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Abstract: Machine learning (ML) and data mining (DM) techniques have 
grown in popularity among researchers and scientists in various fields. The 
healthcare industry could not be an exception to it. Diabetes or diabetes 
mellitus, a gaggle of metabolic disorder, can be caused due to age, obesity, lack 
of exercise, hereditary diabetes, living style, bad diet, hypertension, etc. and for 
that, the entire body system can be affected harmfully and be susceptible to 
dangerous diseases like heart disease, kidney disease, stroke, eye problem, 
nerve damage, etc. For this, we tried to go for a systematic review on diabetes 
by applying ML and DM classification algorithms for prediction and diagnosis. 
Concerning the sort of knowledge, medical datasets as well as Pima Indian 
Diabetes Datasets (PIDDs) provided by the UCI-ML Repository were mainly 
used. This survey may be useful for further investigation in predictions and 
resulting valuable knowledge on diabetes. 
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1 Introduction 

Healthcare sectors have large volume databases. Such databases may contain structured, 
semi-structured or unstructured data. Recently, diabetes mellitus is treated as a very 
severe disease in India, one of the developing countries. Diabetic mellitus is classified as 
non-communicable disease (NCB) and suffering rate is growing daily basis. Around  
425 million people suffer from diabetes according to 2017 statistics. Approximately  
2–5 million patients every year lose their lives due to diabetes. It is supposed to be raise 
to 629 million by 2045 (Kalyankar et al., 2017). 

A technique called, predictive analysis, incorporates a diversity of machine learning 
(ML) methods to result knowledge as well as predict later events by using current as well 
as past collected data. It is required to apply the predictive analysis on healthcare to take 
significant decisions and to find the predictions. The diagnosis of diseases with 
appropriate accuracy by enhancing patient’s healthcare and optimising resources to 
improve the outcomes of clinical applications is the goal of predictive analysis. ML is 
taken into account to be one among the most important AI features; supports 
improvement of computer systems having the power for accumulating knowledge from 
past experiences without writing programs in each case. ML is taken into account to be 
an awful require of today’s situation so as to eliminate individual efforts by supporting 
automation with minimum flaws. Existing method for diabetes detection is uses lab tests 
such as fasting blood glucose and oral glucose tolerance. However, this method is time 
consuming. An extensive variety of classification algorithms were in use for the 
prediction and diagnosis in different sources. Generally, it is found as supervised learning 
methods were characterised with 90% of the total and rest were with unsupervised ones, 
and more specifically, association rules. 

Generally, the classification techniques are used to carry out predictive analytics. 
There are several steps to follow while building a predictive model. The flow of the work 
is started with the datasets available for diabetes prediction. Then, it has to preprocess the 
data by cleaning the data of the dataset to turn it into structured dataset. Then, it comes 
the clustering step. Clustering, an ML technique, is used to group data points to classify 
each data into a specific group. It has been observed that the use of a predictor with 
clustering improves the prediction accuracy in most datasets (Trivedi et al., 2015). The 
clustering may be an optional step in prediction, but some researchers have considered it 
in their predictive modelling. The clustering methods are primarily categorised as 
partitioning, hierarchical and density clustering. After clustering, the step of reducing 
dimensions comes as it helps in reducing storage space by compressing the data. In 
addition to this, it reduces computation time as well as helps in removing redundant 
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features, if any. The dimensionality reduction can be carried out by the techniques like 
feature selection, linear discriminant analysis (LDA) and principal component analysis 
(PCA). In the next step, the updated dataset is splitted into two categories, namely, 
training and testing sets, where the training set is used in developing models and 
featuring sets while testing set is used for estimating a final, unbiased assessment of the 
techniques at the end. Then, different classification techniques are applied and evaluated 
in a loop basis. According to the evaluated performances, an ideal model is selected for 
diabetes prediction. In the last, the researchers can develop a tool or go for a web 
application as shown in Figure 1. 

Figure 1 A general structure of prediction of diabetes mellitus (see online version for colours) 

 

The review is structured as follows: Section 2 presents a concise presentation of the 
diabetes disease. Section 3 provides the required surroundings knowledge on 
methodologies and datasets. The problem description is under Section 4. Section 5 
provides reviewed publications within learn and a talk, with Section 6 gives the 
conclusion. 

Abbreviations 

ACC Accuracy 

AI Artificial intelligence 

ANFIS Adaptive neuro-fuzzy inference system 

ANN Artificial neural network 

AUC Area under the ROC curve 

AUROC Area under the receiver operating curve 
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BMI Body mass index 

CNN Convolutional neural network 

CPCSSN Canadian Primary Care Sentinel Surveillance Network 

CV Cross-validation 

DBNN Deep belief neural network 

DM Data mining 

DT Decision tree 

EA Evolutionary algorithm 

ECG Electrocardiogram 

EHRs Electronic health records 

ER Error rate 

FF Farthest first 

FM F-measure 

FN False negative 

FNR False negative rate 

FP False positive 

FPR False positive rate 

FTIR Fourier transform infrared 

GA Genetic algorithm 

GDA Gaussian discriminant analysis 

GDM Gestational diabetes mellitus 

GRNN General regression neural network 

IDDM Insulin-subordinate diabetes mellitus 

KDD Knowledge discovery in database 

KNN K-nearest neighbours 

LDA Linear discriminant analysis 

LR Logistic regression 

LSSVM Least square support vector machine 

LSTM Long short-term memory 

MCC Mathew’s correlation coefficient 

MDR Multifactor dimensionality reduction 

ML Machine learning 
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MLP Multi-layer perceptron 

mRAR Minimum redundancy minimum relevance 

NB Naive Bayes 

NCB Non-communicable disease 

NIDDM Non-insulin-subordinate diabetes mellitus 

NN Neural network 

PCA Principal component analysis 

PDD Predictive diabetes diagnosis 

PEM Proposed ensemble method 

PIDD Pima Indian diabetes dataset 

PLA Perceptron learning algorithm 

PNN Probabilistic-artificial neural network 

PPG Photoplethysmography 

PRC Precision recall curve 

PRE Precision 

RAE Relative absolute error 

RAE Root squared error 

REC Recall 

Re-RX Recursive rule extraction 

RF Random forest 

RFE Recursive feature elimination 

RNN Recurrent neural network 

ROC Receiver operating characteristic 

RRSE Root relative absolute error 

SD Standard deviation 

SMO Sequential minimal optimisation 

SMOTE Synthetic minority oversampling technique 

SOM Self-organising map 

SVM Support vector machine 

SW-FFANN Small world network feed forward artificial neural network 

T1DM Type-1 diabetes mellitus 

T2DM Type-2 diabetes mellitus 
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TN True negative 

TNR True negative rate 

TP True positive 

TPR True positive rate 

UCI University of California, Irvine. 

2 Diabetes mellitus 

The considerable applications of biotechnology, particularly high-throughput sequencing, 
effect often with a simple and cheap records production to usher the biological science 
implemented into the world of massive data (Marx, 2013). 

Diabetes is outlined as a combination of metabolic disorders inside the fundamental 
as a result of peculiar insulin secretion and/or action. Diabetes is brought about once the 
duct gland in the frame is incapable to provide you with insulin with sufficient quantities. 
There are several conditions where the human body converts food into energy is termed 
as diabetes. When body consumes a carbohydrate, then converts it into a sugar termed 
glucose and forwards that to the bloodstream of the body. In the next, insulin is released 
by pancreas in the body, and then glucose is moved from blood to the cells by a hormone. 
Later, the cells use it for energy. In the cases of not being properly diagnosed in time to 
the diabetes, human body does not use insulin like it should. A term high blood sugar is 
when it has too much glucose in human blood that may lead to serious health problems or 
even reason behind loss of life. There is no remedy for diabetes, but with proper 
treatment and lifestyle, humans can live a long and healthy life. This may result in time 
duration headaches in addition to vas upset, failure, and brain stroke, ulcers inside the 
foot, and eye headaches and so forth (Anjana et al., 2011). 

The diabetes mellitus is one of the vital disease packages, in which prognosis and 
analysis associated with human intimidating and/or life nice decreasing diseases. The key 
method to utilise huge volume of diabetes related statistics available for the extraction of 
data in diabetes research can be possible by applying ML, DM and classification 
strategies. Diabetes broadly categorised into three categories: 

2.1 Type-1 diabetes mellitus (T1DM) 

It is signalised with the aid of duct gland producing insulin however what is wished by 
using the frame, a circumstance conjointly stated as ‘insulin-subordinate diabetes 
mellitus’ (IDDM). 

T1DM is a condition due to autoimmune reaction where the body’s defence system 
attacks the cells that produce insulin and resulting that the body turns out very controlled 
or no insulin. There is not sufficient knowledge about the reason, but these can be linked 
to a combination of genetic and environmental situations. T1DM can affect people at any 
age, but usually develops in children or young adults. Persons with T1DM require daily 
insulin injections to limit their blood glucose levels, failing in regularity consumption of 
insulin injections may lead to loss of lives. The risk factors of T1DM are still in research. 
The risks of T1DM attacks to a person may be slightly from the family with a diabetic 
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family member. But, the surrounding factors and disclosure to some viral infections have 
also been linked to the risk of developing T1DM. 

2.2 Type-2 diabetes mellitus (T2DM) 

It is denoted via the insulin with resisting frames due to the fact the reaction of body cells 
in any other case to insulin than they traditional would. This ought to in the end result in 
the frame with no insulin. This can be, or else, cited as ‘non-insulin subordinate diabetes 
mellitus’ (NIDDM) or ‘grownup starting diabetes’. 

The most common type of diabetes is the T2DM, accounting for around 90% of all 
the diabetes cases. It is generally characterised by insulin resistance, where the body does 
not fully respond to insulin. Because insulin cannot work properly, blood glucose levels 
keep rising, releasing more insulin. For some people with T2DM this can eventually 
exhaust the pancreas, resulting in the body producing less and less insulin, causing even 
higher blood sugar levels (hyperglycaemia). T2DM is most commonly diagnosed in older 
adults, but is increasingly seen in children, adolescents and younger adults due to rising 
levels of obesity, physical inactivity and poor diet. The cornerstone of type 2 diabetes 
management is a healthy diet, increased physical activity and maintaining a healthy body 
weight. Oral medication and insulin are also frequently prescribed to help control blood 
glucose levels. 

2.3 Gestational diabetes mellitus 

GDM is the 3rd precept shape, i.e., ascertained for the duration of physiological state. It 
is a severe and neglected threat to maternal and child health. Many women with GDM 
experience pregnancy-related complications including high blood pressure, large birth 
weight babies and obstructed labour. Approximately half of women with a history of 
GDM go on to develop T2DM within 5–10 years after delivery. The prevalence of high 
blood glucose (hyperglycaemia) in pregnancy increases rapidly with age and is highest in 
women over the age of 45. 

Generally, for a conventional person, aldohexose stages vary from seventy to  
99 milligrams in step with decilitre. A man or woman is taken into consideration diabetic 
providing the quick aldohexose stage is determined to be over 126 mg/dL. Within the 
observe, a human being having an aldohexose attention of one hundred to a 125 mg/dL is 
taken under consideration as prediabetic. In the recent years, it is been observed those 
characteristics for a large danger touching diabetes: 

• Persons with body mass index (BMI) of higher than 25. 

• Persons belonging to the family with diabetic patients. 

• Persons with limited cholesterol label, i.e., 40 mg/dL. 

• Persons with heavy stresses. 

• Persons suffering from polycystic ovary disorder. 

• Persons belonging to racial groups like African American, or Native American, or 
Spanish American, or Asian-pacific elderly over 45 years. 

• Persons with restless and undetermined life styles. 
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When a medical doctor diagnose that a non-public has pre-diabetes, they recommend the 
person better way of life. Adopting a fitness command and an honest food regimen 
arrange will facilitate prevent diabetes (Kaveeshwar and Cornwall, 2014). During this 
work, we found the authors considering classification techniques for the prediction of 
diabetes. 

3 Methodologies and datasets 

3.1 Machine learning 

ML is the machine is getting knowledge in any area working in the ways, in which, 
machines analyse from experiences. ML tasks are usually labelled into three-broad types. 
Such as: 

• Supervised learning (The device function is inferred from labelled training data and 
the system must learn inductively a characteristic referred to as target characteristic, 
that is an phrase of a version describing the dataset). 

• Unsupervised learning (The device function is inferred from structure of unlabelled 
training data and the system tries to get the unseen patterns of information or 
associations between variables). 

• Reinforcement learning (The system interconnects with dynamic surroundings and it 
can be the preferred time period given to a circle of relatives of techniques, for the 
duration of which the device attempts to find out through direct interplay with the 
environment so on maximises a few belief of cumulative reward). 

3.2 Data mining 

DM, also known as knowledge discovery in database (KDD), is mining of information 
from large volume of datasets. There are two kinds of DM: 

• Predictive model (surmises the future results supporting on past records extracted 
from database and it is exercised by many organisations that attempt to data mine a 
person’s worthiness). 

• Descriptive model (to represent prototypes in the data and acknowledge the 
coordinations between the data theory as well as discover the important quality of the 
data, and interprets it). 

The prediction-mining technique is mostly accepted among these two models and the 
researchers have proposed different DM techniques and methods which can be applied in 
various medical uses. 

3.3 Classification techniques 

The Classification approaches are extensively applied within the clinical area for classing 
facts into various groups related to a little require relatively a person classifier. For the 
prediction of a patient for diabetes, the different ML classification algorithms used 
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(Shalev-Shwartz and Ben-David, 2014; Michelucci, 2013; Jang et al., 1997). Some from 
them are as follows: 

• Logistic regression (LR: A kind of supervised learning, can be a system gaining 
knowledge of algorithm for classification). 

• Naive Bayes (NB: Supports Bayes’ theorem of mathematical statistics, with the 
concept of independence between every pair of features). 

• K-nearest neighbours (KNN: Can be a sort of lazy studying or learning due to the 
fact that it does not plan to construct a common internal model, but actually stores 
the training data instances). 

• Decision tree (DT: Given, knowledge of attributes alongside its classes, a decision 
tree generates a sequence of rules which will be wont to categorise the information) 

• Random forest (RF: Often a meta estimator, that is used to match variety of decision 
trees and creates a couple of decision trees from randomly decided on subset of 
training dataset on numerous sub records of curriculum and utilises standard for 
embellishing the surmising correctness of the version and controls over fitting). 

• Support vector machine (SVM” A supervised learning classifier and can be used for 
both the classification as well as Regression, can be a representation of the training 
data as factors in area separated into classes by means of a obvious gap as wide as 
possible). 

• Artificial neural network (ANN: Imitates the working principles of individual brain 
and may be visible as a set of nodes called synthetic or artificial neurons, where all 
of these nodes can convey information to at least one another) 

• Recurrent neural network (RNN: accomplished of extricating lively behaviour from 
an input time order). 

• Linear discriminant analysis (LDA, A dimentionality reduction technique used as a 
preprocessing step in ML and applications of pattern classification) 

• Gaussian discriminant analysis (GDA, a method for data classification commonly 
used when data can be approximated with a normal distribution). 

• Adaptive neuro-fuzzy inference system (ANFIS, a class of adaptive networks that 
incorporate both NN and fuzzy logic principles) 

• Multilayer perceptron (MLP, used for binary classification of datasets) 

• General regression neural network (GRNN, a single pass ML approach with a 
extremely parallel structure). 

• Long short-term memory (LSTM, can analyse, categorise and forecast temporal 
sequence of data sequence of time delay of any dimension). 

• Multifactor dimensionality reduction (MDR, a method for discovering and 
presenting 
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• the unification of independent variables to be able to somehow have an effect on the 
dependent variables and is mainly intended to locate the communications among the 
variables that can involve the expected result of the system) 

• Convolutional neural network (CNN, an improved alternate of MLP done up of one 
input, one output and a lot of hidden layers). 

3.4 Diabetes mellitus datasets 

There are different datasets available for the diabetes prediction as well as diagnosis. 
PIDD, the most common one, i.e., provided by the UCI-ML Repository, that contains 
nine columns and 768 rows of patient data, namely BMI, age, etc. In addition, some 
researchers considered another dataset named as Sawanpracharak hospital dataset taken 
from a local hospital. Many researchers collected data either in online or off line mode 
questionnaires and made datasets for their as well as future uses. 

3.5 Performance evaluation 

There are various evaluative measures presented that are carried out on the datasets for 
performance evaluations by the researches. The main objective of performance 
evaluation is to find the confusion matrix, a matrix of actual class to predicted class, on 
which the evaluative measures can work by different techniques. The confusion matrix 
results as true positive (TP), false positive (FP), true negative (TN), and false negative 
(FN), where TP indicates correctly classified number of records, TN indicates correctly 
classified number of valid records, FP denotes positive incorrectly classified records, and 
FN denotes incorrectly classified records. The different evaluative measures with their 
meanings and formulas on which predictions can be carried out are discussed as shown in 
Table 1. 
Table 1 Evaluative measures with meanings and formulas 

Measure name Meaning Formula 
Accuracy 
(ACC) 

Defines the algorithm accuracy 
for prediction of instances 

( )
( )

TP TN
TP TN FP FN

+
+ + +

 

Error rate (ER) Determines the errors of the 
algorithm in predicting instances 

( )
( )

FP FN
TP TN FP FN

+
+ + +

 

Precision 
(PRE) 

Measures classifiers correctness 
or accuracy ( )

TP
TP FP+

 

Recall or 
sensitivity 
(REC) 

Measures classifiers completeness 
or sensitivity ( )

TP
TP FN+

 

F-measure 
(FM) 

Defines the algorithm accuracy 
for prediction of instances 

(2 )
( )

PRE REC
PRE REC
× ×

+
 

True positive 
rate (TPR) 

Proposes the infected degree of 
people 

( 100)
( )
TP
TP FN

×
+
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Table 1 Evaluative measures with meanings and formulas (continued) 

Measure name Meaning Formula 
Specificity or 
true negative 
rate (TNR) 

Proposes the non-infected degree 
of people 

( 100)
( )
TN
TN FP

×
+

 

False positive 
rate (FPR) 

Falsely rejecting the null 
hypothesis 

( 100)
( )
FP
TN FP

×
+

 

False negative 
rate (FNR) 

Finds the false negative rate ( 100)
( )
FN
TP FN

×
+

 

Kappa statistic Employed to compute the 
assertion among expected and 
observed arrangements of datasets 

( )
(1 )

Total accuracy Random accuracy
Random accuracy

−
−

 

Mathew’s 
correlation 
coefficient 
(MCC) 

Cohesion between precision and 
recall considering all cells of 
confusion matrix ( )

( ) ( )
( )

( )( )

TP TN FP FN
TP FP TP FN
TN FP TN FN

× − ×
+ +
+ +

 

Receiver 
operating 
characteristic 
(ROC) curve 

Possibility to arrange ranks of the 
randomly chosen positive 
instance over negative instance 

A curve of probability that plots FPR 
and TPR 

Area under the 
ROC curve 
(AUC) 

Measures the entire  
two-dimensional area underneath 
the entire ROC curve from (0, 0) 
to (1, 1) 

A curve of probability 

Precision recall 
curve (PRC) 
area 

An optional review extent 
favouring some specialists related 
to data recovery zone 

An alternative to ROC curve is a PRC 

4 Problem description 

In this paper, we come across a systematic review on prediction of diabetes. This study 
may consider the following research questions (RQs): 

RQ1 Is it possible to 100% predicting the diabetes using DM, ML, and classification 
techniques? 

RQ2 Has there been any technique found yet without any shortcomings? 

RQ3 To what extent the researcher’s proposed techniques can predict the diabetes? 

The classification problems can be categorised into two types as binary class 
classification problem and multi class classification problem. In the research works by 
the maximum researchers, the purpose is to classify the data available into diabetic or 
non-diabetic using the supervised learning algorithms, which undergo the type of binary 
class classification problem. The primary objective of this paper is to provide a 
systematic concept towards the prediction of diabetes mellitus using ML, DM and 
classification techniques that may be helpful for further investigation in predictions and 
resulting valuable knowledge on diabetes mellitus. 



   

 

   

   
 

   

   

 

   

   94 A. Pati et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

5 Review and discussion 

The primary sections explain in short the 2-main studies fields concerned (ML and DM), 
remarking the want of clever programs in civilising the fine and usefulness of 
classification in diabetes. The analysis of connected work provides results on numerous 
tending datasets, wherever analysis and predictions were disbursed mistreatment 
numerous ways and techniques. Numerous prediction models are developed and enforced 
by numerous researchers’ mistreatment variants of DM techniques, ML algorithms or 
additionally combination of those techniques. Some related papers are systematically 
reviewed here year-wise and a table summarising all these papers are presented at the 
bottom of this section. 

In the year 2015 

Kandhasamy and Balamurali (2015) have used classification techniques like J48 DT, 
KNN, RF, and SVM by considering the evaluative measures like accuracy, sensitivity 
and specificity on the PIDD dataset, thereby claiming that before preprocessing, J48 DT 
achieves 73.82%, i.e., higher accuracy and after preprocessing, both KNN with ‘k’ as 1 
and RF achieve 100%, i.e., higher accuracy. 

Nai-arun and Moungmai (2015) have used classification techniques like DT, ANN, 
LR, NB, and bagging with DT, ANN, LR, NB, and boosting with DT, ANN, LR, NB, 
and RF by considering the evaluative measures like accuracy, sensitivity and specificity 
on the dataset collected from Sawanpracharak Regional Hospital and achieved the 
accuracy of RF is 85.56%, which is highest among all and created a web application 
accordingly. 

Iyer et al. (2015) have proposed a model using J48 DT and NB by considering the 
evaluative measures like kappa, mean absolute error (MAE), root mean squared error 
(RMSE), relative absolute error (RAE) and root relative squared error (RRSE) on the 
PIDD dataset and resulted that the model was to be the effective than other two in 
diagnosis of diabetes. 

In the year 2016 

Perveen et al. (2016) have used classification techniques like J48 DT, Bagging, and 
Adaboost by considering the evaluative measures like AUROC curves, sensitivity and 
specificity on the dataset used from Canadian Primary Care Sentinel Surveillance 
Network (CPSSN) and concluded that the Adaboost ensemble technique shows better 
results than bagging and J48 DT. 

Hayashi and Yukita (2016) have proposed a sampling re-RX algorithm with J48graft 
model by considering accuracy as evaluative measure on the PIDD dataset and concluded 
that of achieving high accuracy, terseness, and accountability by this proposed model 
compared with the previously defined methods in different articles. 

Soltani and Jafarian (2016) have proposed a method named as probabilistic artificial 
neural networks (PNN) by considering accuracy and MSE as evaluative measures on the 
PIDD dataset and achieved training accuracy of 89.56% and testing accuracy of 81.49% 
by this proposed model. 
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In the year 2017 

Mercaldo et al. (2017) have proposed a method which is trained using J48, MLP, 
Hoeffding tree, JRip, Bayes network and RF by considering the evaluative measures like 
F-measure, precision, recall and ROC area on PIDD dataset and achieved 0.770 of 
precision and 0.775 of recall, the best values, using the Hoeffding tree method, which is 
increasing by training the model. 

Nilashi et al. (2017) have designed a hybrid intelligent model based on SOM for 
clustering, PCA for dimensionality reduction and NN for classification by considering 
accuracy as the evaluative measure on PIDD dataset and Achieved an average accuracy 
of 92.28% which is better than General Regression NN, GDA-LSSVM, MWSVM, SW-
FFANN. 

Zia and Khan (2017) have proposed a framework based on bootstrapping re-sampling 
technique to enhance the accuracy and then applying NB, DT and KNN, and compare 
their performance by considering accuracy as the evaluative measure on PIDD dataset 
and concluded that the highest accuracy of 78.43% without bootstrapping and 94.45% 
with bootstrapping by J48 DT and J48graft DT. 

In the year 2018 

Kaur and Kumari (2018) have used classification techniques like SVM-linear, RBF, 
KNN, ANN, SVM, and MDR by considering the evaluative measures like accuracy,  
F1-score, recall, precision and AUC on PIDD and concluded that of achieving the highest 
accuracy of 89% by linear kernel SVM, concluding with SVM-linear and KNN are two 
best methods for prediction. 

Sisodia and Sisodia (2018) have proposed a system using classification techniques 
like DT, SVM and NB by considering the evaluative measures like accuracy, precision, 
recall and F-measure on PIDD dataset and resulted that NB outplays with the highest 
accuracy around 76.30% in comparison with others. 

Swapna et al. (2018a) have proposed a classification system based on RNN, LSTM, 
CNN, SVM, and CNN-LSTM by considering accuracy as the evaluative measure on 
privately collected dada as the dataset and concluded that with SVM, CNN 5-LSTM 
network, the maximum accuracy achieved is around 95.7%. 

Alehegn et al. (2018) have designed a proposed ensemble method (PEM) by 
considering the evaluative measures like accuracy and error rate on PIDD dataset and 
achieved the accuracy of 90.36%, which is the highest in comparison with other 
classification methods used. 

Wu et al. (2018) have designed a framework based on improved K-means and LR 
method by considering the evaluative measures like accuracy, precision, recall, MCC, 
ROC and kappa statistic on the dataset from University of Virginia School of Medicine 
and dataset collected by online questionnaires and resulted that the framework achieved a 
3.04% more prediction s accuracy than those of other authors. 

Swapna et al. (2018b) have proposed a classification system based on CNN, LSTM, 
and CNN-LSTM by considering accuracy as the evaluative measure on privately 
collected dada as the dataset and claimed of achieving the highest accuracy of 95.1% by 
the combination of CNN-LSTM. 

Zou et al. (2018) have used classification techniques like J48 DT, RF, and NN along 
with PCA and minimum redundancy maximum relevance (mRMR) to reduce the 
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dimensionality by considering the evaluative measures like accuracy, sensitivity, 
specificity, and MCC on the dataset from a hospital in Luzhou, China and claimed that 
the RF reached the maximum accuracy of 80.84% by considering all the attributes. 

In the year 2019 

Carter et al. (2019) have used classification techniques like RF-RFE, RF-full set of 25 
features, KNN-RFE, LDA-RFE, Penalised LR-full set of 25 features by considering the 
evaluative measures like accuracy, sensitivity, specificity and AUC on PIDD dataset, 
thereby resulting that RF model with maximum AUC of 0.90 when 7 out of 9 external 
observations are correct. 

Nguyen et al. (2019) have designed a deep learning NN model by considering the 
evaluative measures like accuracy, sensitivity, specificity and AUC on the datasets from 
practice fusion EHRs for the US population and claimed of achieving the improved AUC, 
sensitivity, specificity, risk scores and substantially, for T2DM predictions by this 
proposed model. 

Saha et al. (2019) have designed a model based on NN Algorithm by considering 
accuracy as the evaluative measure on the PIDD dataset and achieved that the best 
accuracy of 80.4% by NN than any other techniques. 

Reddy et al. (2019) have proposed a method based on CNN algorithm by considering 
accuracy as the evaluative measure on the PIDD dataset and concluded that the achieved 
accuracy around 84.4% which is comparatively maximum than the previously 
implemented techniques. 

Islam et al. (2019) have used classification techniques like bagging, LR and RF by 
considering the evaluative measures like accuracy, kappa, K&B information score, MAE, 
RAE, specificity, precision, recall, F-measure, MCC, ROC area, and PRC area on the 
private real time dataset and concluded that the RF gives the best performance (ACC = 
90.29%) than bagging and LR, whereas Bagging achieved very good results than LR. 

Prabhu and Selvabharathi (2019) have designed deep belief prediction model for 
providing CI for diabetes patient prediction by considering the evaluative measures like 
recall, precision and F1 measure on PIDD dataset and resulted that this model is more 
effective than familiar classifiers like NB, DT, LR, RF and SVM in terms of the 
evaluative measures that are used in this designed model. 

Mujumdar and Vaidehi (2019) have used classification techniques like SVM, RF, DT, 
extra tree, Adaboost, MLP, LDA, LR, KNN, Gaussian NB, bagging, and gradient boost 
classifier by considering the evaluative measures like accuracy, recall, precision, and F1 
score on the private diabetes dataset and PIDD dataset and claimed that the LR gives 
highest accuracy of 96%, whereas Application of pipeline gave AdaBoost classifier as 
best model with accuracy of 98.8%. 

Lukmanto et al. (2019) have designed a classification method using F-score feature 
selection and fuzzy SVM to classify and identify the diabetes dataset by considering 
accuracy and F1-score as the evaluative measures on the PIDD dataset used and 
concluded that the accuracy around 89.02% in predicting diabetes of patients along with 
produces an optimised number of Fuzzy rules. 

Alam et al. (2019) have used ML techniques like ANN, RF and K-means clustering 
techniques by considering the evaluative measures like accuracy and AUROC curves on 
the PIDD dataset and resulted that the maximum accuracy of 75.7%, by ANN. 
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Zhu et al. (2019) have designed a DM based model comprises of K-means, PCA and 
LR algorithm by considering accuracy as the evaluative measure on the PIDD dataset and 
claimed that this improved LR model for predicting diabetes achieved an accuracy of 
1.98% higher than before and others. 

Nirala et al. (2019) have applied characteristic features of toe PPG for detecting  
type-2 diabetes using SVM by considering the evaluative measures like accuracy, 
sensitivity and specificity on the privately collected dataset and achieved 97.87% of 
accuracy, 98.78% of sensitivity and 96.61% of specificity using ten selected features set. 

In the year 2020 

Sooklal and Hosein (2020) have used LR, LR with SMOTE, benefit-based LR using cost-
based model and benefit-based LR using life-expectancy model by considering the 
evaluative measures like accuracy, cost-based benefits and life based benefits on PIDD 
dataset and claimed that of achieving the highest accuracy around 81% using LR model 
by simple modification. 

Wang et al. (2020) have proposed a novel WRank-SVM model by considering the 
evaluative measures like precision, recall, hamming loss, and F1 score on the real type 2 
diabetes dataset from Chinese PLA general hospital and claimed that the WRank-SVM 
achieves the best prediction results in maximum cases compared with the other 6-
methods, namely BR, BP-MLL, ML-KNN, MLL-NB, RF-PCTs, and Rank-SVM on 8-
evaluation metrics. 

Devasena et al. (2020) have proposed a model, PDD using DM algorithms like 
KMeans Clustering and RF classifier by considering accuracy as the evaluative measure 
on the PIDD dataset and resulted better accuracy results comparing with hierarchical 
clustering and Bayesian network clustering with RF prediction. 

Tigga and Garg (2020) have used classification techniques like LR, KNN, SVM, 
NB,DT, and RF by considering the evaluative measures like accuracy, error rate, 
sensitivity, specificity, precision, F-measure, MCC, ten-fold CV, kappa, and AUC on the 
PIDD dataset and personal dataset by a questionnaire online and offline modes and 
concluded that the accuracy of Random Forest as highest for PIDD dataset and highest 
for own dataset, i.e., 94.10%. 

Viloria et al. (2020) have designed an effective diagnostic dYG classifier using SVM 
by considering accuracy as the evaluative measure on the dataset i.e. privately collection 
of 500 patients from a general hospital in Colombia and achieved an accuracy of 99.2% 
for Columbian patients and 65.6% for different ethnic group patients. 

Nnamoko and Korkontzelos (2020) have used SMOTE to balance the training data 
along with NB, SVM, RIPPER, and C4.5 DT classifiers by considering the evaluative 
measures like accuracy, recall, precision, F-score and kappa on the PIDD dataset, 
German credit dataset and biodegradation dataset and concluded that this selective data 
pre-processing method tried to C4.5 DT caused better outplays than the others with 
89.5% accuracy, 90% precision, 89.4% recall, 89.5% F-score and 83.5% Kappa. 
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Table 2 Comparisons among different ML and DM techniques for diabetes prediction 
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Table 2 Comparisons among different ML and DM techniques for diabetes prediction 
(continued) 
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Table 2 Comparisons among different ML and DM techniques for diabetes prediction 
(continued) 
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Table 2 Comparisons among different ML and DM techniques for diabetes prediction 
(continued) 
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Table 2 Comparisons among different ML and DM techniques for diabetes prediction 
(continued) 
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Table 2 Comparisons among different ML and DM techniques for diabetes prediction 
(continued) 
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Table 2 Comparisons among different ML and DM techniques for diabetes prediction 
(continued) 
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Table 2 Comparisons among different ML and DM techniques for diabetes prediction 
(continued) 
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Devi et al. (2020) have designed a merged method of farthest first (FF) clustering 
approach and sequential minimal optimisation (SMO) classifier approach by considering 
the evaluative measures like accuracy, F-measure, ROC, and kappa on the PIDD dataset 
and claimed that of achieving 99.4% classification accuracy in diabetes diagnosis. 

Baig and Nadeem (2020) have used ML models like LR, KNN, RF and gradient 
boosting by considering accuracy and ROC as the evaluative measures on PIDD dataset 
and achieved 98% of accuracy and 99% of ROC by RF, which is the highest in 
comparison with others. 

Kazerouni et al. (2020) have applied four classification models like KNN, SVM, LR 
and ANN for the prediction of T2DM using 6-IncRNA by considering evaluative 
measures like AUC, specificity, sensitivity, and ROC on privately collected datasets from 
other authors and resulted maximum AUC is dedicated to SVM and LR, while KNN and 
ANN had high mean AUC and small SD of AUC, KNN had highest mean sensitivity and 
SVM had highest specificity. 

Sanchez-Brito et al. (2020) have proposed a novel methodology based on the analysis 
of the FTIR spectra of saliva using ML techniques like SVM, ANN and LR by 
considering RMSE and R2 as the evaluative measures on personally created databases 
from spectra and resulted that ANN as the best to carry out the characterisations. 

Pranto et al. (2020) have proposed a model based on ML techniques like DT, KNN, 
RF and NB by considering the evaluative measures like accuracy, recall, precision, F1 
score, ROC and AUC on PIDD dataset and the dataset collected from Kurmitola General 
Hospital, Dhaka, Bangladesh and Claimed that both RF and NB classifier performed well 
on both datasets. 

Sowah et al. (2020) have designed and implemented a software system using ML 
technique like KNN by considering accuracy as the evaluative measure on the data 
collected by online questionnaires and concluded that System recommended meals to 
meet the calorific needs of users successfully using KNN (with k = 5) and answered 
questions asked in a human-like way. 

A comparison among various ML and DM techniques for diabetes predication based 
on several parameters is presented in a tabular form as shown in Table 2. 

6 Conclusions 

In this paper, a scientific attempt was carried out to spot and review on the ML 
classification methods applied to diabetes research, which is rapidly promising together 
as the simplest health challenges of the 21st century internationally. Recently, some big 
works, like biomarker identification, prediction as well as diagnosis etc., disbursed in the 
majority aspects of diabetes research. The rise of biotechnology, medical science 
applications with the datasets are useful towards prognosis and diagnosis along with 
predictions in the field of diabetes disease. The treatment of diabetes using ML and DM 
classification approaches in clinical datasets that consist of medical and biologic 
information can be done smoothly. It is clear that these classification models improve 
accuracy and precision of diabetes prediction with all the datasets available like Pima 
Indian datasets and others. From the study of different papers, it shows a differentiation 
of results, while it may conclude as RF and SVM are to be the most successful and 
widely applicable methods for predicting diabetes. Further, this work may be extended to 
seek out how likely non-diabetic people can have diabetes in next few years. 
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