3

, , 0, 1, 2, 3, 4

    
             

i

μ v v v
P τ J μ μ μ μ μ μ

v v μ i
μ μ μ μ μ μ

 
 (14) 

For the side J2 = {1}, the corresponding stability set of the second kind is 

  
4* 2

1 2

2 1 3 2 4 2 4
1 2

1 3 2 4 2 4

( , ) : 0, 0,
.2 3 3

, , 0, 1, 2, 3, 4

    
             

i

μ v v v
P τ J μ μ μ μ μ μ

v v μ i
μ μ μ μ μ μ

 
 (15) 

For the side J3 = {2}, the corresponding stability set of the second kind is 

  
4* 2

1 2

3 1 3 2 4 2 4
1 2

1 3 2 4 2 4

( , ) : 0, 0,
.2 3 3

, , 0, 1, 2, 3, 4

    
     

        
i

μ v v v
P τ J μ μ μ μ μ μ

v v μ i
μ μ μ μ μ μ

 
 (16) 

For J4 = {1, 2}. Then, in the same way, we get 

  
4* 2

1 2

4 1 3 2 4 2 4
1 2

1 3 2 4 2 4

( , ) : 0, 0,
.2 3 3

, , 0, 1, 2, 3, 4

    
     

        
i

μ v v v
P τ J μ μ μ μ μ μ

v v μ i
μ μ μ μ μ μ

 
 (17) 

6.2 Case 2: when μ2, μ4 = 0 and μ1, μ3 > 0 

In this case, from the first condition of the Karush-Kuhn-Tucker Saddle Point, we obtain 

1 3
1

1 3

2
.





μ μ

δ
μ μ

 (18) 

Then, for J1 = , we have 
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  
4* 2

1 2

1 1 3
1

1 3

( , ) : 0, 0,
.2

0, 1, 3

    
   

    
i

μ v v v
P τ J μ μ

v μ i
μ μ

 
 (19) 

For J2 = {1}, we have 

  
4* 2

1 2

2 1 3
1

1 3

( , ) : 0, 0,
.2

0, 1, 3

    
   

    
i

μ v v v
P τ J μ μ

v μ i
μ μ

 
 (20) 

For J3 = {2}, we have 

  
4* 2

1 2

3 1 3
1

1 3

( , ) : 0, 0,
.2

0, 1, 3

    
   

    
i

μ v v v
P τ J μ μ

v μ i
μ μ

 
 (21) 

For J4 = {1, 2}, we have 

  
4* 2

1 2

4 1 3
1

1 3

( , ) : 0, 0,
.2

0, 1, 3

    
   

    
i

μ v v v
P τ J μ μ

v μ i
μ μ

 
 (22) 

6.3 Case 3: when μ1, μ3 = 0 and μ2, μ4 > 0 

From the first condition of the Karush-Kuhn-Tucker saddle point, we obtain 

2 4
2

2 4

3
.





μ μ

δ
μ μ

 (23) 

For J1 = , we have 

  
4* 2

1 2

1 2 4 2 4
1 2

2 4 2 4

( , ) : 0, 0,
.2 6 3

, 0, 2, 4

    
    

      
i

μ v v v
P τ J μ μ μ μ

v v μ i
μ μ μ μ

 
 (24) 

For J2 = {1}, we have 

  
4* 2

1 2

2 2 4 2 4
1 2

2 4 2 4

( , ) : 0, 0,
.2 6 3

, 0, 2, 4

    
    

      
i

μ v v v
P τ J μ μ μ μ

v v μ i
μ μ μ μ

 
 (25) 

For J3 = {2}, we have 

  
4* 2

1 2

3 2 4 2 4
1 2

2 4 2 4

( , ) : 0, 0,
.2 6 3

, 0, 2, 4

    
    

      
i

μ v v v
P τ J μ μ μ μ

v v μ i
μ μ μ μ

 
 (26) 

For J4 = {1, 2}, we have 
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  
4* 2

1 2

4 2 4 2 4
1 2

2 4 2 4

( , ) : 0, 0,
.2 6 3

, 0, 2, 4

    
    

      
i

μ v v v
P τ J μ μ μ μ

v v μ i
μ μ μ μ

 
 (27) 

7 Concluding remarks and future research 

The theory of games is one of important tools for handling the multi-criteria decision 
making problems, which arise in the conflict of situations between intelligent players in 
order to choose the best strategy. The proposed research paper is based on the approach 
of Karush-Kuhn-Tucker conditions. In this research article, the CCSG are investigated 
with the parameters in cost functions of the players and in the right-hand side of the 
constraints. The algorithm as well as the flowchart of the proposed approach has been 
presented. The main objective of the proposed paper is to determine the stability set of 
the second kind without differentiability. In the last, a numerical example is presented to 
demonstrate the efficiency of the proposed method. In this numerical example, the 
stability set of the second kind without differentiability is determined. Overall, the 
proposed approach is a novel approach, which can be easily applied to determine the 
results. 

There are some scopes for future research. One may consider the multi-objective 
optimisation in linguistic environment by characterising with fuzzy random numbers. In 
these situations, the fuzzy game theory model should be used to solve this optimisation 
problem. 
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